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 
Abstract—The Economic Lot Scheduling Problem (ELSP) is a 

valuable mathematical model that can support decision-makers to 
make scheduling decisions. The basic period approach is effective for 
solving the ELSP. The assumption for applying the basic period 
approach is that a product must use its maximum production rate to be 
produced. However, a product can lower its production rate to reduce 
the average total cost when a facility has extra idle time. The past 
researches discussed how a product adjusts its production rate under 
the common cycle approach. To the best of our knowledge, no studies 
have addressed how a product lowers its production rate under the 
basic period approach. This research is the first paper to discuss this 
topic. The research develops a simple fixed rate approach that adjusts 
the production rate of a product under the basic period approach to 
solve the ELSP. Our numerical example shows our approach can find a 
better solution than the traditional basic period approach. Our 
mathematical model that applies the fixed rate approach under the 
basic period approach can serve as a reference for other related 
researches. 

 
Keywords—Economic Lot, Basic Period, Genetic Algorithm, 

Fixed Rate.  

I. INTRODUCTION 

HE Economic Lot Scheduling Problem (ELSP) is a 
valuable mathematical model that can support decision 

makers to make scheduling decisions. The ELSP has been 
applied for production planning and inventory control in 
industries such as plastics extrusion, metal stamping, textile 
manufacturing, bottling, printing and packing [12]. 

The ELSP is concerned with the scheduling of cyclical 
production of 2n   products on a single facility in equal lots 
over an infinite planning horizon, assuming stationary and 
known demands for each product. The objective of the ELSP is 
to determine the lot size and the schedule of production of each 
product so as to minimize the total cost incurred per unit time. 
The costs considered include the setup cost and inventory 
holding cost. For solving the ELSP, an optimal solution must 
minimize the average total cost and also generate a feasible 
production schedule. The ELSP has been shown as a NP-hard 
problem [10].  

Elmaghraby [6] suggested that the solution methodologies 
for the ELSP may be divided into two major categories, 
namely, analytical approaches and heuristics. The analytical 
approaches include the Independent Solution (IS) approach, the 
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Common Cycle (CC) approach, the Basic Period (BP) approach 
and the Extended Basic Period (EBP) approach. One may 
easily obtain the solution of the IS approach by summing the 
objective function values from the optimal solutions of the 
Economic Production Quantity (EPQ) model of n products 
(which can be viewed as a lower bound of the cost for the 
ELSP). But, the IS approach is not able to ensure the feasibility 
of the production schedule on a facility. The CC approach is a 
simple method that can guarantee the feasibility of its solution. 
It assumes that all the products must be produced using the 
same cycle time. It means that all products must be produced 
once during the length of the time Tcc. Therefore, a common 
cycle time Tcc must be large enough to accommodate the 
production lots of all products. The solution of the CC approach 
can be considered as the upper bound of the cost for the ELSP. 

A popular category of research for the ELSP is the so-called 
“basic period-based cyclic schedule” which uses a basic period 
B as the base for production planning and scheduling. It 
includes the BP approach and the EBP approach. A basic period 
B is an interval of time devoted to the setup and production of a 
subset of (or all) the products. A solution of the ELSP under the 
basic period-based approaches is usually given in the form of 

 1 2, , , , nB k k k  which implies that the replenishment cycle 

of product i (denoted by Ti) is equal to kiB, i.e., Ti = kiB. 
The BP approach restricts all products must be produced at 

the first period, but each of all products may or may not be 
produced at other periods. Also, for any product i, its cycle time 
is an integer multiplier ki of a basic period B. If the cyclic 
multipliers {ki} of all products are equal to 1 under the BP 
approach, this solution can be viewed as a solution under the 
CC approach. So, the solution of the CC approach can viewed 
as a special solution of the BP approach. In general, the BP 
approach can find better solutions than the CC approach. Its 
disadvantage is that B must be large enough in order to product 
all products at the first period. So there may exist much idle 
time at other periods. When applying the BP approach, 
researchers [1] used dynamic programming to solve the ELSP. 
Using the BP approach to solve the ELSP, [7] provided an 
algorithm that finds an optimal solution.  

The EBP approach is the most complex solving approach for 
the ELSP. The EBP approach is similar to the BP approach. 
But, the former allows the flexibility of scheduling the 
production of a product not being started at the first basic 
period. If the cyclic multiplier ki of product i is equal to 2, 
product i can be produced at period 1, 3, 5…… or period 2, 4, 
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6……. Because the EBP approach does not constrain which 
period is the first starting production period for product i, the 
BP approach may be considered as a special case of the EBP 
approach. Also, the EBP approach always obtains better 
solutions than the BP approach. Table I lists feasible production 
schedules of two products under different solving approaches 
for solving the ELSP. However, Table I shows that a solution 
{ki} can generate a number of possible schedules under the EBP 
approach. So the EBP approach must spend much time judging 
whether a schedule is feasible or not. If the sum of the 
production time and setup time of a subset of (or all) the 
products that are produced within a period on a facility is less 
than or equal to the length B of a basic period, the cyclic 
schedule is referred as feasible when using the EBP approach.  

 
TABLE I 

 THE PRODUCTION SCHEDULES OF DIFFERENT SOLVING APPROACHES 
period 

solving approach 
  1 2 3 4 5 6 

the CC  
approach 

product 1 ki=1 V V V V V V 

product 2 ki=1 V V V V V V 

the BP  
approach 

product 1 ki=2 V  V  V  

product 2 ki=3 V   V   

the EBP  
approach 

product 1 ki=2  V  V  V 

product 2 ki=3   V   V 

```````` product 1 ki=2 V  V  V  

product 2 ki=3  V   V  

V: product i must be produced at period j 
 
When a schedule generated by a solution {ki} is not feasible, 

product i must change its first starting production period. For 
example, the cyclic multiplier ki of product i is equal to 3, the 
first starting production period of product i can be adjusted 
from period 1 to period 2 or 3 in order to obtain a feasible 
schedule. Then product i is produced for every 3 periods. 
Because the EBP approach must spend much time judging the 
feasibility of a solution and adjust the first starting production 
period for each product. So the EBP is time-consuming solving 
approach in order to obtain better solutions. 

These analytic approaches, however, take long run time to 
solve relatively ‘small’ (say, 10-product) problems. The 
solution of large-scale ELSP problems seems to be out of reach 
for these analytical approaches. 

A few researches [12] discussed the advantages of the Time 
Varying Lot Sizes (TVLS) approach for solving the ELSP. The 
TVLS approach does not constrain that every period must have 
the same cyclic length and product i must produce the same lot 
size every time. If the TVLS approach can satisfies a special 
constraint, it can obtain easily a feasible and better solution than 
the CC approach. However, the TVLS approach is an unstable 
solving approach. The setup setting of all products often affects 
significantly the quality of its solutions [4]. 

A number of studies extend the ELSP to discuss the related 
interesting topics. Soman et al. [15] studied the ELSP with 
considering self-life under the basic period approach. They 
used a like-brand-bound solving approach to search a set of 
cyclic multipliers {ki} that can generate a near-optimized 
solution. Tang and Tenter [17] studied some demands can be 
satisfied by repairing or remanufacturing the defective items. 

These items are returned from outside a factory. This ELSP is 
called as the ELSP with returns. Chang and Yao [5] discussed 
the ELSP with reworks. They discussed some defective items 
are generate during some processes inside a factory. These 
items must be repaired or remanufactured on the same facility. 
Chang and Yao developed a genetic algorithm approach to find 
a near-optimal production schedule for solving the ELSP with 
reworks. Yao et al. [20] studied the economic lot inspection and 
scheduling problem. It must generate a feasible inspection and 
production schedule concurrently. A facility is responsible for 
inspecting and another facility is responsible for repairing. Yao 
et al. [20] developed a junction point solving approach to search 
for cyclic multiplier {ki} that can generate a near-optimized 
inspection and production schedule. 

In general, most researches that studied the ELSP often made 
an important assumption. This assumption supposes that a 
product is produced by using its maximum production rate. But 
[3] indicated if a facility has extra idle times, a product can 
lower its production rate to reduce its inventory holding cost. A 
product can change its production rate once during a cycle time 
T. Then this product uses a new production rate to be produced. 
This approach is called as the fixed rate approach. 

Fig. 1 shows the concept of the fixed rate approach. Product i 
can utilize the idle time of a facility to lower its production rate 
in order to reduce the average total cost. Fig. 1 represents the 
gray triangle area is the inventory holding cost savings for 
product i. Silver [14] pointed that only one product with the 
largest dihi value is necessary to be adjusted its production rate 
under the CC approach. di and hi is the demand rate and 
inventory holding cost of product i respectively. The other 
products still use the maximum production rate to be produced. 
Moon and Christy [11] pointed that the lower bound of the 
production rate of product i is equal to its demand rate, the 
original production rate can be viewed as the upper bound of 
the production rate of product i. In addition, the production 
rates of one or more products increases, the average total cost 
will increase. Khouja [10] discussed the fixed rate approach for 
solving an imperfect production system. The result showed that 
the deterioration of the quality level will increase the lot sizes 
and production rates of all (or some) products. Yang et al. [18] 
discussed the scheduling problem of two products on a facility. 
They adjusted the production rates of some products to look for 
a near-optimal production and setup schedule. They used 
dynamic programming and the Hamilton–Jacobi–Bellman 
equation to ensure the optimality of a solution. 

The ELSP researches that applied the fixed rate approach 
usually solved the ELSP under the CC approach. However, the 
BP approach can get better solutions than the CC approach. To 
the best knowledge of the authors, this research is the first paper 
to study how to apply the fixed rate approach to solve the ELSP 
under the BP approach. Because there are different product 
mixes at each period, it would have three difficult problems 
must be solved for this study. The first problem is how to 
compute the size of the idle time in each period. The second 
problem is how to select which product to lower its production 
rate at a period. Remember, a product may or may not be 
produced at a period. The third problem is how to compute the 
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average total cost when a product has different production rates 
in different periods. The third problem is the most difficult one. 
For solving the ELSP, the average total cost per unit time can be 
used to determine the quality of a solution. However, when a 
product has different production rates in different periods, how 
to compute the average total cost per unit time of product i can 
be more complex. 

This research provides a mathematical model of the ELSP 
under the BP approach. This model develops a method to 
compute the average total cost per unit time when a product has 
different production rates. This research also develops a genetic 
algorithm approach that applies the fixed rate approach in order 
to search the optimal {ki}. When the genetic algorithm find out 
a candidate solution {ki}, this approach can apply the fixed rate 
approach to adjust the production rate of one product in order to 
compute corresponding average total cost for this solution {ki}. 
Using the solving approach proposed by this research, it can 
find better solutions than the traditional BP approach. 

II. THE MATHEMATICAL MODEL 

We first introduce the assumptions and notations in our 
mathematical model of the ELSP as follows. 

Assumptions:  
1. A facility can produce only one product at any time point. 
2. A facility has enough capacity to produce the demand of 

the produced items during a production cycle. 
3. The setup costs and setup times of the products are 

independent of their production sequence on a facility. 
4. No shortage is allowed. 
5. The parameters for each product are known and fixed at 

any time point. 
6. There is only on lot for product i during a production cycle 

ki*B. 
Notation: 

ai:    The setup cost of product i. 
hi:    The holding cost of product i. 
pi:    The production rate of product i. 
pi,z:    The production rate of product i at period z. 
si:    The setup time of product i. 
di :    The demand rate of product i. 
n:    The number of the products. 
I :    The idle time of each period that can be utilized to 

adjust the production rate of a product. 
TCi,z:  The total cost per unit time of product i at period z. 
Xz:    Product that is selected to lower its production rate at 

period z. 
Decision Variables: 
ki:    The cyclic multiplier of product i. 
B:    The time length of a basic period. 

Applying the fixed rate approach to solve the ELSP under the 
basic period approach is a complex problem. Because there are 
different product mixes at different periods, it results in two 
problems as follows. 
1. The length of the idle time for each period may be 

different. 
2. The product with the largest dihi value that adjusts its 

production rate may be different. 
The basic period approach requires all products must be 

produced at the first period. So the time length of the idle time 
for each period is larger than one of the first period. So this 
research supposes the time length of the idle time of the first 
period is used as one of other periods. Based on this 
assumption, this research develops a simple solving approach 
of the ELSP that applies the fixed rate approach to adjust the 
production rate of one product. It means a product is selected to 
lower its production rate at different periods; this product has 
the same new production rate at different periods because of the 
same length of the idle time at each period. 

Then, this research uses a simple example to explain how to 
compute the average total cost per unit time. It is the most 
difficult problem when applying the fixed rate approach to 
solve the ELSP under the BP approach. A product may have 
different production rates at different periods after applying the 
fixed rate approach. Table II shows an example of two 
products. This research supposes that product 2 has higher dihi 
value than product 1. A product with the highest dihi value 
should has higher priority to be adjusted its production rate to 
obtain more cost improvement. So, product 2 should be 
selected to lower its production rate at period 1 and 3. And 
product 1 is selected to lower its production rate at period 2 and 
4. 

 
TABLE II 

THE PRODUCTION SCHEDULE OF TWO PRODUCTS UNDER THE BASIC PERIOD 

APPROACH 
Period 

Product 
1 2 3 4 

1(ki=1) V V V V 
2(ki=2) V  V  
which product is selected to lower its 
production rate  

2 1 2 1 

V means that product i should be produced at this period 
 

zip ,  is the production rate of product i at period z and 

)( ,, zizi pTC  is the average total cost per unit time of product i at 

period z. )( ,, zizi pTC  can be expressed as (1). Table III lists the 

production cost of two products at each period. Because 
product 1 can be selected to lower its production rate at period 2 
and 4, it is obvious that )( 1,11,1 pTC  = )( 3,13,1 pTC  and 

)( 2,12,1 pTC  = )( 4,14,1 pTC . The least common multiplier of the 

cyclic multiplier {ki} of two products is equal to 2. It means that 
product 1 and 2 will cyclically be produced for every 2 periods. 
Therefore, for product 1, there are different average total costs 
at period 1 and 2. However, for product 1, there is the same sum 
of the average total cost for every 2 periods. For example, 
TC1,1(p1,1) + TC1,2(p1,2) is equal to TC1,3(p1,3)+ TC1,4(p1,4). 

 
TABLE III 

THE PRODUCTION COST OF PRODUCT I AT EACH PERIOD

 Period Product 1 2 3 4 

1 TC1,1(p1,1) TC1,2(p1,2) TC1,3(p1,3) TC1,4(p1,4) 

2 TC2,1(p2,1)  TC2,2(p2,2) TC2,3(p2,3) TC2,4(p2,4) 
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So, for product 1 (or 2), we can average the production cost 
at period 1 and 2 as the average total cost per unit time. 
Therefore, the average total cost per unit time of product i can 
be expressed as (2). K is the lease common multiplier of the 
cyclic multiplier {ki} for all products. 

Based on the above assumptions, the mathematical model 
that applies the fixed rate approach to solve the ELSP under the 
BP approach can be shown as (3)-(9) in Table IV. Equation (3) 
is the objective function of this research that is used to compute 
the average total cost for the ELSP. A product has different 
production rates at different periods, so it is possible that there 
are different production costs at each period for product i. 
Therefore it cannot use the tradition basic period approach to 
compute the average total cost. Because the basic assumption 
of traditional basic period approach is that product i has the 
same production cost at every period. 

However, a product is cyclic produced for every K periods. It 
means that the sum of the cost of every K periods is the same. K 
is the least common multiple of the cycle multiplier of all 
products. Therefore, for all products, the average total cost can 
be expressed as (3) that is the objective function of this 
research. Equation (3) sums the average production cost TCi of 
all products. For product i, TCi is the average production cost 
per unit time of K periods that can be expressed as (2). 

 

)( ,, zizi pTC =












zi
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i p
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                                      (2) 

 
Equation (4) is used to compute the average total cost per 

unit time TCi,z of product i at period z. If product i is not be 
produced at period z, TCi,z = 0. Equation (5) is used to judge 
whether the time length B of a period satisfies the requirement 
of production and setup for all products. The BP approach 
requires that all products are produced at the first period. So, for 
a solution, if the time length B of a period satisfies the 
requirement of capacity at the first period, this solution is 
feasible. 

Equation (6) is used to compute the new production rate of 
product i at period z. There are three situations that can express 
the new production rate of product i. 

 
 
 
 
 
 

 
TABLE IV 

THE ELSP MATHEMATIC MODEL UNDER THE BASIC PERIOD APPROACH 

min TC=
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iv
ik 2    iv  is a non-negative integer                                                                                                                                                                       (8) 

 

if product i is not produced at period z 
 
if product i is produced at period z 

 

if product i is not produced at period z 
 
if product i is produced at period z, but product i does not 
change its production rate 
if product i is produced at period z, but product i change its 
production rate 
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Fig. 1 The Holding Cost Function under Different Approaches 
 

1. Product i is not produced at period z. 
2. Product i is produced at period z and does not adjust its 

production rate.  
3. Product i is produced at period z and is selected to lower its 

production rate. 
Iz is the idle time at period z. Because the first period must 

produce all products, the first period should have the smallest 
idle time among all periods. It means that the idle time of the 
first period should not larger than one of other periods. 
Equation (7) is used to compute the idle time I1 of the first 
period. Because this research is the first paper to discuss how to 
change the production rate of product i under the basic period 
approach, this research supposes that I1 can be viewed as the 
idle time of other periods. When the idle time of a period is 
known, this research uses (9) to compute the new production 
rate of the selected product at period z.  

 

zi

ii

i

ii

p

Bkd
I

p

Bkd

,
1 

                                      (9) 
 

Product i can choose the general integer policy or power of 
two (PoT) policies to present its cyclic multiplier under the 
basic period approach. The general integer policy requires that 
ki is a positive value greater than 0. The power of two policies 
requires that ki is the power of 2. The power of two policies can 
reduce the search space and does not loss the quality of 
solutions. So many researchers suggest that using the power of 
two policies to determine ki for solving the ELSP under the 
basic period approach. This research also uses power of two 
policies to search for {ki}. Equation (8) expresses the definition 
of ki. 

III. THE GA APPROACH FOR SOLVING THE ELSP 

Recall that the ELSP is NP-hard [8], and it is very difficult to 
employ commercial software to solve optimal solutions even 
for small-size problems. When applying the fixed rate approach 
to solve the ELSP under the BP approach, the key problem is 
how to find the optimal {ki} of all products. This research 
proposes a GA solving approach to find a near-optimized 
solution {ki}. This research presents the major components of 
our GA approach that can be used to search for {ki} in section 
3.1. In section 3.2, this research presents how to apply the fixed 

rate approach to compute the average total cost for a given 
candidate solution {ki} obtained from the GA solving approach. 
Lemma 1.Let the cyclic multipliers of all products be equal to 
1. Then BCC({ki}) is the time length of a cycle time under the 
CC approach. TCCC(BCC({ki})) is the average total cost under 
the CC approach. TCCC (BCC({ki})) also can be viewed as the 
upper bound of the cost for solving the ELSP. 

Lemma 1 indicates that if you cannot find a feasible solution 
except for the solution {ki} = 1, you can use the solution of the 
CC approach as the optimal solution of the BP approach. 

Recall that a solution for the ELSP is in the format of 
 nkkB ,...,, 1

 under the BP approach. Our GA proposed in this 

section searches in the solution space of 
1( , , )nk k , and obtain 

the time length B of a basic period to not only minimize the 
objective function value but also generate a feasible production 
schedule for a candidate solution {ki} obtained from the GA 
approach. Therefore, this research shall represent each 
multiplier ki as a particular part of a chromosome. For instance, 
the first u1 bits are used to encode the value of k1 and the 
particular piece of chromosome from the (u1 + 1)th bit to the (u1 
+ u2)

th bit represents the value of k2, and so on. 
Under PoT policy, each ki is a power-of-two integer, 

i.e., 2 iv
ik  , for some nonnegative integer vi. In our GA under 

PoT policy, we represent ki by its (integer) value of power vi for 
encoding in the chromosome. For example, if we use vi = 3 to 

represent all the possible values of ki, then there exist iv2 = 23 = 
8 possible values of vi, namely, {0, 1, 2, …, 7} (in which they 
correspond to (0,0,0), (0,0,1), …, (1,1,1), respectively, in 
binary-coding). In such a case, we may use the binary strings 
(0,1,0) and (1,0,1) to represent ki= 22 = 4 and ki= 25 = 32, 
respectively. 

In order to represent all the possible values of ki for each 
product i, we need an upper bound on the value of ki 
(consequently, on the value of integer-power, vi) to comprise 
the chromosome representation in the GA. Lemma 2 propose a 
procedure to obtain the upper bound max

i
k  of the cyclic 

multiplier ki for product i. However, [19] and [15] also 
developed different procedure to compute the upper bound of 
the cyclic multiplier ki for product i. 

Idle Time

holding 
cost 

Time 

the holding cost by using 
the traditional approach 

the holding cost by using 
the fixed rate approach 
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Lemma 2. max

i
k  is the upper bound of the cyclic multiplier ki 

for product i. max

i
k  can be obtained by using (10) and (11). The 

research use the capacity constraint to obtain max

i
k . So, for 

product i, ki is not larger than max

i
k . 
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On the other hand, by the definition of PoT policy, the lower 

bound on the value of ki is 1, obviously. Therefore, the lower 

bound on each vi is 0LB
iv .  

Since we encode the value of ki by binary strings of integer 
powers, we have to establish a mapping between each binary 
string and an integer. In fact, we need a binary string of ui bits 
for encoding the mapping where ui is the smallest integer such 
that )(2 lb

UB
i

u Bvi  . Then, we may use (12) to express the 

mapping between the binary string and the value of ki as: 
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where xbx  },1,0{ . 

In case the value of the mapped integer in (12) is larger than 

)( lb
UB
i Bv , we flip all bits in the binary string (equivalently, 

using compliment computation) to assure that it is no larger 
than )( lb

UB
i Bv . Therefore, the total length of a chromosome in 

our GA is 

n

i iu
1

bits.  

Note that, our GA presented in this section first ignores the 
capacity constraints, searches in the solution space of 

1( , , )nk k  and tries to minimize the objective function value. 

For a given set of multipliers {ki}, we may use (13) to obtain an 
optimal value of B. 
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During the evolutionary process in GA, we collect 

chromosomes whose fitness value falls between a lower bound 
(from the IS approach) and an upper bound (from the CC 
approach). Then, we employ (5) to test the feasibility of (B, 
k1,…,kn). If there exists a feasible production schedule for (B, 
k1,…,kn), we record it as a candidate of the optimal solution. If 
no feasible production schedule exists for (B, k1,…,kn), Chang 
and Yao [5] suggested that a binary-search heuristic can be 
used to locate a particular value of basic period B({ki}) that 

enables (B({ki}), {ki}) to secure a feasible production schedule 
with the minimal average total cost. Next, we shall use a 
procedure in Section III B to compute the objective function 
values of the candidate solutions by using (3) to conduct the 
selection mechanism in our GA. The value of the objective 
function by using (3) that can viewed as the fitness value of the 
corresponsive chromosome for a given multipliers {ki}. 

Since there may exist problems associated with fitness 
values when solving minimization problems, we propose to 
perform fitness normalization in our GA. Fitness normalization 
is a process of converting row fitness values to ones that behave 
better [9] and give high probability for selecting good solutions 
in new generations, while maintaining some chance of survival 
to poor solutions [2]. Fitness normalization can be carried out in 
three forms: (i) inversion normalization, (ii) linear ranking 
normalization, and (iii) nonlinear normalization. In linear 
ranking and nonlinear normalization, the term selection 
pressure (SP) represents the ratio of the probability of selecting 
the best individual to the average probability of selecting all 
chromosomes [13]. Ranking normalization was found to 
outperform inversion normalization (proportional assignment) 
with respect to scaling problems that arise when premature 
chromosomes appear within a generation and cause narrowing 
of the search domain. Also, [2] commented that the difference 
in fitness values between two chromosomes, either small (0.01) 
or big (1.0  107), has no impact on the normalized fitness 
values. Therefore, we have decided to use linear ranking 
normalization in our GA. 

After normalizing fitness, the selection mechanism can be 
performed in two forms: (i) roulette wheel and (ii) tournament 
selection. In our GA, we used a roulette wheel mechanism for 
selecting individuals for reproduction. The reproduction 
probability Pchrom of each chromosome is proportional to its 
normalized fitness evalchrom (relative to the sum of the 
normalized fitness value of all the individuals) as expressed in 
(14) as:  

 





PS

chrom
chromchromchrom evalevalP

1

                      (14) 

 
PS is the number of the chromosomes at our GA. As one may 
observe, the larger the probability (corresponding to better 
fitness) for a chromosome, the higher the chance it will be 
reproduced in the next generation. 

Those individuals, that survive the selection step, undergo 
the alternation by two genetic operators, namely, crossover and 
mutation, to generate the chromosomes in the next generation. 

In the literature, single-point crossover, multi-point 
crossover and uniform crossover are three most-used operators 
for crossover operations. Single-point and multi-point 
crossovers define cross point(s) as places between loci where a 
chromosome can be split. Uniform crossover generalizes this 
scheme to make every locus a potential crossover point [16]. In 
this study, we test both two-point crossover and uniform 
crossover in our GA for its crossover operations since uniform 
crossover, like multi-point crossover, has been claimed to 
reduce the bias associated with the length of the binary 
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representation used and the particular coding for a given 
parameter set [13]. 

In a uniform crossover, we first create a crossover mask, 
which is the same length as the chromosome structure, at 
random. The parity of the bits in the mask indicates which 
parent will supply the offspring with which bits. Fig. 2 
represents an example of an uniform crossover in which we 
consider two chromosomes with 17 binary bits. For each bit the 
parent who contributes to the offspring is chosen randomly with 
equal probability. Here, the offspring 1 is produced by taking 
the bit from parent 1 if the corresponding mask bit is 1 or the bit 
from parent 2 if the corresponding mask bit is 0. And, offspring 
2 is created using the inverse of the mask.  

 

chromosome 1 
chromosome 2  

0  1  1  1  0  0  1  1  0  1  0  0  1  1  1  0  0 
1  0  1  0  1  1  0  0  1  0  1  1  0  1  0  1  1 

mask 1 
mask 1’ 

0  1  1  0  0  0  1  1  0  1  0  0  1  1  0  0  0 
1  0  0  1  1  1  0  0  1  0  1  1  0  0  1  1  1 

off spring 1 
off spring 2 

1  1  1  0  1  1  1  1  1  1  1  1  1  1  0  1  1 
0  0  1  1  0  0  0  0  0  0  0  0  0  1  1  0  0 

Fig. 2 An Example of an Uniform Crossover 
 
Next, we apply the mutation operator to the population that 

just experienced the crossover operator. The mutation operator 
randomly chooses ones among the genes of all chromosomes in 
the population with a fixed mutation rate. Then, the mutation 
operator flips the chosen genes. 

Based on our numerical experiments, this research suggests 
that the population of the GA is 10*n. This research tests two 
settings of the crossover rate (denoted by CR) and the mutation 
rate (denoted by MR) for the GA. For the first setting, both the 
crossover rate and the mutation rate are set to a fixed value as 
CR = 0.6 and MR = 1/n, respectively. (Note: the designated CR 
and MR are the best combinations which have resulted from 
our experiments.) In the second setting, the crossover rate and 
mutation rate vary linearly during the evolutionary process. In 
the beginning of the evolution, we set the crossover rate at a 
higher level (CR = 0.9) while the mutation rate is lower (MR = 
0.05), so that our GA can take advantages of the chromosome 
characteristics. During the evolutionary process, the crossover 
rate decreases by 0.001 for each generation and the mutation 
rate increases by 0.01 after 100 generations. The crossover rate 
and the mutation rate stop their variation as they reach a 
specified level, i.e. CR = 0.2 and MR = 0.2, respectively. We 
hope that the chromosomes become similar to one another as 
the crossover rate decreases while the mutation rate increases, 
so that our GA could still explore new regions in the search 
space and raise the diversity of the population at the end of the 
evolution in such a varying parameter setting.  

We may have a total of 4 combinations on selecting the 
crossover operators (namely, taking either the two-point 
crossover or uniform crossover operators) and the parameter 
settings of CR and MR (namely, using either fixed rates or 
varying rates). Our analysis from the design of experiments 
(DOE) suggests using the uniform crossover operator and fixed 
rates of CR and MR. 

The GA ends the evolutionary process when the 
best-on-hand solution shows no improvement during the last 50 
generations or the number of generations reaches 1000. It 
shows no significant difference between these two termination 
conditions when performing another DOE analysis. We decide 
to terminate Our GA after 1000 generations. 

For a given solution (or chromosome) {ki}, this research can 
use the following procedure to apply the fixed rate approach in 
order to solve the ELSP under the BP approach and then 
compute the corresponsive average total cost.  
1. Use (13) to compute the time length B of the basic period 

for a given solution {ki}. 
2. Use (7) to obtain the idle time at the first period that can be 

viewed as the idle time at other periods. 
3. Let z is equal to 1. 

4. We can choose product *
zi  with the highest dihi value from 

products that be produced at period z. Use (9) to adjust 

product *
zi ’s new production rate. 

5. If z is equal to K, go to Step 6; otherwise, z = z + 1, go to 
Step 4. 

6. Use Step 3, 4 and 5 to obtain/adjust each product’s 
production rate at every period. Then, we can use (2) to 
compute the average total cost of product i for every K 
periods. 

7. Finally, we can use (3) to compute the corresponsive 
average total cost that can be viewed as the fitness value for 
a given solution {ki}. 

IV. A NUMERICAL EXAMPLE 

This research proposes a genetic algorithm solving approach 
that applies the fixed rate approach to solve the ELSP under the 
basic period approach. A simple 5-product example is used to 
show the performance of our approach. This research uses a 
computer with Celeron 3.0G CPU and 4GB RAM to run the 
solving procedure of this example. The propose approach is 
written and executed in Java programming language. 

Table V shows the parameters of all products in our example. 
The utilization rate of this example is 0.59 that can be obtained 
by using (15). The best cyclic multipliers {ki} obtained by using 
the GA approach is {2, 2, 2, 1, 2} under the traditional basic 
period approach. The time length of basic period B is 1.684. 
Table VI list the production loads and production cost per unit 
time for each period under the traditional basic period 
approach. The cyclic multiplier of product 1 is 2. So the 
production load of product 1 must satisfy the demand at period 
1 and 2. The production load of product 1 at period 1 can be 
obtained by using (16). The average production cost per unit 
time of product 1 is 8.432. In this example, the least common 
multiplier K of the cyclic multiplier {ki} for all products is 2. It 
means that all products must be produced once cyclically for 
two periods. This research sums the average total cost for all 
products, the average cost per unit time of this example is 
71.268 under the traditional basic period approach. 
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TABLE V 
THE PARAMETERS OF ALL PRODUCTS 

Product 
No. id  ia  is  ip  ih  

1 9 20 0.05 150 0.175 

2 15 20 0.05 150 0.263 

3 9 20 0.05 150 0.350 

4 50 20 0.05 150 0.638 

5 5 20 0.05 150 0.525 

 
Applying the fixed rate approach adjusts the production rate 

of one product in order to get a better solution. The cyclic 
multipliers of the optimal solution by using our approach still 
are {2, 2, 2, 1, 2}. The optimal time length of a basic period is 
1.684. The idle times of all basic periods is set equal to the idle 
time of the first basic period. So the length of the idle time at the 
first period is 0.446. After using the GA approach to search for 
optimal solution {ki} and applying the fixed rate approach to 
generate a feasible production schedule, Table VII lists the 
production load and schedule of all periods in our example. 
Theoretically, different product should be chosen to adjust its 
production rate at different basic periods because there are 
different products are produced at every period. However, 
Table VII shows that if the product with the highest value is 
produced at every period, the idle time at each period can be 
utilized to lower the average total cost. The average total cost 
per unit time of this example obtained by our approach is 
64.154. Our fixed rate approach can obtain 9.98% cost 
improvement than the traditional approach. The computation 
time of our approach is less than 5 seconds. 

 

UF =  
i i

ii
i p

Bkd
s )(                                  (15) 

 

i

ii
i p

Bkd
s                                           (16) 

V. CONCLUSION 

In past 40 years, hundreds researches that studied the 
traditional ELSP were published. A few researchers also 
published the studies that apply the fixed rate approach to solve 
the ELSP. However, these researchers studied this topic only 
under the CC approach.  

The solving approaches for the ELSP include the CC 
approach and the BP-based approaches, e.g. the BP and EBP 
approaches. The latter can get better solutions than the CC 
approach. But The EBP approach must judge whether the 
schedule generated by a solution is feasible or not. So the EBP 
approach is a difficult and time-consuming solving approach 
for the ELSP. 

Applying the fixed rate approach can lower the average total 
cost of a production schedule to get better solutions. However, 
no researchers studied how to adjust the production rate of a 
product to solve the ELSP under the BP approach. Because a 
product has different production rates at different periods, the 
traditional mathematical model of the ELSP cannot be applied 
to compute the average total cost per unit time of the ELSP that 
applies the fixed rate approach under the BP approach. It may 
be a possible reason that no studies discussed how to apply the 
fixed rate approach to solve the ELSP under the BP approach. 

 
TABLE VI 

THE AVERAGE TOTAL COST AND PRODUCTION LOADS OF OUR EXAMPLE UNDER THE TRADITIONAL BASIC PERIOD APPROACH 
 Product No. ki Period 1 Period 2 Period 3 Period 4 

the average total cost of each product at period z

1 2 8.432 8.432 
2 2 11.917 11.917 
3 2 10.925 10.925 
4 1 29.782 29.782 29.782 29.782 
5 2 10.212 10.212 

the production load of each product at period z 

1 2 0.252 0.000 0.252 0.000 
2 2 0.387 0.000 0.387 0.000 
3 2 0.252 0.000 0.252 0.000 
4 1 0.611 0.611 0.611 0.611 
5 2 0.162 0.000 0.162 0.000 

total production load at period z   1.665 0.611 1.665 0.611 

 
TABLE VII 

THE AVERAGE TOTAL COST AND PRODUCTION LOADS OF OUR EXAMPLE THAT APPLIES THE FIXED RATE APPROACH UNDER THE BASIC PERIOD APPROACH 
 Product No. ki Period 1 Period 2 Period 3 Period 4 

the average total cost of each product at period z

1 2 8.432 8.432 

2 2 11.917 11.917 

3 2 10.925 10.925 

4 1 22.669 22.669 22.669 22.669 

5 2 10.212 10.212 

the production load of each product at period z 

1 2 0.252 0.000 0.252 0.000 

2 2 0.387 0.000 0.387 0.000 

3 2 0.252 0.000 0.252 0.000 

4 1 1.064 0.611 0.611 0.611 

5 2 0.162 0.000 0.162 0.000 

total production load at period z   1.665 0.611 1.665 0.611 
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As the best knowledge of the authors, this research should be 
the first study to discuss how to apply the fixed rate approach to 
solve the ELSP under the BP approach. For simplifying the 
complexity of this research, we use the length the idle time of 
each period must be equal to the one of the first period. This 
research provides a mathematical model that can compute 
average total cost if a product can adjust its production rate 
under the basic period approach. Our example shows the 
following findings. The first one is that product i* with the 
highest dihi value among all products should be produced at 
each period in order to full utilize idle times. The second one is 
that product i* should has the same lower production rate at 
different periods because of the first finding and the assumption 
about the idle time Iz at each period. 

The numeric example in this research shows our approach 
can obtain nearly 9% of the improvements of the cost than the 
traditional ELSP solving approach under the BP approach. This 
research should be the first study to discuss how to apply the 
fixed rate approach to solve the ELSP under the BP approach. 
For developing a solving approach, this research suggests a 
more restrict constraint that there is the same length of the idle 
time at each period. How to release these constraints to obtain 
better cost improvement is the future research direction for this 
study. 
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