
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2796

Verification of Protocol Design using UML - SMV
Prashanth C.M. and K. Chandrashekar Shet

Abstract—In recent past, the Unified Modeling Language (UML)
has become the de facto industry standard for object-oriented mod-
eling of the software systems. The syntax and semantics rich UML
has encouraged industry to develop several supporting tools including
those capable of generating deployable product (code) from the
UML models. As a consequence, ensuring the correctness of the
model/design has become challenging and extremely important task.

In this paper, we present an approach for automatic verification of
protocol model/design. As a case study, Session Initiation Protocol
(SIP) design is verified for the property, “the CALLER will not
converse with the CALLEE before the connection is established
between them ”. The SIP is modeled using UML statechart diagrams
and the desired properties are expressed in temporal logic. Our
prototype verifier “UML-SMV” is used to carry out the verification.
We subjected an erroneous SIP model to the UML-SMV, the verifier
could successfully detect the error (in 76.26ms) and generate the error
trace.

Keywords—Unified Modeling Language, Statechart, Verification,
Protocol Design, Model Checking.

I. INTRODUCTION

D esigning a new protocol, which is reliable and meets
all the specifications, is a challenging task. There are

many instances of protocol failing (when actually deployed)
even after thorough testing. To enhance the correctness of a
protocol design, formal verification techniques are used. The
formal verification is a complementary approach to testing
for detecting subtle design errors. In formal verification, the
behavior of the protocol is described using a program like
notation, collection of finite state machines or temporal logic
formulae and then this description is compared with the
specification of the desired behavior. If the verifier detects any
flaw in the behavioral description, then it generates a counter
example or an error trace that illustrates how the problem has
occurred [1].

In this paper, we present a pragmatic semiformal approach
for verifying the protocol design. We have considered UML
statechart diagrams [2] for describing the behavior of the
protocol. The desired behavioral property (safety property)
is specified using temporal logic formula [3]. The problem
associated with the model verification is “State Explosion”
[4]. The state space search technique presented in this paper
restricts the exploration of number of states, thereby saves
the time and the memory required. We have demonstrated the
correctness of our approach by verifying the UML statechart

Prashanth C.M. is a Research Scholar in the Department of Computer
Engineering, National Institute of Technology Karnataka, Surathkal, INDIA,
575025. E-mail: prashanth bcs@yahoo.co.in

K. Chandrashekar Shet is a Professor in the Department of Computer
Engineering, National Institute of Technology Karnataka, Surathkal, INDIA,
575025. E-mail: kcshet@nitk.ac.in

model of the Session Initiation Protocol (SIP). We inducted an
error to the SIP model and subjected it for verification. Our
prototype verifier “UML-SMV” (UML - State chart Model
Verifier) detected this error and generated an error trace.

In the next section we present an overview of the Session
Initiation Protocol. The UML statechart model of the SIP is
described in the section III. The verification methodology is
explained in the section IV and the algorithm for efficient state
- space search is given in the section V. The prototype verifier
“UML-SMV” is described in section VI. We have presented
results obtained from the verification of SIP design in the
section VII. We distinguish our work from the other protocol
verification techniques in the section VIII. Finally, we have
drawn conclusions based on the work carried out in the section
IX.

II. OVERVIEW OF SIP

The Session Initiation Protocol (SIP) is a signalling control
protocol on the application layer of a network [5]. It is used
for setting up and to terminate the multimedia communication
session between the users. The SIP is designed (the latest
version of the specification RFC 3261 is from Internet En-
gineering Task Force - IETF) to enable the functionalities
of the network elements designated as Proxy Servers and
User Agents. The Fig.1 depicts the SIP call establishment and
termination process.

Fig. 1: SIP Call Establishment

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2797

III. UML STATECHART MODEL OF SIP
The SIP protocol has four major components “CALLER”,

“CALLEE”, “CALLER Side Proxy” and “CALLEE Side
Proxy”. These are called objects. In our verification approach,
the behavior of each of these objects is modeled using UML
statechart diagram. The UML statechart representations of the
above mentioned objects are shown in the Fig. 2. The desired
property is expressed using temporal logic (symbolically rep-
resented as φ).

We have verified the property “CALLER will converse
with the CALLEE, only after the call being established”. This
property is described in temporal logic formula as shown
below.

CR.Conversation ⇒ CL.CallEstablished ∧ CLP.CallEstablished ∧
CRP.CallEstablished

IV. VERIFICATION METHODOLOGY

In this section, we introduce the framework proposed for
detecting safety violations in UML statechart models. The
basic verification process is divided into the following three
phases.

A. Preprocessing Phase

In this phase, the UML Statechart model of the system is
first converted into XMI(XML Metadata Interchange) format
[6]. The XMI representation of the statechart diagrams are
then translated to Intermediate Representation (IR model). The
IR model is read and the behavioral aspects of the object
are stored using graph data structure. The safety property
being verified is written using temporal logic. It is essential to
interpret the temporal logic property expression. We translate
property expression into AND/OR graph and traverse the
graph in such a way that, error states are generated.

B. Verification Phase

In this phase, the global state space tree is constructed by
combining the state transitions of all objects upon occurrence
of each event. To begin with, all objects are assumed to be
in their respective initial states, during the construction of
the state space (on-the-fly), error states are compared with
the states that are generated, if the match is found, further
exploration of the state space is terminated. We then generate
an error trace (a path from the initial state to the error
state). If no invalid behavior is observed, we continue the
exploration of the state space till all possible states are visited.
The complete exploration without error being detected implies
model behavior is satisfactory. We have devised an efficient
state-space search algorithm (refer section V), which finds set
of relevant events associated with each object of the system.
The relevant events are computed using the information given
in the safety property being checked. The union of all these set
of relevant events constitute set of total relevant events (Ert).
The number of events in Ert will be less than or equal to set
of all the events and hence number of states to be explored
for detecting the error is reduced.

(a) Statechart for CALLER

(b) Statechart for CALLEE

(c) Statechart for CALLER Side Proxy

(d) Statechart for CALLEE Side Proxy

Fig. 2: UML Statechart Model for SIP

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2798

C. Analysis Phase

In this phase, the result obtained from the previous phase
is examined. If the UML statechart model has any flaw, the
previous phase generates an error trace or a counter example.
The information provided in the error trace is used to correct
the model and the model is again subjected to the verification.
This process is repeated till model’s correctness is ascertained.
The Fig.3 shows all the analysis activities.

Read the Counter Example

Refine the Model

Run the Verifier

NO

YES

Select the Next Property

Is Property Satisfied ?

Are all Properties

Checked ?

Start

Stop

YES

NO

Fig. 3: Analysis Process

V. STATE SPACE SEARCH ALGORITHM

The algorithm devised for efficient searching the state
space of the protocol is shown in Fig.4. The state transition
of an object completely depends on externally or internally
generated event. Any technique which reduces the number
of events to be considered for constructing state space tree,
will ultimately reduce the search space. The algorithm devised
is based on this idea. This algorithm finds set of relevant
events from the UML statechart of each object of the protocol
system. The rules listed below are used for computing the set
of relevant events (Eri) associated with an object.
R1: An event is relevant if

R 1.1: there is a transition associated with this event and
has current sate as part of error state (⇁ φ).

R 1.2: there is a transition associated with this event and
has next state as part of error state (⇁ φ).

R2: A set of events are relevant if
R 2.1: there is a sequence of transitions associated with

these events and takes the object from the initial
state to a state, which is part of error state (⇁ φ). In
other words, all events that participate in changing
state of an object from its initial state, subsequently
to a state which is part of the error state.

The union of all these set of relevant events constitutes
the set Ert (i.e Ert = {Er1 ∪ Er2 ..Ern}, where Eri
represent a set of relevant events associated with object i).
These events are used by the “Event Manager” for the state
space exploration (refer to section VI for the details of “Event
Manager”).

1: Read ¬Ø (negative behavior or bad state) from the user;
2: for each object i of the system (model)
3: {
4: Get S

i
set of reachable states;

5: Get Er
i
set of all relevant events;

6: Get T
i
set of all transitions;

7: Get I
i
set of initial states;

8: }
9: for (i=1 to No. of objects)
10: Compute Er

t
= (Ert U Get_relevant_events (Oi));

// Build the state space (synchronous product of all objects)//
11: Let flag = false;
12: Start with state s (all objects are in their initial states);
13: for (each relevant_event e Ert enabled in s & s not empty)
14: {

15: s
*
= set of all successor states of s after e

i
;

16: While (s
*
not empty)

17: {

18: If (state s
j

 s
*
, is not in state space)

19: {
20: add s

j
to state space;

21: push s
j
on to stack;

22: If (state s
j
is same as ¬Ø)

23: {
24: Set found flag to true;
25: Break;
26: }
27: Mark the state s

j
as visited;

28: }
29: s

j
= nextstate (s

j
);

30: }
31: If (found) Break;
32: s= pop ();
33: }
34: If (! found)
35: Display “No negative behavior seen in the model”;
36: Else
37: {
38: Display “Negative behavior found”;
39: Display Error Trace / Counterexample;
40: }

Fig. 4: Search Algorithm

VI. A PROTOTYPE VERIFIER UML-SMV

A prototype Unified Modeling Language -Statechart Model
Verifier (UML-SMV) is developed in C++ language to validate
the verification framework. The prototype developed is of size
3655 lines of code, has 13 major header files and a main
routine. The UML-SMV system architecture shown in Fig.6.
The distinguishable functional components of the UML-SMV
are described in the following sections.

A. Preprocessing Components

1) UML Modeler: The BOUML [7], open source modeling
tool conforming to UML 2.0 standards of Object Management
Group (OMG) has been used for drawing the UML statechart

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2799

diagrams. This tool allows us to specify UML models and
generate code in Python, C++ or Java languages. The BOUML
runs on Linux/Unix/Solaris, Mac OS X and Windows. The tool
supports generation of XMI 1.2 or XMI 2.1 representation of
UML diagrams. The BOUML tool is integrated to UML-SMV.

2) Translator: The XMI representation of the UML dia-
grams is translated into Intermediate representation by a C++
Translator routine XMI2IR(). The Translator routine removes
all unnecessary characters, tags and information from the XMI
document but preserves the logics and hierarchical structure
of the original model.

3) IR parser: The intermediate representation (IR) is the
textual description of the UML statechart model and is the
input to IR Parser (MODPARSE()) module. The IR parser
transforms the behavioral description of each object to graph
data structure.

4) Property Inference Engine(PIE): The architecture of the
Property Inference Engine (PIE) is shown in Fig.??. The
safety property expressed in temporal logic is input to the
property inference engine. The inference engine will produce
a AND/OR graph, which has to be traversed in a depth first
manner to extract error states.

Repository of Rules

Inference Engine
Safety
Property
Formula

AND/OR
Graph

Fig. 5: Architecture of the Property Inference Engine

B. Verification Engine Components

1) Event Manager: The “Event Manger” component of the
verification engine is responsible for determining the order of
the events (The UML sequence diagram is used for modeling
the order of occurrence of the events) and holding the events
in the determined order in an “Event Queue” for dispatching.
It is also responsible for selecting and de-queuing the event
instances from the “Event Queue”.

2) State Manager: The “State Manager” has the responsi-
bility of managing the following activities:

• Given the current state of the system, it is the job of the
“State Manager” to determine the next possible states on
occurrence of each of the event in the “Event Queue”.

• The “State Manager” selects a state (if the state is not
already visited or added to the state space graph) from
the set of next possible states of the system for further
exploration.

• If the state selected is not in the state space graph, the
“State Manager” adds it to the state space graph. Thus
builds the state space tree.

• The “State Manager” also checks whether the selected
state is an error state or not by comparing it with the states
in the set of error states. If the selected state happens to
be an error state, then it asks the “Search Engine” to
terminate the search process.

3) Search Engine: The “Search Engine” prunes the state
space for detecting safety property violation during the con-
struction of the state space tree. The root node represents the
state in which all objects are assumed to be in their local initial
state. The “State Manager” determines all possible next states
of the system on each of the event dispatched by the “Event
Manager”. All these states are pushed on to the stack and
the first state in the stack is chosen speculatively for further
exploration. Next, the “State Manager” checks whether the
selected state is in the state space graph or not. If the state is
already visited, the state is removed from the stack and state
which is next in the stack is selected.

4) Back Tracker: If the “Search Engine” finds a property
violation (error), the control is handed over to “Back Tracker”.
The ”Back Tracker” then traces the path back to the initial
state from the error state. This then displays the error trail
(the counter example).

Safety
Property

Collaboration

Counter
Example

UML
Statecharts

.XMI
Files

IR
(.txt files)

Translator

Verification Engine

Property
Inference Engine

Backtracker

Parser

Event
Manager

State Manger

State Space
Search Engine

Model does not
violate Safety

Property

Or

Fig. 6: Architecture of the UML-SMV

VII. EXPERIMENTAL RESULTS

In this section, we describe the results obtained from the
verification of UML state chart model of SIP. The results
are summarized in the Table I. When the correct model
is subjected to the verification, we found that UML-SMV
verifier explores 121 states in 321ms to confirm the model’s
correctness.

We then introduced an error to the SIP model. The
“CALLER” is allowed to converse without waiting for the call
establishment with the “CALLEE”. The verifier successfully
detected the error, by exploring only 12 states in 76.26ms. The
“Counter Example” generated is of length 10.

VIII. RELATED WORK

The protocol verification has been a research issue since
last two decades. There are several research articles describing
the approaches to verify the protocols. The [8], [9] illustrate

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2800

TABLE I: Verification Results of SIP

UML Model complexity Verification Complexity

Input Max No. of
States

No. of
Events

No. of States
Explored

Length of
the error
trace (Hops)

Verification
time in ms

Incorrect
Model ≤360 14 12 10

76.26

Correct
Model 121 –

321

verification of cache coherence and authentication protocol
respectively. The usual approach is to describe the protocol
design in the input language of the model checker, such as
PROcess MEta LAnguage (PROMELA), Agros, and Property
Specification Language (PSL) and use the model checker like
Simple Promela INterpreter (SPIN) [10], Symbolic Model
Verifier (SMV) [11] and IBM-RuleBase [12] to verify the
desired properties. In our approach, we have used the UML
state chart diagrams to model the behavior of the protocols, as
UML is a visual modeling language and easy to understand.
The state chart diagrams are automatically translated to an
intermediate representation and verification is done without
the aid of any of the existing model checker.

IX. CONCLUSIONS

In this paper, we have presented an automatic protocol de-
sign verification technique. This is a complementary approach
for testing and this enhances the quality of the end product.
We have taken verification of Session Initiation Protocol (SIP)
as a case study and following are our findings

• Verification algorithm quickly finds the design errors. In
case of SIP design verification, verifier identified error in
76.26 ms.

• As algorithm considers only relevant states, number of
states explored would be less. In the specific case which
we attempted, we find that 121 states are explored to
determine the correctness of the model.

• Modeling the behavior of the protocol using UML stat-
echarts is more convenient compared to modeling using
formal languages; UML has rich set of visual notations.

In summary, we conclude that our pragmatic verification
approach can act as a valuable design aid to protocol designers.

ACKNOWLEDGMENT

The authors thank IBM Software Lab, Bangalore, India and
Mr. Janees Elamkulam, Technical Leader, IBM Software Lab,
Bangalore, for supporting us with valuable suggestions while
carrying out this work.

REFERENCES

[1] Edmund M. Clarke,Jr., Orna Grumberg and Doron A. Peled , Model
Checking, The MIT press, 1999

[2] D.Harel, Statecharts: A Visual Formalism for Complex Systems, Science
Computer Programming 8, pp 231-274, 1987

[3] Z.Manna, A.Pnueli, ”The Temporal Logic of Reactive and Concurrent
Systems,” Springer Verlag, New York, 1992

[4] Valmari,A.: The State explosion Problem, Lectures on Petri Nets I:Basic
Models, LNCS 1491, Springer- Verlag (1998) 429-528

[5] Alan B. Johnston, ”Understanding the Session Initiation Protocol” Second
edition, Artech house, ISBN 1-58053-655-7, 2004

[6] XML Metadata Interchange, http://www.omg.org/technology/documents/
formal/xmi.htm,visited on 17/10/2008

[7] BOUML An open source UML modeling tool, available at:
http://sourceforge.net/project/, visited on 17/10/2008.

[8] Alan J. Hu, M. Fujita, Chris Wilson, ”Formal verification of HAL S1
system Cache coherence Protocol”. In proceedings of Int. conference on
computer design, IEEE, 1997

[9] T. Y.C. Woo, Simon S. lam, ”Design, Verification and Implementation
of Authentication Protocol”, In proc. of Int. conference on Network
protocols, pp 81-90, 1994.

[10] Gerard J. Holzmann, ”The Model Checker Spin”, IEEE Trans. on
Software Engineering, Vol. 23, No. 5, (1997),279-295

[11] Kenneth L. Mc. Millan, ”Symbolic Model Checking: An approach to
the state explosion problem”, Ph.D thesis submitted to Carnegie Mellon
University (CMU), 1992

[12] I. Beer, S. Ben-David, C. Eisner and Landvar,” RuleBase an industry-
oriented formal verification tool”, Proceedings of 33rd Design Au-
tomation Conference (DAC), Association for Computing Machinery
Inc.,(1996), 655-660.

Prashanth C.M. is an Assistant Professor in the department of Computer
Science & Engineering, Adichunchanagiri Institute of Technology, India.
He has received the B.E. degree in Electronics & Communication from
Adichunchanagiri Institute of Technology, India in 1996 and M.E. degree
in Computer Science & Engineering from Vellore College of Engineering,
India in 2002. He is currently pursuing Ph.D at National Institute of Tech-
nology Karnataka, India. His research interests include Software Engineering,
Computer Architecture and Operating system. He is a life member of Indian
Society of Technical Education. He has published several papers in refereed
international conference proceedings and journals.

K. Chandrashekar Shet is a Professor in the department of Computer
Engineering, National Institute of Technology Karnataka, India. He has more
than 36 years of experience in teaching and research. He holds a Ph. D. from
IIT Bombay, India. He is a member of Computer Society of India and Indian
Society of Technical Education. He is a Fellow of Institution of Engineers
(INDIA). His research interests include software testing, Security Solution for
Web Services, Cyber Laws, Anti spam solutions, Wireless Networks, Mobile
Computing, Ad hoc Networks. He has published more than 200 papers in
refereed conference proceedings and journals.

