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Abstract—Themain goal of this article is to find efficient 

methods for elemental and molecular analysis of living 
microorganisms (algae) under defined environmental conditions and 
cultivation processes. The overall knowledge of chemical 
composition is obtained utilizing laser-based techniques, Laser-
Induced Breakdown Spectroscopy (LIBS) for acquiring information 
about elemental composition and Raman Spectroscopy for gaining 
molecular information, respectively. Algal cells were suspended in 
liquid media and characterized using their spectra. Results obtained 
employing LIBS and Raman Spectroscopy techniques will help to 
elucidate algae biology (nutrition dynamics depending on cultivation 
conditions) and to identify algal strains, which have the potential for 
applications in metal-ion absorption (bioremediation) and biofuel 
industry. Moreover, bioremediation can be readily combined with 
production of 3rd generation biofuels. In order to use algae for 
efficient fuel production, the optimal cultivation parameters have to 
be determinedleading to high production of oil in selected 
cellswithout significant inhibition of the photosynthetic activity and 
the culture growth rate, e.g. it is necessary to distinguish conditions 
for algal strain containing high amount of higher unsaturated fatty 
acids. Measurements employing LIBS and Raman Spectroscopy were 
utilized in order to give information about alga Trachydiscusminutus 
with emphasis on the amount of the lipid content inside the algal cell 
and the ability of algae to withdraw nutrients from its environment 
and bioremediation (elemental composition), respectively. This 
article can serve as the reference for further efforts in describing 
complete chemical composition of algal samples employing laser-
ablation techniques. 
 

Keywords—Laser-Induced Breakdown Spectroscopy, Raman 
Spectroscopy, Algae, Algal strains, Bioremediation, Biofuels. 

I. INTRODUCTION 
ITH expanding economies and increasing global 
population the society looks for viable alternatives to 

fossil fuels. Algae may provide a solution, yet there are many 
aspects to be dealt concerning algal industrial production, 
before it reaches the point of viable competitiveness on the 
fuel market, e.g. high amount of oil production in algal cells, 
daily crop harvest, effective algal biomass to 3rd generation 
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biofuel conversion, improvement of the economics of the 
entire system. Algae are the most perspective among other 
alternatives to fossil fuels with no requests for arable land [1]. 
Algae convert the solar energy to lipids, carbohydrates and 
proteins via photosynthesis. Typical storage form of lipids in 
algae is triacylglycerol: tri-esters of glycerol with saturated or 
unsaturated fatty acids. Algae have 200 times higher yield of 
oil per acre per year than the best-performing plant/vegetable 
oils [2]. Algae can be grown in open pond systems [3, 4] such 
as in bioreactors [4] with possibility of daily harvest because 
some algal strains are capable to double their mass several 
times per day [5]. Every algal strain has to be grown under 
optimized conditions to obtain high amount of crop harvest 
per day, e.g. sufficient sunlight, nutrients, protection against 
natural predators. Each algal strain has different properties and 
reacts differently on the conditions in which they grow. That is 
the reason why the algal strains are bioengineered. Algae 
bioengineering leads to improvement of specific algal strains, 
e.g. mainly the enhancement of the ability of algae to produce 
more lipids stored in the cell, theirresistance against natural 
predators and the ability to be invariant to different cultivation 
processes [1, 6]. 

The entire process of algal biofuel production is time-
consuming and very expensive compared to fossil fuel 
production. There are many possibilities of optimizing the 
algal biofuel production in order to increase competitivenessin 
respect to fossil fuel production, e.g. optimizing the growth 
conditions, improving bioreactors or open ponds respectively, 
bioengineering of algal strains, selling of co-products. Algae 
require nutrients, light, water and CO2 for efficient growth. 
The major nutrients required by most algae include 
phosphorus and nitrogen being the major components of 
agricultural fertilizers, and furthermore iron and sulfur. In 
order to reduce growing expenses and especially the nutrient 
control cost, it is possible to use not only agricultural 
wastewaters to grow algae [1]. The ability of algae to 
withdraw nutrients from its environment is called 
bioremediation [7, 8, 9]. 

The properties of algal strains differ,whichimpliesvarious 
utilization purposes, i.e. some algal strains can be used for 
biofuel production as stated above, others in food industry or 
nutrition. The proper understanding of algal properties can 
only be reached by exploiting thecomplex information of both 
molecular and elemental composition simultaneously. For 
obtaining overall chemical information two laser-based 
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Fig. 2 Schematic diagram of the experimental set-up for Raman 

spectroscopy 

The Raman laser beam (Ti:Sapphire, λ = 785nm, beam 
diameter 0.6mm; 899-01 Coherent, US) was delivered to the 
setup by the optical fiber. After exiting from the fiber, laser 
beam passed through bandpass filter (transmission bandwidth 
3nm centered on 785nm; MaxLine LL01-785, Semrock, US) 
in order to clean up the excitation laser line. Beam diameter 
was further enlarged by 2x beam expander before coupling to 
the objective lens via dichroic mirror (LPD01-785RS, 
Semrock, US). Maximal laser power available for excitation 
was estimated to be approximately 60mW at the specimen. 

The Raman excitation beam was focused on the specimen 
with an IR-optimized water-immersion objective lens 
(Olympus UPLSAPO 60x, NA 1.20). The lens was mounted 
on a custom-made aluminum frame that also provided a stable 
support for condenser and illumination light source and for 3-
axis piezo-driven stage (P-517.3CL, PhysikInstrumente, D) 
which served for nanometer-precise positioning of the sample 
relative to the objective lens. In our experiments, the cells 
were immobilized in agarose gel placed between standard 
microscope coverslips. This mounting procedure allowed us to 
select a target cell within the specimen and focus the Raman 
beam on a well-defined intracellular location. 

Raman scattering spectra from the target cellular 
compartment were collected by the objective lens and 
subsequently focused by lens into the entrance slit of an 
imaging spectrograph (focal length 300mm, f/3.9; SpectraPro 
2300i, PI Acton, US). The Raman scattered light was 
dispersed with a 600 gr/mm diffraction grating, imaged on the 
chip of a high-sensitivity liquid-nitrogen-cooled spectroscopic 
CCD camera (Spec-10:100BR/LN, Princeton Instruments, 
US). 

Trachydiscusminutus (Bourrelly) Ettl [16], CCALA, were 
obtained from the Culture Collection of Autotrophic 
Organisms, CCALA (Insitute of Botany, Academy of Sciences 
of the Czech Republic). T. minutus was cultivated in 50% 
Šetlík-Simmer medium in 100ml air-bubbled batch cultures. 
The irradiance during the cultivation was 
400μmol(photons).m-2.s-1 and temperature 28°C. The cells 

were harvested in early stationary phase. For LIBS 
measurements, Trachydiscusminutus were doped with high 
amount of copper (50mg/L). 

The technique of vital Nile Red staining was used in our 
study in order to visualize lipid bodies within the algal cells. 
Consequently, the lipid bodies were targeted by the focused 
laser beam and as a result one observes Raman scattering. Nile 
Red (9-diethylamino-5H-benzo[α]phenoxazine-5-one) was 
prepared according to [17]. 

III. RESULTS AND DISCUSSION 
Elemental composition of the algal strain 

Trachydiscusminutus was obtained employing LIBS setup, the 
spectra on Fig. 3. For elemental analysis were selected macro 
elements (calcium, magnesium and potassium) and copper as a 
toxic heavy metal. Corresponding peaks and wavelengths are 
shown in the Fig. 3. From the LIBS spectra is obvious that the 
alga Trachydiscusminutus is able to readily withdraw species 
of heavy metals from its environment. Trace amount of copper 
was found in the spectra, approximately 50ppm (parts per 
million). 

 

 

 
Fig. 3 LIBS spectra of selected elements (calcium, copper) 

 
In experiments employing Raman spectroscopy setup, we 

focus on the ratio of unsaturated-to-saturated carbon-carbon 
bonds in algal lipid molecules. We employ two specific 
spectral peaks, shown in the Tab. 1. We found these peaks free 
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of any significant interference or overlaps with Raman signal 
of other cellular components. The average ratio of double-to-
single bonds NC=C/NCH2 in the specimen – specimen mass 
unsaturation - can be estimated. It is possible to directly 
convert the measured values of NC=C/NCH2 to the iodine 
value for a given sample [18]. Iodine value refers to the 
determination of the amount of unsaturation contained in fatty 
acids. This unsaturation is in the form of double bonds which 
react with iodine compounds. The higher the iodine number, 
the more unsaturated fatty acid bonds are present in fat. 

 

 
Fig. 4 Raman scattering spectrum 

 

 
 
It is clearly visible that the Trachydiscusminutus strain has a 

significantly higher content of the unsaturated fatty acids. 
Algal strain with larger iodine values might not be the species 
of choice for the biofuel production. This Alga might excel in 
the food industry applications, where high amount of 
unsaturated fatty acids is required. 

IV. CONCLUSION 
LIBS technique showed its ability to measure low 

concentrations of different elements (trace amounts). 
Systematic measurements of various concentrations of heavy 
metal elements (Pb, Cu, Sr, Cd…) can be used for plotting 
calibration curves. Employing these calibration results the 
unknown amount of heavy metal should be readily stated. 
LIBS technique excels with its simplicity and fast 

measurement evaluations. 
Raman spectroscopy needs further study to be established 

as a spectroscopic method for a rapid and massive 
investigation and analysis of various potentially 
inhomogeneous algal strains. Raman spectroscopy is suitable 
tool for evaluation of the amount of unsaturated fatty acids in 
the algal lipid body. 

Laser based techniques, Laser-Induced Breakdown 
Spectroscopy and Raman Spectroscopy, have great potential 
among others to be employed in selecting different algal 
strains for bioremediation and biofuel production respectively. 
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