
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1959

1

Abstract—The web services applications for digital reference

service (WSDRS) of LIS model is an informal model that claims to

reduce the problems of digital reference services in libraries. It uses

web services technology to provide efficient way of satisfying users’

needs in the reference section of libraries. The formal WSDRS model

consists of the Z specifications of all the informal specifications of

the model. This paper discusses the formal validation of the Z

specifications of WSDRS model. The authors formally verify and

thus validate the properties of the model using Z/EVES theorem

prover.

Keywords—Validation, verification, formal, theorem proving.

I. INTRODUCTION

ORMAL proving is the act of showing the correctness of a

system with respect to a certain formal specification or

property using mathematical methods. After the formal model

of a program is built, a variety of properties can be validated

over it. The formal specification of a system can also be

verified to ensure its correctness and to prove its consistency

and completeness using formal verification techniques before

system design and implementation [1], [3].

Formal proving is a complete argument of mathematical

representation and it is used to validate statement about system

description. Usually, formal proving can be done manually or

automatically using formal method tools such as theorem

provers. Developers usually cover a long time while

performing the theorem proving process, so there might be a

great possibility of mistakes. The proofs are efficient when

presented in a user-friendly approach and not in an

unreasonable large size. However, a lot of the proofs that are

involved in software validation are naturally detail, low-level

and repetitious. So we can briefly state that it is unsuitable for

human checking. Thus, formal proving supported by tool, do

not only reduce the possibility of mistakes but also removes it

totally. Hence, the use of support tool is a main factor that can

affect the acceptance of formal method practically [1].

The Z specification language is a way of decomposing a

specification into small pieces called schemas. Each piece can

be linked with comments that give informal explanation about

the importance of the formal mathematics. A schema is

essentially the formal specification analogous to programming

language subroutines that are used to structure a system,

Zainab Musa Magaji is with the Universiti Sultan Zainal Abidin, Malaysia

(e-mail: zeemusa5@gmail.com).

where the schemas are used to structure a formal specification.

The Z is physically powerful on sets and functions. Generally,

Z notation is use for sequential situation and model-based

specification. It combines formal and informal description and

uses graphical highlighting when presenting specifications [2],

[7].

In this paper, we validate the Z specifications of WSDRS

model by using theorem proving technique based upon two

aspects: the initial state and the pre-conditions. Validation of

the initial state is to show that the Z specifications developed

were consistent. While the validation of the pre-conditions is

to show that the z specifications developed were complete,

consistent and were applied in the right domain.

In order to implement the validation process, a few

theorems will be developed for both aspects. Each theorem

will be checked using Z/EVES theorem prover tool. The tool

will help in reducing time, energy and mistakes compared to

manual theorem proving which can be error full and tedious.

II.THEOREM PROVING (DEDUCTIVE VERIFICATION)

Theorem-proving means that systems satisfy their

specification, which given by temporal Logic formulas, using

deductive (i.e. theorem proving) methods. It involves

generating a collection of mathematical proof obligations from

a system and its specifications, the truth of which imply

conformance of the system to its specification, and

discharging these obligations using theorem provers such as

interactive theorem provers, automatic theorem provers,

satisfiability modulo theories (SMT) solvers. This approach

requires the user to understand in detail why the system works

correctly, and to convey this information to the verification

system, either in the form of a sequence of theorems to be

proved or in the form of specifications of system components

(e.g. functions or procedures) and subcomponents (such as

loops or data structures) [4]. These techniques are not fully

automatic and require user interaction and the effective

guidance of a theorem-proving tool. It is the most powerful

and least restricted verification technique because it can prove

anything [5].

Theorem-provers are softwares that help in solving

problems and answering questions that involve reasoning. The

assistance can either be interactive, where one instructs the

program to draw some conclusions, present them to the user,

and then to ask for a new set of instructions; or fully

automatic, where the program is assigned an entire reasoning

task [5].

Validation of the Formal Model of Web Services

Applications for Digital Reference Service of Library

Information System
Zainab M. Musa, Nordin M. A. Rahman, Julaily A. Jusoh

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1960

There are several automated theorem-proving tools with

different properties used in theorem proving. A few examples

are Z/EVES, E, Otter, SETHEO, Vampire, SPASS.

In this research work, the formal verification technique that

would be used is theorem proving because it can be

implemented on any logic in mathematics notations in Z

language. Formal specification is complete and consistent if it

can be proven as true. Completeness and consistency for Z

specification can be articulated by proving the following

aspects: initial state and pre-condition. First, each aspect is

presented in a theorem form to be proved and then theorem-

proving process will be carried out. Z/EVES theorem prover

will be used because it is suitable for formal specification

developed in Z language.

III. THEOREM PROVING (INITIAL STATE OF THE WSDRS Z

SPECIFICATIONS)

Initial state theorem proving begins with the development

of an initial state theorem. The skeleton for an initial state

theorem is as:

Theorem TheoremName

Ε State . InitState

where Theorem Name: name of the theorem, State: state

schema, InitState: Initial state schema [6].

Validation process of the initial state theorem begins with

the development of the initial state schema. Next is the

development of the initial state theorem depicted in Fig. 1 (a).

theorem

InitDRS

 Ε DRS'

∞ Ινιτ

(a)

(b)

Fig. 1 Theorem Initial state for digital reference service web services

of LIS

Fig. 1 (b) indicates that the theorem proves to be “true”.

This theorem proving process shows that the Z specifications

that have been developed and discussed in our previous paper

“Formal Specification of Web Services Applications for

Digital Reference Services of Library Information System” are

consistent and reliable.

IV.THEOREM PROVING PRE-CONDITION

The process of proving the pre-condition theorems of all the

operation schemas that were discussed in the previous chapter

is presented in this section. Theorem proving is done after all

theorems that have been developed are free from any syntax

errors.

Pre-condition theorem proving is to show that each

operation is applied in the right domain. It begins with the

development of pre-condition theorem using the following

format.

Theorem TheoremName

Α S; in? : Ν | P . pre Op

where TheoremName: name of the theorem, S: other schemas

that are involved in the operation schema, In?: input variable

in declaration part of the operation schemaΝ: type of the input

variable in the declaration part of the operation schema, P:

pre-condition of the operation, Op: operation schema that will

be proved to be with or without domain error .

A correct precondition theorem, of the above form can be a

useful form of documentation of a specification [6]. It is a

state before an operation and it relates to a state, which might

happen after an operation. State before or after an operation

must comply with a specified property.

If the result of a pre-condition theorem proving is true, then

the pre-condition operation schema relates accurately to a state

after an operation. Otherwise, if the theorem proving is not

true then the precondition of the operation schema is not

consistent and therefore the operation schema or the

precondition theorem of the schema must be corrected due to

unidentified problem in the domain.

There are eighteen pre condition theorems that have been

developed for web services of digital reference service of LIS.

These theorems were developed based on the eighteen

operation schemas of the Z specifications discussed in our

previous paper “Formal Specification of Web Services

Applications for Digital Reference Services of Library

Information System”. Below are the precondition theorems

developed for the operation schemas. Each theorem is

followed by a screenshot that displays its proof script as

validated by the Z/EVES theorem prover using prove by

reduce command. All the theorems are proved ‘True’. This

result showed that the operations in Z specifications for

WSDRS of LIS were applied in the right domain. Moreover, it

means that the pre-condition operation schemas of the

specifications are related accurately to a state after an

operation and have comply with the property been specified in

the state schema. So, it can be concluded that the Z

specifications that are discussed in the said previous paper are

consistent.

1. Theorem select_infopre

 Α DRS; patron?: PERSON; active_system_ws!:

SYSTEM_WEBSERVICES;

 action!: ACTION

 | patron? ε users

 ƒ selection patron? = infor_service_ws

 ƒ action! = invoke_infor_service_ws

 ƒ active_system_ws! = infor_service_ws ∞ pre Select_info

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1961

Fig. 2 Proof script for select_infopre theorem

2. Theorem Select_guidpre

 Α DRS; patron?: PERSON; active_system_ws!:

SYSTEM_WEBSERVICES;

 action!: ACTION

 | patron? ε users

 ƒ selection patron? = guidance_ws

 ƒ action! = invoke_guidance_ws

 ƒ active_system_ws! = guidance_ws ∞ pre Select_guid

Fig. 3 Proof script for select_guidpre theorem

3. Theorem Select_directcommpre

 Α DRS; patron?: PERSON; active_system_ws!:

SYSTEM_WEBSERVICES;

 action!: ACTION

 | patron? ε users

 ƒ selection patron? = direct_comm_ws

 ƒ action! = invoke_direct_com_ws

 ƒ active_system_ws! = direct_comm_ws ∞ pre

Select_directcomm

Fig. 4 Proof script for select_directcommpre theorem

4. Theorem Question_Operationpre

 Α DRS; patron?: PERSON; patronquestion?: MESSAGE

 | patron? ε users

 ƒ (selection patron? = infor_service_ws

 ϖ selection patron? = guidance_ws) ∞ pre

Question_Operation

Fig. 5 Proof script for Question_Operationpre theorem

5. Theorem Answer_simple_conditionpre

 Α DRS; patron?: PERSON; patronquestion?: MESSAGE;

correctanswer!: MESSAGE;

 clearity!: MESSAGE__STATUS

 | patron? ε users

 ƒ clearity! = questionClear

 ƒ patronquestion? ε questions

 ƒ correctanswer! = answerbase patronquestion?

 ∞ pre Answer_simple_condition

Fig. 6 Proof script for Answer_simple_conditionpre theorem

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1962

6. Theorem Answer_complex_conditionpre

 Α DRS; patron?: PERSON; patronquestion?: MESSAGE;

correctanswer!: MESSAGE;

 action!: ACTION; clearity!: MESSAGE_STATUS;

outside_ws?: WEBSERVICES;

 outsideAnswerbase?: MESSAGE ♣ MESSAGE

 | patron? ε users

 ƒ clearity! = questionClear

 ƒ patronquestion?  questions

 ƒ action! = invoke_other_ws

 ƒ outside_ws? ε outsideWebservices

 ƒ patronquestion? ε dom outsideAnswerbase?

 ƒ correctanswer! = outsideAnswerbase? patronquestion?

 ∞ pre Answer_complex_condition

Fig. 7 Proof script for Answer_complex_conditionpre theorem

7. Theorem Request_Clarification_Simplepre

 Α DRS; patron?: PERSON; requestClarificationMessage?:

MESSAGE;

 clearity!: MESSAGE_STATUS

 | patron? ε users ƒ clearity! = questionNotClear ƒ call_out

= 0

 ∞ pre Request_Clarification_Simple

Fig. 8 Proof script for Request_Clarification_simplepre theorem

8. Theorem Request_Clarification_Complexpre

 Α DRS; patron?: PERSON; requestClarificationMessage?:

MESSAGE;

 clearity!: MESSAGE_STATUS; outside_ws?: WEBSERVICES

 | patron? ε users

 ƒ clearity! = questionNotClear

 ƒ call_out  0

 ƒ outside_ws? ε outsideWebservices

 ƒ outside_ws? ε ran call_out ∞ pre

Request_Clarification_Complex

Fig. 9 Proof script for Request_Clarification_Complepre theorem

9. Theorem Clarification_Simplepre

 Α DRS; patron?: PERSON; ClarificationMessage?:

MESSAGE

 | patron? ε users ƒ call_out = 0 ∞ pre Clarification_Simple

Fig. 10 Proof script for Clarification_Simplepre theorem

10. Theorem Clarification_Complexpre

 Α DRS; patron?: PERSON; ClarificationMessage?:

MESSAGE;

 outside_ws?: WEBSERVICES

 | patron? ε users

 ƒ call_out  0

 ƒ outside_ws? ε outsideWebservices

 ƒ outside_ws? ε ran call_out ∞ pre Clarification_Complex

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1963

Fig. 11 Proof script for Clarification_Complepre theorem

11. Theorem Constraint_By_Userpre

 Α DRS; patron?: PERSON; constraintMessage?:

MESSAGE | patron? ε users

 ∞ pre Constraint_By_User

Fig. 12 Proof script for Constraint_By_Userpre theorem

12. Theorem Constraint_By_Webservicepre

 Α DRS; patron?: PERSON; constraintMessage?:

MESSAGE | patron? ε users

 ∞ pre Constraint_By_Webservice

Fig. 13 Proof script for Constraint_By_Webservicepre theorem

13. Theorem Constraint_Reply_By_Userpre

 Α DRS; patron?: PERSON; constraintReplyMessage?:

MESSAGE;

 constraintStatus?: MESSAGE_STATUS;
 acceptanceFlag?: RESPONSE

 | patron? ε users

 ƒ (if acceptanceFlag? = True

 then constraintStatus? = Accepted

 else constraintStatus? = NotAccepted) ∞ pre

Constraint_Reply_By_User

Fig. 14 Proof script for Constraint_Reply_Bye_Userpre theorem

14. Theorem Constraint_Reply_By_Webservicepre

 Α DRS; patron?: PERSON; constraintReplyMessage?:

MESSAGE;

 constraintStatus?: MESSAGE_STATUS; acceptanceFlag?:

RESPONSE

 | patron? ε users

 ƒ (if acceptanceFlag? = True

 then constraintStatus? = Accepted

 else constraintStatus? = NotAccepted)
 ∞ pre Constraint_Reply_By_Webservice

Fig. 15 Proof script for Constraint_Reply_Bye_Webservicepre

theorem

15. Theorem Action_Request_Operationpre

 Α DRS; patron?: PERSON; actionRequestMessage?:

MESSAGE;

 actionRequest?: ACTION

 | patron? ε users

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1964

ƒ (actionRequest? =

suspend_process_until_another_time

 ϖ actionRequest? = resume_process

 ϖ actionRequest? = reset_activity_time

 ϖ actionRequest? = close_transaction

 ϖ actionRequest? = request_for_status_report)
 ∞ pre Action_Request_Operation

Fig. 16 Proof script for Action_Request_Operationpre theorem

16. Theorem Status_Reply_Operationpre

 Α DRS; patron?: PERSON; statusReplyMessage?:

MESSAGE;

 actionRequestStatus?: MESSAGE_STATUS;

statusReply?: RESPONSE

 | patron? ε users

 ƒ (if statusReply? = Success

 then actionRequestStatus? = Accepted

 else actionRequestStatus? = NotAccepted)
 ∞ pre Status_Reply_Operation

Fig. 17 Proof script for Status_Reply_Operationpre theorem

17. Theorem Connection_Operationpre

 Α DRS; patron?: PERSON; Select_Comm?: PERSON ♣

COMM_MEDIUM; action?: ACTION

 | patron? ε users

 ƒ selection patron? = direct_comm_ws

 ƒ patron? ε dom Select_Comm?

 ƒ (if Select_Comm? patron? = Call

 then action? = connect_video_and_voice_call_service

 else action? = connect_text_chat_service) ∞ pre

Connection_Operation

Fig. 18 Proof script for Connection_Operationpre theorem

18. Theorem Error_Operationpre

 Α DRS; patron?: PERSON; report!: RESPONSE;

clearity?: MESSAGE__STATUS

 | patron? ε users ƒ clearity? = questionEmpty ƒ

 report! = questionInvalid

 ∞ pre Error_Operation

Fig. 19 Proof script for Error_Operationpre theorem

Figs. 2-19, it is clear that the proving of all the precondition

theorems returns true. This means that the specifications we

have developed which are defined in our previous paper titled

“Formal Specification of Web Services Applications for

Digital Reference Services of Library Information System” are

correct, consistent and are applied in the right domain. This

means that the model, which we develop for web services

application for digital reference services of the library

information system, is valid. Thus, it can be adopted and

adapted by any library to provide a networked asynchronous

digital reference service across the globe.

V.CONCLUSION

This paper demonstrated that all the theorems developed are

proved to be true and are found to be error free, consistent and

in the correct domain. Therefore, the Z specifications for web

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1965

service applications for digital reference service of LIS are

reliable as such they can be transformed into programming. At

the same time, the ambiguity problem of informal

specifications that may occur to the developers is overcome.

Therefore, program development time and errors occurrence

will decrease.

REFERENCES

[1] Jusoh J. A. (2009). Formal Specification and Validation for Pattern

Scanning. (Master Thesis, Universiti Malaysia Terengganu).

[2] Jusoh J.A., Saman M.Y.M. and Man M. (2011). “Formal Validation of
DNA Database Using Theorem Proving Technique”. In International

Journal of the Computer, the Internet and Management. 19:74 – 78.

[3] Li G. (2010). Formal Verification of Programs and Their
Transformations. (PhD Thesis, University of Utah).

[4] Pederson D. O. (2010). ‘Introduction to Formal Verification. Center for

Electronic Systems Design”.
Http//:embedded.eecs.berkeley.edu/research/vis/doc/VisUser/vis-

user/node4.html/accessed on 04/07/2014.

[5] Pnueli A. (2002). “Deductive Verification in Action. Analysis of
Reactive Systems, NYU, Fall, 2008”.

http://www.wisdom.weizman.ac.il/~amir/course02a/header.html/accesse

d on 04/07/2014.
[6] Saaltink M. (1999). “Proving Theorems” in The Z/EVES 2.0 User’s

Guide Ch. 5.
[7] Spivey J. M. (1998). “Tutorial Introduction” in The Z Notation: A

Reference Manual. pp 1-17.

