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Abstract—In this paper, we propose the variational EM inference 

algorithm for the multi-class Gaussian process classification model 
that can be used in the field of human behavior recognition. This 
algorithm can drive simultaneously both a posterior distribution of a 
latent function and estimators of hyper-parameters in a Gaussian 
process classification model with multiclass. Our algorithm is based 
on the Laplace approximation (LA) technique and variational EM 
framework. This is performed in two steps: called expectation and 
maximization steps. First, in the expectation step, using the Bayesian 
formula and LA technique, we derive approximately the posterior 
distribution of the latent function indicating the possibility that each 
observation belongs to a certain class in the Gaussian process 
classification model. Second, in the maximization step, using a derived 
posterior distribution of latent function, we compute the maximum 
likelihood estimator for hyper-parameters of a covariance matrix 
necessary to define prior distribution for latent function. These two 
steps iteratively repeat until a convergence condition satisfies. 
Moreover, we apply the proposed algorithm with human action 
classification problem using a public database, namely, the KTH 
human action data set. Experimental results reveal that the proposed 
algorithm shows good performance on this data set. 
 

Keywords—Bayesian rule, Gaussian process classification model 
with multiclass, Gaussian process prior, human action classification, 
laplace approximation, variational EM algorithm.  

I. INTRODUCTION 

ANY studies on the classification method using the 
Gaussian process model have recently been conducted. 

The most representative research has been performed by 
Rasmussen and Williams [1]. They investigated the general 
theory on the problem of using a Gaussian stochastic process in 
machine learning. Nickisch and Rasmussen [2] provide a 
comprehensive overview of many recent algorithms used for 
approximate inference in Gaussian process models for the 
purpose of probabilistic binary classification. The relationships 
between these several approaches are elucidated theoretically, 
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and the properties of the different algorithms are corroborated 
through experimental results. Chan and Dong [3] propose a 
generalized Gaussian process model (GGPM), which is a 
unifying framework that encompasses many existing Gaussian 
process models, such as Gaussian process regression, 
classification, and counting. They derive a close-form efficient 
Taylor approximation for inference on the model, and draw 
interesting connections to the other model-specific closed-form 
approximations. Chan [4] proposes a family of multivariate 
Gaussian process models for correlated output. This is based on 
the assumption that the likelihood function takes the generic 
form of the multivariate exponential family distribution. In [4], 
this model is defined as a multivariate GGPM, and Taylor and 
Laplace algorithms are derived for approximate inference on 
the generic model. Kim and Ghahramani [5] present an 
approximate EM algorithm, the EM-EP algorithm, to learn both 
the latent function and hyper-parameters in a Gaussian process 
classification model. Rasmussen and Nickisch [6] have 
recently proposed the Gaussian Process for Machine Learning 
Toolbox version 3.4 for implementing inference and prediction 
in Gaussian process models. 

Recently, several papers were published that apply Gaussian 
stochastic process models of human behavior recognition. 
Raskin et al. [7] presented an approach for tracking human 
body parts and classification of human actions. They introduce 
Gaussian processing Annealed Particle Filter Tracker, which is 
an extension of the annealed particle filter tracker and uses 
Gaussian process Dynamical Model in order to reduce the 
dimensionality of the problem, increase the tracker’s stability, 
and learn the motion models. Zhou et al. [8] presents a spectral 
analysis-based feature-reduced Gaussian Processes 
classification approach to recognition of articulated and 
deformable human actions from image sequences. Using 
Tensor Subspace Analysis, space-time human silhouettes 
extracted from action sequences are transformed to a low 
dimensional multivariate time series, from which 
structure-based statistical features are extracted to summarize 
the action properties. Gaussian processes classification based 
on spectrally reduced features is then applied to learn and 
predict action categories. Zhao et al. [9] considered 
probabilistic multinomial probit classification for 
tensor-variety inputs with Gaussian processes priors placed 
over the latent function. In order to take into account the 
underlying multi-modes structure information within the model, 
they propose a framework of probabilistic product kernels for 
tonsorial data based on a generative model assumption.  
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The major contribution of our research is an inference 
algorithm that can drive simultaneously both a posterior 
distribution of a latent function and estimators of 
hyper-parameters in a Gaussian process classification model. 
The proposed algorithm is performed in two steps: each of 
which is the expectation step and maximization step. First, in 
the expectation step, using the Bayesian formula and LA, we 
derive approximately the posterior distribution of the latent 
function based on learning data. Furthermore, we calculate a 
mean vector and covariance matrix of the latent function. 
Second, in the classification step, using a derived posterior 
distribution of the latent function, we derive the maximum 
likelihood estimator for hyper-parameters necessary to define a 
covariance matrix. Finally, we apply the proposed algorithm 
with human action classification problem using a public 
database, namely, the KTH human action data set. 

II. MULTICLASS GAUSSIAN PROCESS CLASSIFICATION MODEL 

A. Gaussian Process Classification Model 

In general, the Bayesian Gaussian process classification 
model with multiclass consists of three components: a latent 
function with Gaussian process (GP) prior, a response function 
with multiclass, and a link function that relates the latent 
function and response mean. First, we define the latent function 

( )f x for multiclass classification at each function having  

classes as 
 

1

1

( ) ( , , , , ) ,

(f , , f , f ) , 1, ,
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f x f f f
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                (1) 

 
where the superscript c denotes a particular class and the 
subscript i  denotes the observation number. Then, we assume 
that a GP prior for the latent function ( )f x  is defined as the 

Gaussian distribution having zero mean vector and covariance 
matrix . In other words 
 

	~	 , 	 .																																				(2)	
	
Here, the GP prior for multiclass classification usually has only 
intra-class correlations. The covariance matrix  in the GP 
prior of latent functions is defined as 

 
⋯
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where  is a covariance matrix of latent function ( )cf x related 

to class c . The covariance function  k  of each covariance 

matrix  is defined by  
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The hyper-parameter  θ  specifies the latent function scale 
related to class c , whereas the hyper-parameter θ  specifies a 
function of the length scale. Here, we represent 

1 1
0 1 0 1{ , , , , }C C       as the set of all hyper-parameters of the 

model. 

Second, the response vector  1, , , ,
Tc CY y y y  consists of 

independent and identical multinomial random variables in 
which each component vector cy  represents the -th class. In 

other words, let us define as a vector of 

the same length ( )f x in which each component of the -th 

random vector 1(y , , y , )c c c c T
i nyy   for contains 

all entries of  for the c class which is the label for the i -th 
observation and is for the other classes. Here, we can 
assume that the density function of the response vector 

is given as the following form: 
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where the indicator variable yc
i  is 1 or 0 with probability πc

i  

and  1- πc
i  and πc

i  denotes the probability that an  i-th 

observation is a type of the particular class .  
Third, we consider the link function that specifies the 

relation between the latent function ( )f x  and the response 

mean vector ( | )E Y f . Here, the link function can be defined as 
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B. Laplace Approximation Algorithm 

Inference in the classification problem is processed naturally 
by two steps. First, by using Bayes' rule, we compute the 
posterior distribution of the latent variable ( )f x based on n  

training data as: 
 

( | , , ) ( | , ) ( | , ) / ( | , )p p p p    f X y y f f X y X      (9) 
 

Second, using posterior distribution ( | , , )p f X y derived at 

the first step, we compute the predictive distribution of the 
latent variable * *f ( )x corresponding to a test case *x : 

 

* * * *(f | , , , ) (f | , , ) ( | , , )p p p d  X y x X x f f X y f .    (10) 
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In addition, we produce a predictive probability which a test 
point *x is belonging to some class c: 
 

** * *

* * * * *

(y | , , , )

(y | f , ) (f | , , , ) f , 1, ,

c c

c

p

p p d c C

  

   
X y x

X y x




        (11) 

 

However, the likelihood function, ( | , )p y f  considered at the 

first step is given as the non-Gaussian, and it makes the integral 
analytically intractable. Thus, we need to use either analytic 
approximations of integrals or solutions based on Monte Carlo 
sampling.  

Here, we will consider the Laplace approximation method 
that can approximate the non-Gaussian posterior ( | , , )p f Y X

with a Gaussian posterior ( | , , )q f Y X . This approximation 

means that performing a second-order Taylor expansion for the 

log-posterior ( ) ln ( | , , )p  f f Y X  at the mode Fm  of the 

posterior, i.e. 
 

arg max ( ) arg max ln ( | ) ( | , )p p  f f fm f Y f f X θ    (12) 
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Here, taking the logarithm of the un-normalized posterior of the 
latent function f , it can be given as 
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Moreover, taking the first and second derivatives of log 
posterior with respect to f , we obtain 
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where ln ( | )p W Y F is diagonal matrix. Hence, we 

have obtained: 
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Finally, we have obtained a Gaussian approximate posterior 

( | , , )q f Y X to the true posterior ( | , , )p f Y X with mean 

vector fm and covariance matrix 1 1( )  V K W . Here, the 

mean vector fm of Gaussian approximate posterior or mode 

fm of the log-posterior ( ) f  can be found iteratively using 

the Newton-Rapson algorithm. In particular, given an initial 

estimate fm , a new estimate is found iteratively according to  
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Second, the matrix W at the covariance matrix

1 1( )  V K W  can be given as the following form. Since the 

log-likelihood function ln ( | )p Y f can be expressed as 

1 C
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 f , we obtain the following equation by 

differentiating the log-likelihood function ln ( | )p Y f with 

respect to f , 
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where a vector π  is defined by  
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Hence, the matrix W can be given as 
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where Π  is a ( )n nC matrix obtained by stacking 

horizontally the diagonal matrices diag( )cπ . This is given as 

the following form: 
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C. Variational EM Algorithm 

Thus far, we have considered the Laplace approximation 
algorithm for a posterior distribution of latent variables in 
Gaussian process classification with multiclass. Another major 
objective in this research area is to estimate the 
hyper-parameters of the covariance function. Here, we propose 
an algorithm to estimate the hyper-parameters of the covariance 
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function in the framework of Gaussian process classification 
with incomplete data. One possible approach is to consider the 
EM-like algorithm that is widely used with the incomplete data.  

During the E-step of the EM-like algorithm, we drive the 
Gaussian approximation posterior ( | , , )q f X Y for latent 

function values f using Laplace approximation. In the M-step 
of the EM-like algorithm, we seek a hyper-parameter  that 
can maximize a lower bound on a logarithm of the marginal 
likelihood ( | , )q Y X using the approximate posterior 

( | , , )q f X Y obtained during the E-step. The E and M-steps are 

iteratively repeated until a convergence condition satisfies. We 
describe our EM algorithm in detail as follows. 
E-step 1: Assume that initial values 0 for hyper-parameters 

 are given. Using the Laplace approximation, the true 
posterior ( | , , )p f X Y of latent function f is approximated as a 

Gaussian posterior ( | , , )q f X Y such as in the following: 
 

( | , , )q f X Y  ~ Fm , 1 1( )  V K W          (22) 

 

M-step 1: With a Gaussian posterior ( | , , )q f X Y held fixed, 

we seek a new value new so that the lower bound ( , )F q 
given in the following (23) can be maximized with respect to
 : 
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Here, the low bound ( , )F q  can be written as  
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Moreover, because the second and third terms are independent 
with hyper-parameters  , we must only maximize the first 

term (ln ( | , ))
( )

E p
q

f X
f

with respect to  . By computing 
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using a Gaussian approximate posterior, the 

first term can be given as: 
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Here, by differentiating (ln ( | , ))
( )

E p
q

f X
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 with respect to

 using the E-step result, we obtain 
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Therefore, we can obtain the hyper-parameter maximizing the 
free energy by the following gradient update rule:  
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D. Prediction Method 

Here, if we denote a vector *f as the latent function values 

that correspond to a test point *x , then the joint prior 

distribution of the training latent function f and test latent 
function *f  is  
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where 1
* * * * *( ( , ), , ( , ))Cdiagk k x x k x x is a ( )nc c matrix 

obtained by stacking vertically the vectors 

* * 1 * *( , ) ( ( , ), , ( , )) , 1, ,c c c T
nk k c C k x x x x x x   and 

1
** * * * *diag( ( , ),.., ( , ))Ck kk x x x x .  Hence, given a test point

*x , the posterior distribution of latent function *f

corresponding to test point *x  is given by marginalizing over 

the training set latent functions f  : 
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where the conditional prior is given by 
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Moreover, by using the Gaussian approximation ( | , , )q f X Y

to the true posterior ( | , , )p f Y X , we have finally obtained the 

approximate posterior distribution of latent function *f : 
 

             * *( | , , , )q f x Y X  

~ 1 1 1
* * ** * *( | , ( ) )T TG    f k K m k k K W k .          (31) 

 
In addition, the predictive distribution of class membership 
vector *y  is obtained by integrating out *f , 
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Hence, the predictive mean vector for class c  is given by  
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Moreover, if these are inserted into a vector form, then the 

expectation of latent function *f  under the Laplacian 

approximation is given as 
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In addition, the covariance matrix of the latent function *f  can 

be represented as 
 

1 1
* * * ** * *( | , , , ) ( )T

qCov      Σ f x X Y k Q K W Q     (36) 

III. HUMAN ACTION CLASSIFICATION 

We employ two steps to classify a human action video. We 
first extract a sequence of a multidimensional feature vector 
from each video from a given training data and we derived a 
posterior distribution of latent function using extracted feature 
vectors. To classify the input human action video, we then 
extract a test feature vector from a query video, and derive a 
posterior of latent function that corresponds to the test feature 
vector. Next, by computing the posterior probabilities that a test 
video belongs to every class when this posterior is used, we can 
then classify a query video with a class that maximizes a 
posterior probability. 

A. Training Step 

In the training step, an algorithm that computes the Gaussian 
approximation posterior distribution of the latent function using 
a given set of training data is described as follows: 

E-step: 
1. Extract n time series of multidimensional feature vectors 

 1 2, , , n x x x from a training video dataset that 

describes several human actions.  
2. Assume the prior distribution of the latent function ( )f x  

as a Gaussian process model, and compute the covariance 
matrix K by using the extracted feature vectors.  

3. By combining the likelihood function of target vector 

1( , , )nY Y Y  and a prior of latent function ( )f x , we 

obtain a logarithm of true posterior distribution of ( )f x as  

 
ln ( | , , ) ln ( | ) ln ( | , )p p p   f X y y f f X       (37) 

 
4. Through Laplace approximation, we drive an 

approximation posterior distribution of the latent function 
( )f x as 

 
1 1( | , , ) ~ ( , ( ) )q N   ff Y X m K W            (38) 

 
M-step: 
1. Using the approximate Gaussian posterior    ( | , , )q f X Y , 

we compute the lower bound ( , )F q   for a log marginal 

likelihood ln ( | , )p Y X . 

2. Using the gradient update rule, we derive the 
hyper-parameter  that maximizes the free energy

( , )F q  .  

B. Classification Step 

During the classification step, we classify the new input 
video by using the following algorithms.  
1. Extract feature vector *x from the new input video, and 

compute two covariance matrix *K and **k between a new 

data *x and the existing training data X .  

2. Compute the predicted posterior distribution of a new 
latent function *f : 
 

* *( | , , , )q f x Y X ~ 1 1 1
* * ** * *( | , ( ) )T TG    f k K m k k K W k

(39) 
 

3. Extract the n samples *1 *n, ,f f  from the Gaussian 

posterior distribution of latent function *f with mean 

vector *μ   and covariance matrix *Σ . 

4. Calculate the probability of classification *1 *n, ,π π
using the extracted random sample *1 *n, ,f f , and 

compute the average * *1

1 n

iin 
 π π  of these 

probabilities.   
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5. Classify the input human action video into a class *c with 
the maximum classification probability as:  
  

*
1 *argmax c

c Cc   π . 

IV. EXPERIMENT RESULTS 

A. KTH Dataset 

The KTH human action dataset used in our experiment 
included 25 people performing six action classes, namely: 
walking, running, jogging, boxing, hand waving, and hand 
clapping. Each video sequence contained one actor performing 
an action. All video sequences were resized to 64 64 32  . To 
standardize to a length of 64 frames, we retained the middle 64 
frames, and recycled frames for video containing fewer than 64 
frames. Several types of data sets can be used to recognize 
human behavior.  KTH data set and Weizman data sets are the 
most commonly used. In our experiments, we employed the 
KTH data set. Our KTH human action dataset consisted of  600 
video sets. All videos were shot in black and white with a 160
160 120 resolution. In this study, we use the training data 
consisting of ten peoples performing six actions. 

Defining the feature vector to classify exactly human 
behavior is difficult. In this study, we used the histograms 
oriented of gradients (HOG) features that are mostly used in 
pedestrian detection to express the behavioral changes of each 
video sequence into a feature vector. To calculate the HOG 
feature vector, we divide each frame into 3 by 5 blocks, and 
used eight histogram bins from each block. Therefore, the total 
dimension of the feature vector for each frame is 120. In 
addition, the calculated HOG feature vector was normalized 
using: 

 

                                (40) 

B. Performance of Proposed Method 

To evaluate the performance of the proposed method, we 
used 150 video sequences consisting of 25 peoples performing 
six human behaviors as validation data. Table I presents a 
matrix form showing classification rates of six human 
behaviors in relation to the proposed method. The results from 
Table I, indicate that the six human behaviors can be divided 
into two categories of similar behavior. The first category of 
similar actions includes boxing, hand-clapping, and 
hand-waving, whereas the second category includes jogging, 
running, and walking. Here, we can see that a misclassification 
occurred often with actions belonging to the same category. 
Consequently, we note that a correct classification rate of 85.33% 
occurs when the proposed method is employed. 

Table II shows the results of the recognition rate for the 
proposed method compared to conventional methods when 
using the KTH data set. Conventional methods included the 
local spatio-temporal characteristics or HOG / HOF feature 
vector. SVM or GMM were used as the classification method. 

However, the proposed method employed a feature vector 
representing an image that was universally altered. 

 
TABLE I 

CLASSIFICATION RATES OF ACTIONS FOR THE PROPOSED METHOD 
Classificatio

n rate 
Boxing

Hand 
clapping

Hand 
waving 

Jogging Running Walking

Boxing 1 0 0 0 0 0 
Hand- 

clapping 
0.12 0.88 0 0 0 0 

Hand- 
waving 

0.12 0.08 0.8 0 0 0 

Jogging 0 0 0 0.8 0.2 0 

Running 0 0 0 0.08 0.92 0 

Walking 0 0 0 0.12 0.16 0.72 

 
TABLE II 

COMPARISON OF PROPOSED AND EXISTING METHOD 

Methods Correct classification rate 

Laptev.et al. [10] 91.80% 

Mikolajczyk et al. [11] 93.20% 

Yuan et al. [12] 93.30% 

Kaaniche et al. [13] 90.57% 

Kovashka et al. [14] 94.53% 

Yin et al. [15] 82% 

Proposed method 85.33% 

V. CONCLUSION 

This study propose an inference algorithm that can drive 
simultaneously both a posterior distribution of a latent function 
and estimators of hyper-parameters in the Gaussian process 
classification model. The proposed algorithm is performed in 
two steps: called expectation step and maximization steps. First, 
during the expectation step, we use the Bayesian formula and 
Laplace approximation to derive approximately the posterior 
distribution of the latent function based on the learning data. 
Furthermore, we considered a method of calculating a mean 
vector and covariance matrix of the latent function. Second, 
during the classification step, we use a derived posterior 
distribution of the latent function to derive the maximum 
likelihood estimator for hyper-parameters necessary to define a 
covariance matrix. 

 In our experiments, we applied the proposed algorithm to a 
human action classification problem using a public database, 
namely, the KTH human action data set. Experimental results 
showed that our method performs extremely well with public 
video dataset and thus better than others method.  

Our future work will extend the proposed method to other 
video recognition problems such as 3D human action 
recognition, gesture recognition, and those associated with 
surveillances system. 
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