
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

944

Abstract—Web applications have become complex and crucial
for many firms, especially when combined with areas such as CRM

(Customer Relationship Management) and BPR (Business Process

Reengineering). The scientific community has focused attention to
Web application design, development, analysis, testing, by studying

and proposing methodologies and tools.

Static and dynamic techniques may be used to analyze existing

Web applications. The use of traditional static source code analysis

may be very difficult, for the presence of dynamically generated code,
and for the multi-language nature of the Web. Dynamic analysis may

be useful, but it has an intrinsic limitation, the low number of

program executions used to extract information. Our reverse
engineering analysis, used into our WAAT (Web Applications

Analysis and Testing) project, applies mutational techniques in order

to exploit server side execution engines to accomplish part of the
dynamic analysis.

This paper studies the effects of mutation source code analysis
applied to Web software to build application models. Mutation-based

generated models may contain more information then necessary, so

we need a pruning mechanism.

Keywords—Validation, Dynamic Analysis, Mutation

Analysis, Reverse Engineering, Web Applications

I. INTRODUCTION

EB applications quality, reliability and functionality are

important factors because software glitches could block

entire businesses and determine strong embarrassments. These

factors have increased the need for methodologies, tools and

models to improve Web applications (design, analysis, testing,

and so on).

Important factors for Web applications are “speed” (in

technology change, content update and fruition), complexity,

large dimensions and design/use maturity. Web applications

are heterogeneous, distributed, and concurrent: their analysis,

understanding, reengineering, and testing are not easy task.

Conventional methodologies and tools may not be adequate.

This paper focuses on analysis of legacy Web applications

where business logic is embedded into Web pages. Analyzed

applications are composed by Web documents (static, active or

dynamic) and Web objects. In particular we focus in server

side components that dynamically generate Web documents in

Manuscript received January 27, 2005.

Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini are with

Information and Comunication Department, University of Milan. Via

Comelico 39, 20135 Milan, Italy.

{Carlo.Bellettini, Alessandro.Marchetto, Andrea.Trentini}@unimi.it

response to some user inputs and gestures. The structure of

these documents is not given a priori, but is dynamically

constructed based on user interactions.

Web software is often developed without a formalized

process, and Web documents and objects are directly coded in

incremental way. Often, new documents and objects are

obtained by duplicating (“copy & paste inheritance”) and

modifying existing ones. Web software life-cycle is very

compressed, in the range of tree to six months. Techniques for

application analysis, understanding, reusing and testing are

badly needed.

The analysis of existing Web applications through

traditional static source code examination of “highly” dynamic

applications is a very difficult task. The most complex

problem is to define the structure of the Web documents

produced by the server-side component. This problem is

traditionally known as an undecidable problem, because it is

related to the program execution paths analysis, and in

particular to determine if a given execution path is feasible.

Moreover, Web application may be distributed, of very

large dimension, and composed by various programming

languages. For example, on the client-side, every document

may be a mix of HTML, Java, Javascript. While in server-side

some components, written in other languages (Java, PHP,

ASP.NET, Perl, SQL, XML etc.), may interact to build Web

documents. This languages mix is the power of the Web, but it

also contributes to make application analysis a difficult task.

Performing static analysis may be difficult and not much

effective. Dynamic analysis may be used to integrate static

analysis to simplify it, to increase analysis effectiveness, and it

may be more “Web-adequate”, because it let us perform

analysis with some degree of language abstraction.

Dynamic analysis can be: profiling, debugging, user-

gestures capture and reply, log files analysis, event-trace

recording, and so on. Some of the existing dynamic techniques

may define a partial application model. Information is

extracted through a limited number of program executions.

Dynamic analysis may produce an application model without

covering all relevant application behaviors. This is an intrinsic

limitation of all types of dynamic analysis.

Static analysis is often preferred, because dynamic analysis

is context–based and results are driven by execution cases

(potentially infinite). To be useful, dynamic analysis should try

to be exhaustive in defining application execution paths.

In this paper we present the validation process for UML

Validation of Reverse Engineered
Web Application Models

Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

945

models generated by our WAAT system via our reverse

engineering technique, which is a mix of static and dynamic

techniques. Our approach differs from traditional dynamic

ones because it is not focused on user gestures replication but

on application evolution. The approach is essentially based on

two steps: dynamic analysis to define relevant execution paths

and static analysis to analyze them. Static analysis is based on

a scanner/parser that analyzes source code, while dynamic

analysis is based on mutation analysis and simulation of

navigation sessions (i.e., interaction with the Web server

hosting the application under analysis). These combined

operations can better define relevant execution paths. Mutation

analysis tries to bound and simplify user interactions, to lower

analysis computational complexity, to increase the accuracy of

analysis results and analysis methodology portability. Our

proposed technique can be integrated with a set of result

validation techniques, such as bad links analysis, error pages

detection, pages similarity analysis, and, finally, user

validation analysis. Application execution paths are built

through mutation techniques combined with random input

values, so that no user interaction is needed.

This paper focuses on validation of WAAT generated

models. This phase is very important because the use of source

code mutation may solve the intrinsic limitations of traditional

dynamic analysis, but it may define a super-set of behaviors,

that must be pruned. In the WAAT project we propose two

alternative ways for models validation. The first one is

integrated in the applications testing phase. We present here

the second one: a pruning technique based on log files and

partial user intervention.

This paper is organized as follows. Section II introduces a

review of existing works in Web applications modeling,

reverse engineering and testing. Section III details reverse

engineering used techniques and implications. Section IV

defines proposed validation model algorithm. Section V

defines a simple case study of Web application validation-

model analysis. Finally Section VI concludes the presented

work and describes future work ways.

II. RELATED WORKS

Several Web modeling methodologies are available in

literature. RMM [8] is a method based on Entity-Relationship

diagrams. WebML [2] enables the description of a Web site

under distinct orthogonal dimensions. [14] introduces a Web

application simulation model framework. OOHDM [18] for

OO application modeling. Moreover, some of these are UML

based. WARE [4] and Rational Rose Web Modeler [15] are

tools for reverse engineering supporting Conallen’s extensions

[3]. Our WebUml [1] is tool to reverse engineering Web

application through dynamic analysis. Taxonomy of reverse

engineering approaches is described in [12] and [6]. Reverse

engineering road-map is in [11] and [9]. Static and dynamic

software analysis techniques are described in [20] and [19].

[20] discusses dynamic reverse engineering techniques for

Java software. [19] gives an overview of currently used

dynamic analysis. Ricca and Tonella have developed a semi-

automatic tool named ReWeb [16], for reverse engineering

Web applications into UML model, it performs several

traditional source code analyses, and uses UML class diagrams

to represent components and navigational features. Other

approaches are statistically based, such as [17] uses reverse

engineering techniques to extract UML models, then it uses

log files to create a usage model to be analyzed with Markov

Models. [10] defines statistic testing, it creates an application

model from log files and then analyzes it with Unified Markov

Models. Finally [13] describes a specific Web model based on

control flow statement.

III. MODEL RECOVERY

The WAAT analysis core is composed by: application

behavior analysis and application model building.

Application behavior analysis [1] is performed through

static and dynamic analysis. Static and dynamic analyses treat

static and dynamic application components using source code

and on-line interactions with the Web server. For example, for

static pages, we use traditional source code analysis based on a

language parser. While, for a single server page generating

multiple client pages, we apply dynamic analysis to try to

determine a meaningful number of client pages (through

mutation analysis and application executions). Then, the

dynamically generated client–side pages are analyzed (with

traditional source code analysis) to build diagrams. More

generally, for every dynamic Web document, we use mutation

analysis to define mutants (for example changing the control–

flow structure of original source code page) to be fed into

session navigation simulations, in which every mutant replaces

the original source code and the simulation performs generated

interactions. This simulation is used to send input values and

page requests to the Web server, and saving responses that are

analyzed later.

Mutation [5] analysis is based on mutant operators applied

to source code, and in particular to control–flow source code

fragments (e.g., “if-then else”, “while”, etc.), such as logic or

Boolean operators, conditions or check operators, and so on.

For example, the “=” operator can be mutated into “<>”, the

“>” operator can be mutated into “≤” or “<”, the “AND”

operator can be mutated into “OR”, etc. The aim of mutation is

to automatically follow relevant execution paths in the Web

application, to cover as many navigation paths as possible.

This approach does not need knowledge about the language,

only a simple map of mutant operators, deployable with easy

to program parsers and with low computational complexity.

Model building; with the information extracted by the

previous phase we build an application OO model (such as

described in [16], [3], [4]) using UML class and state

diagrams. We have defined a UML meta-model usable to

describe applications [1]. Class diagrams are used to describe

structure and components of a Web application (e.g., forms,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

946

frames, Java applets, input fields, cookies, scripts, and so on),

while state diagrams are used to represent behavior and

navigational structures (client-server pages, navigation links,

frames sets, inputs, scripting code flow control, and so on).

IV. MODEL VALIDATION

The “mutation” generated model may contain more

information than what is needed. In particular, it may contain

“Not-Valid” information, such as not valid dynamically-

generated client-side pages. A client-page is “Valid” if it is

reachable in the original application (without mutants) via an

execution path. Since mutation may define a model with a

super-set of behaviors we need a pruning technique. Our

validation technique on follows these steps:

Model analysis: we extract a list of dynamic server-pages

and their related client-side dynamically-generated pages

First-reduction: we prune the list by applying content

validation analysis tools (such as HTML Tidy by W3C)

Page analysis, subdivided in:

• we analyze client-side dynamically generated pages

to extract information, such as: inputs (e.g., GET request

parameters sending to call pages); structure, which may be all

pages source code (with text), or only the source code

structural properties related (such as: form tags, script

information, links, and so on). These information are used in

the next steps to define page similarity, so a minimal set of

information may be composed by navigational system

information [7]

• we compute unique hash function with structural

extracted information

• finally, we associate a tuple of dynamic-specifics

(DS) to every dynamic page. DS={<input page>, <inputs

parameters>, <output pages>, <output hash related> }

Second-reduction: pruning using page analysis phase

results [7]

“Test cases” generation; we compute a set of “test cases”

with sub-steps:

• for every dynamic page we define specifics such as:

TcT={<inputs parameters>, <output pages hash>}

• for every page we define: TcS={<input pages>,

<output pages>}

Log files analysis; sub-steps are:

• for every dynamic page we extract requests (URL

and related parameter inputs and values)

• for every request in log file we repeat navigation,

saving Web response, and re-apply page analysis

• we reduce the set of output pages through structural

similarity analysis

• then we fill a table of Tlog tuples: {<dynamic page>,

<inputs parameters>, <generated pages>, <output hash

related>}

Log based validation sub-steps are:

• we map every TcT with Tlog, by URLs matching. A

match between Tct and Tlof validates the generated client-side

page. The set of non-matched pages is labeled “Not-Verified”

Visual navigation; every “Not-Verified” TcT must now be

validated with user intervention. We mark “Valid” a path, if

the page is reachable in the original application (without

mutants). To define page-related path, we use the TcS table.

Model update; finally, we update the model by deleting the

remaining "Not Valid" pages

V. VALIDATION SAMPLE

MiniLogin is a simple Web application we used as

validation approach sample. This application is composed by

PHP and HTML files. We generated UML models and now

we apply our validation technique.

Now we compute DS specifics. For example, the dynamic-

specifics for “member.php” dynamic page are: DS={<input

page>, <inputs parameters>, <output pages>, <output hash

related>}, where:

-inputs pages: index.html (via form);

-inputs parameters: $login & $pwd (that are: username &

password input fields in index.html form);

-output pages: defines list of currently dynamic page client-

side generated pages (Table I-column “output pages”)

-output related hash key: defines a list of hashes related to

output pages (Table I-column “Hash key”). Hashes are

computed on the output of page structure information

extraction analysis (“pages analysis” in previously section).

From this DS table we compute TcT and TcS tables,

defining couples of “<inputs parameters>, <output related hash

key>” (e.g., TcT row may be: $login,$pwd & hash(u6.htm))

and defining couples of “<inputs pages>, <output pages>”

(e.g.,TcS row may be: index.html & u6.htm).

When specifics are computed, we analyze Web server log

files to build the Tlog table. For example, for the

“member.php” page we take all Web server requests, replaying

TABLE I

DS –member.php page

output

pages
Hash key

u1.htm f9c895c7ad2921648ef7d23a8c80ca1bc4d659e1

u2.htm 3b863c3352ea817a51ea5aa12ad7b57eae06fa18

u3.htm 1e193c2e43e9ecc41cf99ed03626379d0a89b5ec

u4.htm bb5bbcc6589ecd340196c8868e0c14643c8125ae

u5.htm d5651edc1e9957b20e3e6b4c2f2730e47fdc8f14

u6.htm c393fb5807177597fc43e184cf2c9d8df2266c0c

u7.htm 3ea74fa0635f49128c95a0fc8624ef55efe2cec1

u8.htm e64953d5ad93a42db1a115678183aa3da7257dbe

u9.htm 993918b27c87f95124d02f3da7e9a7f7daef3af3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

947

navigation and saving the response. In the MiniLogin case we

used Apache Web server log- files, so we are able to analyze

the GET requests (composed by: URL, parameters and

parameter values), while other requests (e.g., POST) can not

be used through log-validation.

Then we analyze every saved server response to extract

structural information and compute hashes on the defined

information. Table II shows a fragment of Tlog for MiniLogin

(inputs detected are the same as in DS).

Then we map Tlog and TcT entries to search pages with

hash matches. In our case, we find the maps:

 TcT(u6.htm)=Tlog(g16.htm);

TcT(u1.htm)=Tlog(g1.htm);

TcT(u2.htm)=Tlog(g5.htm).

Now we may mark {u6, u1, u2}.htm as “Verified”, but also

other uX.htm pages as “Not-Verified”.

Then we may perform a user based validation asking the user

(application developer) to mark “Not-Verified” pages as

“Valid” or “Not-Valid”. For every dynamic page we define a

set of paths in the form of (TcS derived) :

<input pages>�<dynamic page>�<output pages>

In our case one of the paths can be the following:

“ index.html � member.php ($login,$pwd) � u3.htm“

After path definition, we ask the user to identify valid paths.

When every output page is marked, we may update our model

by deleting “Not-Valid” pages.

The process complexity may be summarized by the

following: two HTTP-requests for every mutation-generated

client-side page, (in particular one GET for every output-page

defined in DS and Tlog tables); one hash values computed for

every received HTTP-response; and the matching search

between HTTP-responses from DS and Tlog.

VI. CONCLUSION

We propose a validation process for our technique for

reverse engineering of Web applications. This process reduces

the super-set of information extracted with mutation analysis.

The combination of mutation analysis and validation

process represents a dynamic reverse engineering technique

that bounds and simplifies user interactions.

 “Bounds” because it reduces the number of pages that must

be examined by a user. The super-set of pages automatically

generated by the mutation analysis technique is reduced

through cross linking with log files.

“Simplifies” because the user does not need any knowledge

about the application language, he only need to choose

between reachable and not-reachable paths.

We are currently working on a statistical comparison

between our technique and other approaches.

REFERENCES

[1] C. Bellettini, A. Marchetto, and A. Trentini. WebUml: Reverse

Engineering of Web Applications. 19th ACM Symposium on Applied
Computing (SAC 2004), Nicosia, Cyprus. March 2004.

[2] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language

(WebML): a modeling language for designing Web sites. WWW9,

Amsterdam, Netherlands. May, 2000.

[3] J. Conallen. Building Web Applications with UML. Addison-Wesley,

2000.

[4] G.A. Di Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and U. De

Carlini. WARE: A Tool for the Reverse Engineering of Web

Applications. 6th European CSMR 2002, Budapest, Hungary. March
2002.

[5] M. A. Friedman and J. M. Voas. Software Assessment: Reliability,

Safety, Testability. John Wiley & Sons, 1995.

[6] V.C. Garcia, D. Lucrédio, A.F. do Prado, A.Alvaro and E.S. de

Almeida. Towards an effective approach for Reverse Engineering. 11th

IEEE Working Conference on Reverse Engineering (WCRE’04) 2004

[7] T.H. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Evaluating

Strategies for Similarity Search on the Web Similarity search. WWW

2002
[8] T. Isakowitz, E. A. Stohr, and P. Balasubranian. RMM: A Methodology

for Structured Hypermedia Design. Communications of the ACM,

August 1995.

[9] D. Jackson and M.Rinard. Software Analysis: A Roadmap. ICSE

(Future of Software Engineering Track), ACM Press, 2000.

[10] C. Kallepalli and J. Tian. Measuring and Modeling Usage and

Reliability for Statistical Web Testing. IEEE Transactions on Software

Engineering, November 2001.

[11] H.A. Müller, J.H. Jahnke, D.B. Smith, M.-A. Storey, S.R. Tilley, K.

Wong. Reverse Engineering: A Roadmap. A. Finkelstein (ed.) “The
Future of Software Engineering”. New York. ACM Press. 2000

[12] H.A. Müller and H. Kienle. Leveraging Program Analysis for Web Site

Reverse Engineering. 3rd International Workshop on Web Site

Evolution (WSE 2001), Florence, Italy. November 2001.
[13] J. Offutt, Y. Wu, and X. Du. Modeling and Testing of Dynamic Aspects

of Web Applications. Submitted for journal publication, January 2004.
[14] P. Peixoto, K. Fung, and D. Lowe. A Framework for the Simulation of

Web Applications. Fourth International Conference on Web Engineering

(ICWE 2004), München, Germany. July 2004.

[15] Rational Rose Web Modeler. http://www.rational.com.

[16] F. Ricca and P. Tonella. Building a Tool for the Analysis and Testing of

Web Applications: Problems and Solutions. Tools and Algorithms for

the Construction and Analysis of Systems (TACAS’200), Genova, Italy.

April 2001.

[17] F. Ricca and P. Tonella. Dynamic Model Extraction and Statistical

Analysis of Web Applications. 4th International Workshop on Web Site

Evolution (WSE 2002), Montreal, Canada. October 2002.

[18] D. Schwabe, R. Pontes, and I. Moura. OOHDM-Web: An Environment

for Implementation of Hypermedia Applications in the WWW. SigWEB

Newsletter, 8, June 1999.

[19] E. Stroulia and T.Systä. Dynamic Analysis For Reverse Engineering

and Program Understanding. Applied Computing Review, ACM 2002

[20] T. Systä. Understanding the Behavior of Java Program. 7th Working

Conference on Reverse Engineering (WCRE 2000), Brisbane, Australia,
November 2000.

TABLE II
TLOG, fragment –member.php page

output

pages
Hash key

 g1.htm f9c895c7ad2921648ef7d23a8c80ca1bc4d659e1

g5.htm 3b863c3352ea817a51ea5aa12ad7b57eae06fa18

g16.htm c393fb5807177597fc43e184cf2c9d8df2266c0c

…. ….

