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Abstract—In this paper, we consider the vehicle routing problem
with mixed fleet of conventional and heterogenous electric vehicles
and time dependent charging costs, denoted VRP-HFCC, in which
a set of geographically scattered customers have to be served by a
mixed fleet of vehicles composed of a heterogenous fleet of Electric
Vehicles (EVs), having different battery capacities and operating
costs, and Conventional Vehicles (CVs). We include the possibility
of charging EVs in the available charging stations during the routes
in order to serve all customers. Each charging station offers charging
service with a known technology of chargers and time dependent
charging costs. Charging stations are also subject to operating time
windows constraints. EVs are not necessarily compatible with all
available charging technologies and a partial charging is allowed.
Intermittent charging at the depot is also allowed provided that
constraints related to the electricity grid are satisfied.
The objective is to minimize the number of employed vehicles and
then minimize the total travel and charging costs.
In this study, we present a Mixed Integer Programming Model and
develop a Charging Routing Heuristic and a Local Search Heuristic
based on the Inject-Eject routine with different insertion methods. All
heuristics are tested on real data instances.

Keywords—charging problem, electric vehicle, heuristics, local
search, optimization, routing problem.

I. INTRODUCTION

THE substantial growth of the transport sector in recent

years has made it the prime player in energy consumption

and greenhouse gas emissions. Providing better planning of

urban transportation services becomes certainly challenging

due to the crowded traffic infrastructure, increasing customer

expectations and rules set by municipalities. Nowadays, the

governments are more and more aware of the urgency to

tackle transport problems and conserve the environment.

Moreover, there has been a significant body of research on

making urban transportation more efficient and sustainable.

Investing in more environmentally friendly and safe modes

of transportation such as the as the ridesharing service [1]

and Electric Vehicles (EVs) use [2] is becoming a necessity

today. In fact, the EV represents nowadays a credible

alternative to the more conventional engines. Convinced that

this green vehicle is one of the responses to the worldwide

environmental and energy issues, governments and business

organizations pay today particular attention to quickly install

EVs in every city and to optimize their use.

However, EVs are currently facing several weaknesses

related to the limited driving range, the long charging
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time, the availability of a charging infrastructure and the

high purchasing costs. Thus, the deployment of a large

scale of EVs needs, mainly in the business context, a prior

reorganization of the vehicles’ routes in order to meet the EV

limits related to the battery range and to satisfy the customers.

This work is an extension of the real-world problem that

was addressed in the framework of the French national R&D

project Infini Drive, led by La Poste Group, ERDF (French

Public Electricity Distribution Network Manager) and seven

other companies and research laboratories. This project has

been funded by ADEME (French Environment and Energy

Control Agency) as part of the ’Vehicle of the Future’

program. It aims at designing, with a progressive approach,

a system for managing charging infrastructures that allows for

economically viable and ecologically sustainable deployment

of EVs fleets of companies and public authorities.

Furthermore, this study follows on from the work presented

in [3] where exact and heuristic methods were presented to

solve the joint EV scheduling and charging problem. This

studied problem consists in assigning EVs and CVs to already

constructed routes and optimizing EVs charging. Within this

study, we extend this problem to the case where the routes need

to be constructed and assigned to the available vehicles with

the objective of minimizing the overall routing and charging

costs.

In this paper, we consider the vehicle routing problem with

mixed fleet of conventional and heterogenous electric vehicles,

in which a set of geographically scattered customers have to

be served by a fleet of CVs and EVs operating with plug-in

batteries. EVs need to be charged in charging stations during

the trips in order to serve all customers.

More precisely, our problem can be defined as follows: Given

a set of customers, a set of charging stations having different

types of chargers, proposing different time dependant charging

costs and subject to operating time windows constraints, and a

number of heterogenous EVs and CVs. We seek to minimize

the number of used vehicles while fostering the use of EVs,

as well as minimizing both transportation and charging costs

for visiting customers, while every customer is visited exactly

once and routes start and end at the depot. During the trips,

EVs could be charged, either totally or partially, at any of the

available charging stations while satisfying temporal, battery

and load capacity constraints.

In order to minimize their investment costs of charging

infrastructure, companies may accept to share their charging
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infrastructures with other EVs users. However, they impose

that charging should only be undertaken during limited time

intervals and propose time dependant charging costs that may

allow for the smoothing of the energy consumption curve

and the avoiding of energy consumption peaks. Thus, we

consider that the charging stations propose time-dependant

charging costs, have predefined opening time windows and

allow charging using different charging technologies. Within

this study, we consider that the charging stations could propose

three different charging technologies: (i) Level 1 charger which

is the slowest charging level that provides charging with a

power of 3.7 kW; (ii) Level 2 charger offers charging with a

power of 22 kW and (iii) Level 3 charger which is the fastest

charging level that delivers a power of 53 kW.

Charging at the depot is also allowed and it could be

intermittent provided that charging constraints related to the

electricity grid are satisfied. In fact, at each time period t,

the total grid power available to charge EVs is limited and

the electricity cost may vary. Different Level 1 chargers are

available at the depot and could be used during the night to

charge EVs. Level 2 chargers are also available and could be

used during a limited time interval.

To the best of our knowledge, no previous study was devoted

to tackle this problem in the literature.

To solve the VRP-HFCC, we develop a Constructive Heuristic

and a Local Search Heuristic based on the Inject-Eject routine

with three different insertion strategies. All heuristics are

tested on real data instances.

The remainder of this paper is organized as follows. In Section

II, a review of related literature is presented. In Section III, we

introduce the notation in detail. In Section IV, we provide a

mixed-integer linear programming formulation of VRP-HFCC.

Section V describes the solving approaches. Experimental

results on real data instances are presented in Section VI.

Section VII gives a short summary and conclusion of the paper.

II. RELATED WORK

In this section, we review the literature related to the electric

vehicle routing problems and the controlled EV charging

problems.

EVs charging problems as well as EVs routing problems

have attracted close attention from researchers and business

organizations in recent years. Thus, the number of publications

focusing on the EV has significantly increased in the last few

years. A recent overview of many issues related to the use of

EVs for goods distribution can be found in [4].

The controlled charging problem consists in a better

management of EVs charging in order to minimize the

charging cost. In [5], the authors design a simulation

environment, which produces charging schedules using

a multi-objective evolutionary optimization algorithm. [6]

exposes an energy consumption scheduler able to reduce peak

power load in smart places based on genetic algorithms. A

concept of real-time scheduling techniques for EV charging to

minimize the impact on the power grid and to guarantee the

satisfaction of consumers charging requirements is suggested

in [7]. In [3], the problem of jointly EVs scheduling and

charging is addressed. This problem consists in simultaneously

assigning EVs and CVs to already constructed routes and

EVs charging optimizing. The NP-Hardness of this problem

is proven and exact and heuristic methods are proposed and

tested on real data instances.

In the case where EVs routes are not already constructed,

we refer to the Electric Vehicle Routing Problem which is

an extension of the more general Vehicle Routing Problem

(see for example [8] and [9]).

The problem of energy-optimal routing is addressed in [10]. In

[11], the authors formulate the Green Vehicle Routing Problem

(GVRP) as a Mixed Integer Linear Program (MIP). Two

constructive heuristics are developed to solve this problem.

An overview of the GVRP is given in [12].

Schneider et al. [13] combine a Vehicle Routing Problem with

the possibility of refueling a vehicle at a station along the

route. They introduce the Electric Vehicle Routing Problem

with Time Windows and Recharging Stations (E-VRPTW),

which incorporates the possibility of recharging at any of

the available stations using an appropriate recharging scheme.

E-VRPTW aims at minimizing the number of employed

vehicles and total traveled distance.

We are also aware of more recent studies that were conducted

simultaneously with our work. In [14], the Electric Vehicle

Routing Problem with Time Windows and Mixed Fleet

(E-VRPTWMF) to optimize the routing of a mixed fleet of

EVs and CVs is addressed. On each visit to a recharging

station, EVs are recharged to their maximum battery capacity

with a constant recharging rate. To solve this problem,

an Adaptive Large Neighborhood Search algorithm that is

enhanced by a local search for intensification is proposed.

Almost the same problem is addressed in [15]. The only

difference here is the fact of considering heterogenous

vehicles that differ in their transport capacity, battery size

and acquisition cost. An Adaptive Large Neighbourhood

Search with an embedded local search and labelling procedure

for intensification is also used to solve the problem. In

[16], the authors present a variation of the electric vehicle

routing problem in which different charging technologies are

considered and partial EV charging is allowed. This problem

is the closest to our problem in the sense that we consider

different charging technologies and partial EV charging.

However, several major differences have to be outlined. Firstly,

we consider a mixed fleet composed of heterogenous EVs

and CVs. Secondly, the costs of charging at the depot and

at the charging stations are assumed to be time dependent.

Moreover, the charging stations are subject to operating time

windows constraints and charging at the depot is subject to

the grid’s maximum capacity constraints. Besides, EVs are

not necessarily compatible with all charging technologies.

In short, we differ from all the above-mentioned studies

in that we consider a heterogenous fleet composed of EVs

and CVs, different types of charging stations and different

time-dependent charging costs. Moreover, EV charging at

the depot could be intermittent and is subject to real-life

constraints such as the maximum grid capacity constraint. We

also consider that not all EV are compatible with fast charging

technologies and that partial charging is allowed. Our objective
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function is also different. In fact, we aim at minimizing total

operating and charging costs involved with the use of a mixed

fleet. Our overall objective is to provide enhanced optimization

methods for EV charging and routing that are relevant to the

described constraints.

III. PROBLEM DESCRIPTION AND NOTATION

We define the VRP-HFCC on a complete, directed graph

G = (V
′

, A). V
′

denotes the set of vertices composed of

the set V of n customers, the set F ′ of dummy vertices

generated to permit several visits to each vertex in the set F

of charging stations F = {1, . . . , f} and D
′

the set of dummy

vertices generated to allow several visits to each charger at

the depot D = {1, . . . , | D |}. The set of arcs is denoted by

A = {(i, j) | i, j ∈ V
′

, i 6= j}. The depot is denoted by either

0 or n + 1 depending if it is the initial or terminal node of

a route. We denote by V
′

0 the set V
′

∪ {0}, by V
′

n+1 the set

V
′

∪ {n+ 1} and by V
′

0,n+1 the set V
′

∪ {0, n+ 1}.
The optimization time horizon [0, T ], which represents

typically a day, is divided into T equidistant time periods,

t = 1, . . . , T , each of length δ, where t represents the time

interval [t− 1, t]. We define the night interval [0, T0] ⊂ [0, T ]
during which charging at the depot with Level 1 chargers

could be performed. Moreover, no customer has to be served

during the night period. We define the service interval

[T0, T ] ⊂ [0, T ] during which all customers have to be served

and the EVs could be charged in the different charging

stations as well as in the depot using the available chargers.

A nonnegative demand qi is associated with each customer

i ∈ V , this represents the quantity of goods that will be

delivered to this customer. With each customer we also

associate a service time si. Each arc (i, j) ∈ A is defined

by a distance di,j and a nonnegative travel time ti,j required

to travel di,j . When an arc (i, j) is traveled by an EV, it

consumes an amount of energy ei,j equal to r× dij , where r

denotes a constant energy consumption rate.

Each charging station f ∈ F can deliver a maximum

charging power pf (kW) and proposes a time dependent

charging cost cf,t, ∀t = T0, . . . , T ; which represents

the charging cost during the time period t, expressed

in (euros\kWh). The chargers in charging station f are

available during the time window [af , bf ]. Accordingly, the

EV must wait if it arrives at charging station f before time af .

We consider a set MEV = {1, . . . ,mEV} of EVs and a set

MCV = {mEV + 1, . . . ,mEV + mCV} of Combustion Engine

Vehicles (CVs), needed to serve all customers. Each EV k

operates with a battery characterized by its nominal capacity

of embedded energy CEk(kWh) and its State of Charge

(SoC0
k) at time t = 0 expressed as a ratio of the available

amount of energy and CEk (0 = empty; 1 = full). At low

and high SoC’s values, the battery tends to degrade faster

([17] and [18]). In order to improve its lifetime after repeated

use and to respect the security issues, at each time t, SoCt
k

should be in the interval [SoCMin

k , SoCMax

k ], where SoCMin

k and

SoCMax

k are the minimal and maximal allowable values of

SoC, respectively.

Each EV (CV) is characterized by a maximum capacity QEV

(QCV) (m3) which represents the maximum quantity of goods

that could be transported by the vehicle. Denote by FCEV

(FCCV) (euros/ day) the fixed costs related to EVs (EVs).

Denote by OCEV

k (OCCV) the operating costs (euros/kilometer)

related to the maintenance of the EV (CV), accidents, etc.

Thus, if an arc (i, j) is traveled by an EV k (CV k), this has an

operating cost denoted by costEV

i,j,k (costCV

i,j) and is computed

as: costEV

i,j,k = di,j ×OCEV

k (costCV

i,j,k = di,j ×OCCV).

At the depot, a given number of slow chargers are available

to charge the EVs during the optimization horizon [0, T ] and

a predefined number of fast chargers are available to charge

the vehicles only during the service time [T0, T ].
At each time period t, each charger at the depot can apply on

EV k a charging power pkt ∈ [pMin, pMax] where pMin and pMax

are the minimal and maximal powers that can be delivered

by the charger, respectively. Thus, an EV charged with a

power pkt during the time period t retrieves a total amount

of energy equal to δ × pkt(kWh). We denote by GPt the

electricity grid capacity available for EV charging at time t;

i.e., at each time period t, the total grid power available to

charge all EVs is limited to GPt. Let c′t be the energy cost

during t.

Each customer i ∈ V should be visited, by either an electric

or conventional vehicle, exactly once during [T0, T ]. Each

charging station could be visited as many times as required or

not at all. When charging is undertaken in a charging station

f , it is assumed that only the required quantity of energy is

injected into the EV battery. Thus, EVs could be partially

charged.

Since we consider, within this study, many charging

technologies (slow and fast charging), we should also consider

the fact that not all EVs technologies are compatible with fast

charging. Thus, when we plan the charging of an EV, only the

charging stations proposing compatible charging technologies

should be considered. A feasible solution to our problem is

composed of a set of feasible routes assigned to adequate

vehicles and a feasible EVs charging planning.

A feasible route is a sequence of nodes that satisfies the

following set of constraints:

• Each route must start and end at the depot;

• the overall amount of goods delivered along the route,

given by the sum of the demands qi for each visited

customer, must not exceed the vehicle capacity (QEV or

QCV);

• the total duration of each route, calculated as the sum of

all travel durations required to visit a set of customers,

the time required to charge the vehicle during the interval

[T0, T ], the service time of each customer and, eventually,

the waiting time of the EV if it arrives at a charging

station before its opening time, could not exceed T −T0;

• no more than mEV EVs and mCV CVs are used;

• each customer should be visited between T0 and T ;

• the following charging constraints are satisfied:

– The charging level of the battery of each EV k must
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always be in the interval [SoCMin

k , SoCMax

k ];
– when charging is undertaken, the EV should be

charged with a compatible charging technology;

– when the EVs are charged at the depot, the total

power used to charge them does not exceed the

grid’s maximum capacity and the minimum and the

maximum powers of chargers should be respected;

– during [0, T0], EV charging at the depot could only

be performed using the available Level 1 chargers;

– at each charging station f , charging could only

be undertaken during its operating time window

[af , bf ];

We seek to construct a minimum number of routes such that

all customers are served, all EVs are optimally charged and

the total cost of routing and charging is minimized.

IV. PROBLEM FORMULATION

In this section, we propose a Mixed Integer Programming

Model (MIP) for the VRP-HFCC. Let F
′

k (respectively, D
′

k

and Dk ) be the set of external charging stations in F
′

(respectively, chargers in D
′

and chargers in D) that are

compatible with the vehicle k. We introduce the following

decision variables:

xEV

ijk: is a 0-1 variable equal to 1 if an EV k; k ∈MEV; travels

from i ∈ V
′

0 to j ∈ V
′

n+1 and 0 otherwise.

xCV

ijk: is a 0-1 variable equal to 1 if a CV k; k ∈MCV; travels

from i ∈ V ∪ {0} to j ∈ V ∪ {n+ 1} and 0 otherwise.

ykt : is a 0-1 variable equal to 1 if the vehicle k; k ∈MEV; is

charged during the time interval t ∈ [0, T0] and 0 otherwise.

y
′

tfk: 0-1 variable specifying if an EV k is charged during the

time period t ∈ [T0, T ] in charging station f ∈ F
′

k ∪D
′

k .

pktg : decision real variable denoting the charging power level

applied to EV k; k = 1, . . . ,mEV; using a charger g at the depot

at time interval t ∈ [0, T0] (kW).

p
′

tfk: real variable representing the charging rate of EV k at

time period t ∈ [T0, T ] in charging station f ∈ F
′

k ∪ D
′

k

(kW).

ttjk: decision real variable specifying the arrival time of a

vehicle k; k ∈MEV ∪MCV; at vertex j ∈ V
′

.

Ea
jk: real variable specifying the amount of energy available

in the battery of vehicle k; k ∈MEV; when arriving at node j

(kWh).

El
jk: amount of energy available in the battery of EV k;

k ∈MEV; when leaving node j (kWh).

ljk: real variable specifying the amount of load left in the

vehicle k; k ∈MEV ∪MCV; after visiting node j (m3).

Wjk: the waiting time of EV k; k ∈ MEV; when arriving at

charging station j ∈ F
′

k ∪D
′

k .

In the following, we detail the mathematical formulation (P)
of VRP-HFCC:

Min
∑

k∈MEV

∑

i∈V
′

0 ,j∈V
′

n+1

costEV

i,j,k × xEV

ijk +

∑

k∈MCV

∑

i∈V ∪{0},j∈V ∪{n+1}

costCV

i,j,k × xCV

ijk +

∑

k∈MEV

∑

f∈F
′

k
∪D

′

k

∑

t∈[T0,T ]

cf,t × p
′

tfk +

∑

k∈MEV

∑

j∈D

∑

t∈[0,T0]

c
′

t × pktj +
∑

k∈MEV

∑

j∈V ′

FCEV × xEV

0jk +

∑

k∈MCV

∑

j∈V

FCCV × xCV

0jk +
∑

k∈MEV

∑

f∈F
′

k
∪D

′

k

β ×Wfk (1)

∑

k∈MEV

∑

j∈V ′ ;i 6=j

xEV

ijk +
∑

k∈MCV

∑

j∈V ′ ;i6=j

xCV

ijk = 1, ∀i ∈ V (2)

∑

k∈MEV

∑

j∈V
′

n+1
;i 6=j

xEV

ijk ≤ 1, ∀i ∈ F
′

∪D
′

(3)

∑

k∈MEV

∑

j∈V
′

n+1
;i 6=j

xEV

ijk − xEV

jik = 0, ∀i ∈ V
′

(4)

∑

k∈MCV

∑

j∈V ∪{n+1};i 6=j

xCV

ijk − xCV

jik = 0, ∀i ∈ V (5)

∑

j∈V ′ ;i 6=j

xEV

0jk ≤ 1, ∀k ∈MEV (6)

∑

j∈V ;i 6=j

xCV

0jk ≤ 1, ∀k ∈MCV (7)

∑

j∈V ;i 6=j

∑

k∈MEV

xEV

0jk ≤ mEV (8)

∑

j∈V ;i 6=j

∑

k∈MCV

xCV

0jk ≤ mCV (9)

mEV∑

k=1

pktj ≤ GPt, ∀t ∈ [0, T0], ∀j ∈ Dk (10)

pMin × ykt ≤ pktj , ∀t ∈ [0, T0], ∀k ∈MEV, ∀j ∈ Dk (11)

pktj ≤ pMax × ykt, ∀t ∈ [0, T0], ∀k ∈MEV, ∀j ∈ Dk (12)

SoC0
k +

∑
t≤T0−1 δ × pktj

CEk

≤ SoCMax

k , ∀t ∈ [0, T0],

∀k ∈MEV, ∀j ∈ Dk (13)

SoC0
k +

∑
t≤T0−1 δ × pktj

CEk

≥ SoCMin

k , ∀t ∈ [0, T0],

∀k ∈MEV, ∀j ∈ Dk (14)

ttjk ≥ ttik + (ti,j + si)× xEV

ijk − T × (1− xEV

ijk),

∀i ∈ V ∪ {0}, ∀j ∈ V
′

n+1; i 6= j, ∀k ∈MEV (15)

ttjk ≥ ttik + (ti,j + si)× xCV

ijk − T × (1− xCV

ijk),

∀i ∈ V ∪ {0}, ∀j ∈ V ∪ {n+ 1}; i 6= j, ∀k ∈MCV (16)

ttjk ≥ ttik + ti,j × xEV

ijk +

t=T∑

t=T0

δ × y
′

tik − (T + r × CEk)×

(1− xEV

ijk), ∀i ∈ F
′

k ∪D
′

k, ∀j ∈ V
′

n+1, ∀k ∈MEV (17)

T0 ≤ ttjk ≤ T, ∀j ∈ V
′

0,n+1, ∀k ∈MEV ∪MCV (18)

aj ≤ ttjk +Wjk ≤ bj , ∀j ∈ F
′

k ∪D
′

k, ∀k ∈MEV (19)

SoCMin

k ≤
EA

jk

CEk
≤ SoCMax

k , ∀j ∈ V
′

n+1, ∀k ∈MEV (20)
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SoCMin

k ≤
EL

jk

CEk

≤ SoCMax

k , ∀j ∈ V
′

n+1, ∀k ∈MEV (21)

EA
jk = EL

jk, ∀j ∈ V, ∀k ∈MEV (22)

EA
jk ≤ EL

ik − r × di,j × xEV

ijk + CEk(1− xEV

ijk),

∀i ∈ V
′

0 , ∀j ∈ V
′

n+1, ∀k ∈MEV (23)

EL
jk = EA

jk +

t=T∑

t=T0

d× p′tjk, ∀j ∈ F
′

k ∪D
′

k, ∀k ∈MEV (24)

0 ≤ p′tjk ≤ pj × y′tjk, ∀j ∈ F
′

k ∪D
′

k,

∀t ∈ [T0, T ], ∀k ∈MEV (25)∑

k∈MEV

∑

j∈D
′

k

p′tjk ≤ GPt, ∀t ∈ [T0, T ] (26)

t=T∑

t=bj

y′tjk +

t=aj∑

t=T0

y′tjk = 0, ∀j ∈ F
′

k ∪D
′

k, ∀k ∈MEV (27)

ljk ≥ lik + qj −QEV × (1− xEV

ijk),

∀i ∈ V
′

0 , j ∈ V ∪ {n+ 1}, i 6= j, ∀k ∈MEV (28)

ljk ≥ lik + qj −QCV × (1− xCV

ijk),

∀i ∈ V ∪ {0}, j ∈ V ∪ {n+ 1}, i 6= j, ∀k ∈MCV (29)

ljk ≥ lik −QEV × (1− xEV

ijk),

∀i ∈ V
′

n+1, j ∈ F
′

k ∪D
′

k, i 6= j, ∀k ∈MEV (30)

ljk ≤ QEV, ∀j ∈ V
′

n+1, ∀k ∈MEV (31)

ljk ≤ QCV, ∀j ∈ V ∪ {n+ 1}, ∀k ∈MCV (32)

Wjk ≥ aj − ttjk, ∀j ∈ F
′

k ∪D
′

k, ∀k ∈MEV (33)

xEV

ijk;x
CV

ijk; ykt; y
′
tjk ∈ {0, 1};E

L
jk;E

A
jk; ljk; ptk;

p′tjk; ttjk; ljk;Wjk ≥ 0, ∀i, j, t, k ∈ V
′

0,n+1 (34)

The objective function, measured in monetary units, consists

in minimizing five costs: (i) the routing cost, (ii) the charging

cost engendered by charging EVs in the charging stations

during [T0, T ], (iii) the cost of charging EVs at the depot

during [0, T0], (iv) the vehicles total fixed cost and (v) the total

cost engendered by the waiting time; where β is a coefficient

estimating the cost lost because of waiting during one period

of time.

Constraints (2) ensure that each customer is visited exactly

once. Constraints (3) guarantee that each charging station

is visited at most one time. Constraints (4) and (5) enforce

that the number of incoming arcs is equal to the number of

outgoing arcs for each node. Constraints (6) and (7) ensure

that each vehicle is at most assigned to one route. Constraints

(8) and (9) make sure that at most the available vehicles are

used. Constrains (10)-(14) concern charging EVs at the depot.

Constraints (10) ensure that, at each time period t ∈ [0, T0], the

total power used to charge the EVs does not exceed the grid’s

maximum capacity. Constraints (11) and (13) guarantee the

respect of the minimum and the maximum powers of chargers

when charging the EVs. Constraints (13) and (14) ensure

that the SoC of each EV is in the interval [SoCMin, SoCMax].
Constraints (15)-(17) link arrival times at nodes i and j and

permit to eliminate the sub-tours. Constraints (18) ensure

that the arrival time to each node should be in the interval

[T0, T ] and constraints (19) make sure that the arrival time

to any charging station should be in its operating period.

Constraints (20) and (21) enforce that the energy amount

available when arriving at node j or when leaving it never

exceeds the maximum allowable SoC or goes bellow the

minimum allowable SoC. Constraints (22) guarantee that the

amount of energy available when arriving at a customer j

is equal to the energy amount available when leaving it.

Constraints (23) link the amounts of energy available when

arriving to nodes i and j. Constraints (24) take into account the

quantity of energy charged at charging station j. Constraints

(25) ensure that the power used to charge an EV during a

given time period does not exceed the charging power that

could be delivered by the chargers of this station. Constraints

(26) prohibit the exceeding of the available grid’s maximum

capacity. Constraints (27) prohibit any charging at a charging

station outside its opening hours. Constraints (28)-(32) ensure

the respect of the vehicles capacity constraints. The waiting

time for vehicle k at charging station j is defined by the

constraints 33. Finally, constraints (34) define the domain of

all used variables.

V. SOLVING APPROACHES

A. Charging Routing Heuristic

In this section, we introduce a Charging Routing Heuristic

(CRH) to solve the VRP-HFCC. This heuristic is used

to generate initial solutions within a short computational

time and it consists of two steps. In the first step, a

feasible charging scheme for EVs at the depot during

[0, T0] is generated. In the second step, a joint routing and

charging planning for the service period [T0, T ] is determined.

Step 1: EVs Charging at the depot during [0, T0]:
This step aims at designing EVs charging strategies at the

depot during the time interval [0, T0] while satisfying the

electricity grid and the chargers constraints. Those charging

constraints could limit EV charging in the sense that the

available EVs will not necessarily be fully charged at t = T0.

Our objective is to minimize charging costs while at the

same time giving the priority of charging to the EVs (i) with

low operating costs, (ii) whose state of charge is still very

low, (iii) which are not compatible with all available charing

technologies and (iv) whose charging is more costly.

At t = 0, it is assumed that all batteries of EVs are empty.

The heuristic starts by sorting the time periods according to

the ascending order of electricity costs. Let Tsorted be the

sorted table of all time periods in [0, T0]. With each electric

vehicle k, we associate a priority prioritykt that translates the

fact that EV k has or not higher priority to charging than the

other available EVs during the time period t. This priority

is computed as: prioritykt =
SoCt

k

SoCmax
+ Comp Costk

Comp Costtotal
+

1
km×OCEV

k

,

where:

• km is an estimation of the average number of kilometers

traveled by each electric vehicle,

• Comp Costk =
∑t=T

t=T0

1
ct

; where ct is the average

charging cost at all charging stations in which vehicle
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k could be charged during the time period t; i.e., ct =∑
f∈F (k)(

1
|F (k)| )×cft; where f ∈ F (k) if and only if EV

k is compatible with the charging technology proposed

by f ,

• Comp Costtotal =
∑t=T0

t=T
1∑

f∈F
( 1
|F |

)×cft

.

The heuristic selects the first available time period in

Tsorted as well as the EV with the lowest priority and charges

it with the minimal possible charging power between: (i) the

maximal power of chargers, (ii) the grid’s capacity that is still

available, and (iii) the maximum power that will completely

full the vehicle’s battery. The grid’s capacity is then updated

and if the new grid’s capacity is still positive, the CRH selects

a new different EV with the lowest priority. This procedure

is repeated until no possible charging could be undertaken.

At the end of the first step, a charging scheme is available

for all EVs.

Step 2: Joint charging and routing during [T0, T ]:
Initially, a list of mEV +mCV empty routes is created.

While at least an EV is still available, the heuristic continues

with selecting an EV k with a maximum priority (prioritykT0
).

Then, it inserts iteratively the customers into an active route

at the position causing minimal increase in tour cost until a

violation of capacity or battery capacity of the selected EV

occurs. The heuristic anticipates, when possible, any violation

due to the battery capacity constraint by inserting charging

stations during the tour construction. The best charging station

is selected among the compatible and available charging

stations belonging to the neighborhood V (i) of the current

node i, where V (i) is the set of all nodes within the circle

defined by the center i and the radius α; where α is the

maximum distance that could be traveled by the EV using

its current state of charge (see Fig. 1)). If a violation of one

of the constraints occurs or the total route time exceeds T−T0,

the current route is assigned to the selected vehicle, another

EV with a maximum priority is selected and a new route is

activated.

When a customer could not be reached using any of the

available EVs, it is assigned to the CV engendering the

minimal cost increase in the solution cost while satisfying the

capacity and the total route duration constraints, until at most

the predefined number of routes (mEV +mCV ) is constructed.

Algorithm 1 provides more details about the CRH heuristic.

Fig. 1. Illustrative example of the CRH: Assume that an available EV at the
depot could reach all nodes in V (D) and the cost of the arc (D, i) is minimal.
Before adding i to the active route, the heuristic checks the neighborhood of
i (list of all reachable nodes). In our case, V (i) = ∅. Thus, if the EV visits
the customer i, it will be blocked there since its state of charge will not
be sufficient to go back to the depot. The heuristic continues by selecting
the node m and checking its neighborhood. In our case, V (m) = e. The
customer m will then be added to the active route since the EV will be able
to get charged after visiting m.

Algorithm 1 Charging Routing Algorithm

1: Input: A graph G = (V
′

, A) and a set of mEV +mCV empty
routes

2: Output: A set of routes assigned to at most mEV + mCV

vehicles
3: Step 1
4: Let C = (c′1, . . . , c

′

T0
), G = (g1, . . . , gT0) and E =

(ek1 , . . . , e
k
T0
) be three vectors of T0 elements, where c′t, t =

1, . . . , T0, is the electricity cost during the time interval [t−1, t],
gt, t = 1, . . . , T0, is the residual capacity of the electricity
grid during the time interval [t − 1, t] and ekt , t = 1, . . . , T0,
k = 1, . . . ,mEV , is the quantity of energy injected in the battery
of EV k during the time interval [t − 1, t]. Parameter ekt is
initialized to zero.

5: Sort the vector C in the nondecreasing order of c′t and let C =
(c′π(1), . . . , c

′

π(Tj)
) be the sorted vector

6: for each time interval [π(t)− 1, π(t)] such that gπ(t) > 0 do
7: while Charging could be undertaken; i.e., there exists at least

one available charger and one vehicle k such that ekπ(t) = 0
and vk > 0; where vk is is maximum quantity of energy that
could be injected in the battery of vehicle k without exceeding
the maximum allowable State of Charge do

8: Compute the priority associated with each EV and select the
EV with the lowest priority among all vehicles having ekπ(t) = 0
and vk > 0

9: Calculate Energy to ejectπ(t) = min{pMax × δ, gπ(t) ×
δ, vk}

10: Update ekπ(t) = Energy to ejectπ(t) and gπ(t) = gπ(t) −
Energy to ejectπ(t)

δ

11: end while
12: end for
13: The charging schedule at the depot is given, for each vehicle

k, by the power vector that should be applied to EV k P =

(
ek1
δ
, . . . ,

ek
T0
δ

).
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14: Step 2
15: while the maximum number of routes is not yet reached AND

there exists at least one customer that is not yet served do
16: Select the EV with the highest priority priorityk

T0
at t = T0

among all available EVs not yet assigned
17: while the total route duration is less than T −T0 and the total

amount of goods delivered along the route is less than QEV do
18: Sort the list of nodes either randomly or in increasing order

of the angle between the depot and a randomly chosen point and
select the first customer i in the list

19: Let V (i) be the set of all neighbors of node i not yet visited
and that could be visited using the remaining battery energy of the
current vehicle.

20: If V (i) contains at least one customer and either the depot
or a charging station f ; f ∈ V (j) ∩ F (j), select a node j from
V (i) such that the cost costEV

i,j,k of arc (i, j) is minimal.
21: if V (j) is empty or it only contains customers then
22: the vehicle should get charged before visiting j, in that

case insert the compatible charging station with the lowest cost
while ensuring that this charging station will be available when
the EV arrives at this station

23: end if
24: if (V (j) is empty or it contains only customers or incom-

patible charging stations) AND (charging is not possible) then
25: Assign i to the CV having a sufficient capacity and

engendering a minimum insertion cost
26: end if
27: end while
28: end while

B. Inject-Eject Routine-Based Local Search

In this section, we propose a new Inject-Eject-based Local

Search (IELS) which starts from a given feasible solution and

improves it using the inject-eject routine. The heuristic CRH

is used to generate an initial solution to the problem.

The following parameters are useful in IELS method:

• Iter: parameter that controls the size of the main loop

of the algorithm.

• IterIE: parameter that specifies the number of times the

inject-eject routine should be repeated.

• Num: parameter that controls the size of the

neighborhood list that will be used in the inject-eject

procedure.

For each feasible solution, IELS heuristic performs Iter

iterations of the following neighborhood ejection and injection

strategy.

A node j and a set of Num − 1 additional nodes located

the nearest possible to j (in terms of costs), are randomly

selected (the selected neighbors may be in different routes

and are not necessary in V (j)).
This neighborhood of Num nodes is then ejected from the

solution. It is possible to eject a charger or to decrease

the charging time at a given charging station to satisfy the

charging station operating time windows constraints, in that

case, the solution may become unfeasible, thus, a penalty is

then added to the total solution cost. The ejected nodes are

then re-inserted back into the partial solution using one of

the three different insertion methods: (i) random insertion,

(ii) insertion method with regret search and (iii) score-based

insertion method.

If the solution becomes infeasible, we insert a new charger,

having the lowest cost, in the route while ensuring that

the constraints related to the compatibility of the charging

stations with the EV as well as the station’s operating time

windows constraints are satisfied.

If it is not possible to insert the ejected node in an already

constructed route, a new route that contains this node and

the depot may be created. In that case, the vehicle ownership

cost is added to the total route cost.

When all customers have been re-inserted back into the

solution using one of the three insertion methods, the new

solution is compared with the original solution. If the resulting

solution is better than the original solution, then the next

iteration continues with the new solution. Otherwise, the next

iteration continues with the original solution. After iter runs,

the best solution found during the search is reported.

In the following, we detail the insertion methods as well as

the inject-eject algorithm.

1) Random Insertion Method: This method consists in

randomly selecting a node among the list of ejected nodes

and inserting it in the position that generates the minimal

cost increase in the total solution cost. If the insertion of

a customer in a given route position leads to a violation

of the vehicle capacity or total time constraints, this route

position will not be accepted. However, if the insertion of a

customer in a given route position still satisfies the vehicle

capacity and total time constraints but leads to a violation of

the energy constraints (in the case where the EV needs more

energy to serve this customer or the time planned for charging

decreases since it depends on the opening time windows of the

charging stations), this method tries to repair the solution by

inserting chargers in the route while ensuring the compatibility

between the EV and the chargers and satisfying the charging

stations’ operating time windows constraints. At each update

of the routing and charging solution, the total solution cost

is updated. Algorithm 2 provides the detail of the random

insertion method.

Algorithm 2 Random Insertion Method

1: Input: A partial solution to the VRP-HFCC and a list of ejected
nodes Eject

2: Output: A solution to the VRP-HFCC
3: Let trial be the number of times the Random Insertion Method

should be repeated for each list of ejected nodes
4: Let best increase cost be the cost of the best solution found.

Initially, best increase cost =∞, tr = 0
5: best total solution cost=cost of the best solution found
6: while tr < trial do
7: Generate a list of ejected nodes Eject and sort it randomly
8: while Eject 6= ∅ do
9: Select a node j from the list Eject

10: for each route position do
11: try to inject j in this route position
12: if the insertion is possible and increase cost <

best increse cost then
13: best increse cost = increase cost
14: else
15: if the insertion satisfies the total load and total time

constraints and violates the energy constraints then
16: try to inject a charger using the Charger Insertion

Method
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17: if increase cost < best increse cost then
18: best increse cost = increase cost
19: end if
20: end if
21:

22: do not accept this insertion
23: end if
24: end for
25: Evaluate the cost of inserting j in a new route
26: if increase cost < best increse cost then
27: best increse cost = increase cost
28: end if
29: end while
30: if total solution cost < best total solution cost then
31: best total solution cost = total solution cost
32: save the best order of injected nodes
33: end if
34: end while
35: inject all nodes of Eject and eventually some chargers in the

best route positions defined

2) Insertion Method With Regret Search: The insertion

method with regret search uses the same cheapest insertion

method as the random insertion method, but allows previous

insertions to be undone if this removal allows for a cheaper

insertion of the current customer under consideration. This is

similar to the notion of regret described in [19].

At each step, the cheapest next insertion and the maximum

cost reduction caused by deleting a node (which is not one of

the partial solution vertices participating in the insertion) from

the current partial solution are compared. The inject-eject

moves remain temporary and become final only when all

ejected nodes are re-injected. Algorithm 3 describes the

insertion method with regret search.

Algorithm 3 Insertion Method with Regret Search

1: Input: A partial solution and a list Eject of ejected nodes
2: Output: A set of routes
3: Let trial be the number of times the Insertion Method with regret

should be repeated for each list of ejected nodes
4: Initially, node to eject = −1, max eject cost = −∞
5: for (tr = 0; tr < trial) do
6: Create a random permutation of the list Eject
7: Let RandEject be the new list of ejected nodes engendered

by the random permutation
8: for (j = 0; j < Num) do
9: Find the cheapest way to insert the current node (including

creating a new route) and eventually the best charging station f∗

and the best route position p∗ to insert it
10: for (k = 0; k < j) do
11: if the node RandEject[k] isn’t involved in the cheapest

insertion then
12: if the ejection cost of RandEject[k] is greater than

the maximum ejection cost (max eject cost) then
13: node to eject = RandEject[k]
14: end if
15: end if
16: end for
17: if there is no node to eject OR the cost of insertion of

RandEject[j] is greater than max eject cost then
18: Insert RandEject[j] in the route position engendering

the minimum cost increase in the solution cost

19: insert eventually f∗ in p∗

20: else
21: Eject the node node to eject and insert the node

RandEject[j] in the cheapest insertion position as well as even-
tually f∗ in p∗

22: end if
23: end for
24: end for

3) Score-Based Insertion Method: The Score-Based

Insertion Method is based on the idea of associating a score

with each node to inject. This idea is inspired from the

Parallel Regret Algorithm introduced in [20].

For this method, the Eject list is only composed of

customers. However, it is possible to inject and eject chargers

to repair a solution. A score is associated with each node

of the Eject list. It translates the difficulty of injecting the

node in the current solution and it is used to select the next

customer j to inject in the current solution. For each node

j ∈ Eject, the score score(j) of node j includes (i) the

penalty penalty(j, r) occurred when the customer j is not

assigned to its preferred route; (ii) the distance of j to the

closest available charging station (dj,fc ); (iii) the number of

available charging stations that could be reached by the EV

after visiting customer j (ηf ).

Thus, score(j) = penalty(j, r) + dj,fc − ηf ,

where penalty(j, r) is the difference between the cost

engendered by inserting the customer j in the second best

route position and the cost of inserting it in the best route

position. When a customer could only be inserted in one

possible route position, the penalty penalty(j, r) takes a

large value imposing that the customer should be inserted in

the best route position.

Algorithm 4 details the Score-Based Insertion Method.

Algorithm 4 Score-Based Insertion Method Algorithm

1: Input: A partial solution and a list Eject of ejected customers
2: Output: A solution to the VRP-HFCC
3: for each customer j in Eject do
4: Compute the costs engendered by injecting j in each route

position including the possibility of injecting a charger when
needed to repair the solution

5: compute the score score(j)
6: end for
7: while Eject 6= ∅ do
8: Select the customer j∗ with the maximum value of score
9: if the cost of injection of j∗ in a new route is cheaper then

the cost of inserting j∗ in any of the already constructed routes
then

10: initialize a new route r̃
11: inject j∗ in this route
12: else
13: insert j∗ in the best route position
14: delete j∗ from Eject
15: end if
16: for each customer j in Eject do
17: update the score score(j)
18: end for
19: end while

In the following, we detail the Charger Insertion Method
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which is used by the different insertion methods when the

energy constraints are not satisfied.

When an ejected node has to be injected in the solution,

different route positions are evaluated and a violation of

the energy constraints may occur. Rather than excluding this

route position, we try to repair the solution by injecting a

charger in the unfeasible route. This Charger Insertion Method

searches the best charging node and the best route position that

engender the lowest charging cost and guarantee the feasibility

of the route. The detail of the Charger insertion method is

given in Algorithm 5.

Algorithm 5 Charger Insertion Method

1: Input: A partial solution with an infeasible route r̂ assigned to

EV k̂
2: Output: A feasible solution
3: Initially, feasible route cost =∞
4: for each charging station f̂ compatible with EV k̂ do
5: for each position p̂ in route r̂ do

6: if route r̂ becomes feasible when f̂ is inserted in p̂ AND

the time operating constraints of f̂ are satisfied then
7: Adjust the amount of energy to inject using the Charging

Adjustment Procedure
8: if feasible route cost < best feasible route cost

then
9: p∗ = p̂

10: f∗ = k̂
11: end if
12: end if
13: end for
14: end for

Algorithm 6 provides details on the Charging Adjustment

Procedure used to estimate the minimum required amount

of energy to inject in the EV when charging should be

undertaken.

Algorithm 6 Charging Adjustment Procedure

1: Input: Initial feasible solution r
2: Output: Improved feasible route r′

3: Initialize r′ to r
4: Let (d0, p1, . . . , fx, . . . , pr, dn+1) be the sequence of customers

and charging stations in route r′.
5: for each subsequence of customers between two charging stations

do
6: Calculate the minimum required amount of energy that should

be injected in the EV at the next charging station.
7: end for
8: Update the total cost and duration of r′.

Now, we have all sub-routines to describe the Inject-Eject

method. In the following, Algorithm 7 describes the

Inject-Eject method in detail.

Algorithm 7 Inject-Eject Method

1: Input: A graph G = (V ′, A) and a set of mEV +mCV vehicles
2: Output: A set of routes assigned to at most mEV +mCV vehicles
3: Let S be the best solution obtained by the Charging Routing

Heuristic. Initially, best obj = solution cost(S) and d = 0
4: for d = 0; d < Iter do
5: Let S be the current solution and initialize d to 0
6: for a = 0; a < IterIE do
7: Select, randomly, a node j (different from the depot) and

Num − 1 nodes from the list of neighbors of node j to eject.
Let Eject be the list of ejected nodes.

8: Inject all nodes of the list Eject again using one of the
three insertion methods

9: If the insertion method leads to an unfeasible route, repair
the solution by including a charger using the Charger Insertion
Method

10: If a new route is created, add the vehicle possession cost to
the total solution cost

11: if total route cost < best obj then
12: best obj = total route cost
13: Update S
14: end if
15: end for
16: if total route cost < best obj then
17: best obj = total route cost
18: Update S
19: end if
20: end for

VI. COMPUTATIONAL RESULTS

We conducted numerical experiments on real data instances

provided by two French companies that manage large

heterogenous vehicle fleets. Our heuristics are implemented

using C++. All experiments were carried out on an Intel

Xeon E5620 2.4GHz processor, with 8GB RAM memory.

The half of EVs considered have 22 kWh battery packs and

the rest have 16 kWh battery packs.

The optimization procedure is based on a 24 hour period.

EVs charging at the depot could be performed during the

time interval [8pm, 8am]. The customers should be served

not earlier than 8 am and not later than 8 pm.

Concerning charging at the depot, prices for electricity

are based on those provided by EDF (French Electricity

Distribution company). At most mEV Level 1 chargers, with a

range of 1.5-3.7 kW could be used to charge EVs at the depot

during all the optimization horizon. One Level 2 charger,

with a range of 1.5-22.0 kW, could be used to charge EVs

during the day. The minimal allowable SoC is fixed at 0.2

and the maximal allowable SoC is fixed at 0.95. Initially, the

EVs batteries are empty (SoCt=8pm = 0).

The operating cost of each EV expressed in

(euros\kilometer) is calculated as the sum of different costs

engendered by the maintenance, accidents, etc. This cost does

not include the electricity costs which are computed separately

and include EVs charging costs at the depot and other charging

stations. Concerning the CVs, their operating costs include

the costs engendered by the maintenance, accidents, etc., as

well as the gasoline cost which is calculated by multiplying

the gasoline consumption per kilometer by the cost per unit

of gasoline. Concerning charging at the different external

charging stations, we consider only stations proposing slow

charging (with Level 1 chargers) or medium charging (using
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TABLE I
PERFORMANCE RESULTS OF THE DIFFERENT HEURISTIC METHODS ON 9 REAL DATA INSTANCES

Instance Number CRH- CRH IELS-Rand IELS-Rand IELS-Regret IELS-Regret (s) IELS-Score IELS-Score
of nodes Objective -CPU(s) -Gap -CPU(s) -Gap -CPU(s) -Gap -CPU(s)

1 550 2840.01 1.19 -38.00% 88.61 -39.31% 601.41 -38.64% 208.11

2 550 2486.91 1.12 -13.09% 93.85 -14.91% 623.63 -13.38% 230.62

3 500 2398.22 1.01 -30.6% 81.68 -30.6% 472.86 -19.03% 142.18

4 500 2266.54 0.99 -14.26% 83.47 -16.19% 305.32 -14.26% 149.81

5 400 2249.35 0.89 -15.28% 60.71 -15.28% 200.75 -15.28% 100.64

6 400 2939.24 0.89 -37.60% 54.49 -37.60% 209.69 -37.60% 101.29

7 400 2966.26 0.82 -40.24% 43.65 -44.30% 358.56 -43.29% 102.29

8 300 1946.58 0.80 -64.40% 29.19 -64.07% 194.25 -64.07% 81.79

9 300 1829.70 0.79 -37.49% 31.42 -64.00% 126.69 -62.20% 91.59

Average 433 2435.86 0.96 -32.32 % 63.00 -36.25% 343.68 -34.19% 134.25

Level 2 chargers). Charging stations proposing fast charging

using Level 3 chargers are not considered within those

experiments since our real data instances include only EVs

that are not compatible with fast charging.

Experiments were conducted on 9 real data instances. The

number of nodes for the considered instances ranges between

300 and 550. We consider that 18 EVs and 8 CVs are

available to serve the customers. At the depot, 18 Level 1

chargers and 1 Level 2 charger are available. The number

of external charging stations is adapted to the total number

of customers n of the instances. More precisely, one to two

charging stations are randomly located for each set of 20

customers. The characteristics of each charging station as well

as the time-dependent proposed costs are defined randomly.

The load capacity of each EV ranges between 3 and 5 m3.

Each CV has a capacity of 5 m3.

The computational results obtained with the different heuristic

methods are summarized in Table I. The entries of Table I

show, for the CRH, the value of the objective function of

the generated solution as well as the average run time in

seconds (s) and for the three other methods (IELS-Rand,

IELS-Regret, IELS-Score), the Gap of the generated solution

(s) in relation to the solution generated by the CRH (sCRH )

computed as: Gap = s−sCRH

s
as well as the average run time

in seconds (s). The computational results show that the three

different IELS heuristics have generated the same solution

for 4 instances. For the remaining instances, we can notice

that the IELS with regret insertion method generates better

solutions than the other two methods. In fact, the IELS with

regret insertion method has an average improvement gap in

relation to the CRH of about 36%, compared to 34% for the

score-based IELS and 32% for the IELS with regret insertion

strategy. Concerning the computational time, among all the

IELS methods, the IELS with random insertion method seems

to be the fastest with an average CPU of around one minute

compared to around 2 minutes for the score-based IELS and

around 5 minutes for the IELS with regret insertion method.

VII. CONCLUSION

In this paper, we considered a new vehicle routing

problem with mixed fleet of conventional and heterogenous

electric vehicles and time dependent charging costs. This

problem consists in optimizing the routing of a set of

vehicles with the objective of minimizing the overall routing

and charging costs. Contrary to existing studies that focus

on the Electric Vehicle Routing Problem, we consider

that the charging stations, which are subject to operating

time windows constraints, propose charging using different

charging technologies and time dependent charging costs.

Moreover, charging at the depot is subject to the electricity

grid and the chargers constraints. We also consider the

compatibility constraints between the EVs and the different

charging technologies. To solve this problem, we developed

a Charging Routing Heuristic to generate initial solutions as

well as an Inject-Eject-Based Local Search with three different

insertion strategies. All heuristic methods were tested on real

data instances.

As further work, we will test our methods on newly designed

data instances as well as on benchmark instances of some

related problems. Moreover, we will consider some classical

meta-heuristics to solve our problem.
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