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Using the OWA Operator in the Minkowski
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Abstract—We study different types of aggregation operatachs
as the ordered weighted averaging (OWA) operatod dne
generalized OWA (GOWA) operator. We analyze the als®WA
operators in the Minkowski distance. We will cédése new distance
aggregation operator the Minkowski ordered weighteeraging
distance (MOWAD) operator. We give a general ovewiof this
type of generalization and study some of their n@ioperties. We
also analyze a wide range of particular cases foumdthis
generalization such as the ordered weighted avegagdistance
(OWAD) operator, the Euclidean ordered weighted ragiag
distance (EOWAD) operator, the normalized Minkowslkstance,
etc. Finally, we give an illustrative example okethew approach
where we can see the different results obtainedidigg different
aggregation operators.

Sometimes, when calculating the normalized distarice
would be interesting to consider the attitudinaretcter of the
decision maker. A very useful technigue for theraggtion of
the information considering the attitudinal chaeacof the
decision maker is the ordered weighted averagingvAp
operator introduced by Yager in [1]. The OWA operat
provides a parameterized family of aggregation afoes that
include the maximum, the minimum and the averager@. It
has been used in a wide range of applications asi¢B]—[21].

In this paper, we suggest a new type of distancasuore
consisting in normalize the Minkowski distance viite OWA
operator. Then, the normalization developed wiflet the
attitudinal character of the decision maker andilitprovide a
parameterized family of distance operators thatude the

Keywords—Aggregation operators, Minkowski distance, OWAmMaximum distance, the minimum distance and the aaser

operators, Selection of strategies.

. INTRODUCTION

HE distance measures are very useful techniquéiva

been used in a wide range of applications suchzzyfset
theory, multicriteria decision making, businessisieas, etc.
Among the great variety of distances we can findthe
literature, the Minkowski distance represents aegalization
to a wide range of them such as the Hamming distatie
Euclidean distance, the geometric distance anchémmonic
distance.

distance. We will call this generalization as thénkéwski
ordered weighted averaging distance (MOWAD) operd&dy
studying special cases of the MOWAD operator, wk be
able to develop a wide range of distance operatach as the
Hamming ordered weighted averaging distance (HOWAD)
operator, the Euclidean ordered weighted averadiaince
(EOWAD) operator, the ordered weighted geometric
averaging distance (OWGAD) operator and the ordered
weighted harmonic averaging distance (OWHAD) opmrat
We should note that some considerations about USMEA
operators in distance measures have been studj2dl]in

Often, when calculating distances, we want an a@eera This paper is organized as follows. In Sectioi, briefly

result of all the individual distances. We call sththe

normalization process. In the literature, we fimohgipally two

types of normalized distances. The first type & ¢hse when
we normalize the distance giving the same weighaltahe

individual distances. The second type is the cakenwwe
normalize the distance giving different weights the

individual distances. Then, assuming that we aieguthe

Minkowski distance, for the first type we will oliathe

normalized Minkowski distance and for the secongetyhe
weighted Minkowski distance.
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describe some aggregation operators such as the OWA
operator, the generalized OWA operator and the Migki
distance. In Section Ill, we develop the MOWAD ager. In
Section 1V, we study different families of MOWAD erators

and in Section V we present an illustrative exangflthe new
approach. Finally, in Section VI, we summarize thain
conclusions found in the paper.

IIl. AGGREGATIONOPERATORS

In this Section, we briefly describe the OWA operathe
generalized OWA (GOWA) operator and the normalized
Minkowski distance.

A. OWA Operator

The OWA operator was introduced by Yager in [1] aind
provides a parameterized family of aggregation afoes that
include the maximum, the minimum and the arithmatian.
It can be defined as follows.
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Definition 1. An OWA operator of dimension is a mapping From a generalized perspective of the reorderierg, sive
OWA R" — R that has an associated weighting veatoof can distinguish between the descending general@edA
dimensionn such that the sum of the weights is 1 andJ (DGOWA) operator and the ascending generalized OWA
[0,1], then: (AGOWA) operator.
It can be demonstrated that the GOWA operator gdimes
n a wide range of aggregation operators [17] suchthes
OWA@y, &,..., &) = ij b; (1) maximum or the minimum.
= Other special cases obtained with the weightingorecf
the GOWA operator [17] are the generalized mean thed
whereby is thejth largest of they. weighted generalized mean. Then, the GOWA operaisy
From a generalized perspective of the reorderieg,sive  jncjudes the particular cases of the generalizednngeich as
have to distinguish between the descending OWA (BQW the arithmetic mean, the geometric mean, the haicmoean
operator and the ascending OWA (AOWA) operator [12hnd the quadratic mean, and the particular caseshef
Note that this distinction in the reordering stsprélevant in weighted generalized mean such as the weightecigeethe

order to distinguish between situations where thghést \yeighted geometric mean, the weighted harmonic neeah
argument is the best result and situations wheeeldlvest the weighted quadratic mean.

argument is the best result [25]. If we analyze the parametdr we can also obtain another

B. GOWA Operator group of special cases such as the usual OWA apdddt the

The GOWA operator [17] is a generalization of thé&/® ordered we_ighted geomet_ric (OW('_;) operator [28]-{30p
operator by using generalized means. The genedatizean ordered weighted harmomc averaging (OWHA) F’permﬂ
was introduced in [26]-[27] and it represents aegalization and the ordered weighted quadratic averaging (OWQA)

to a wide range of mean aggregations. It can binetbfas operator [17]. Note that this group of particulases can be
follows constructed with a descending or an ascending order

C. Normalized Minkowski Distance
. The normalized Minkowski distance is a distance suea
GM: R"— Rsuch that: that generalizes a wide range of distances suchhas

normalized Hamming distance, the normalized Eualide
JW distance, the normalized geometric distance and the

Definition 2. A generalized mean of dimensiars a mapping

13,
GM(ay, a,..., &) = (Ezai (2) normalized harmonic distance. In fuzzy set thedrgan be
useful, for example, for the calculation of distemdetween

. . . fuzzy sets, interval-valued fuzzy sets, intuitidicisuzzy sets
whereg; is the argument variable antlis a parameter such gnq interval-valued intuitionistic fuzzy sets. lItarc be

that A [J (-0, ). Note that depending on the value of th@ormuylated for two setd andB as follows.

parameter], we obtain different types of means. Whin oo,

we obtain the maximum. Wheh = 1, the arithmetic mean. Definition 4. A normalized Minkowski distance of dimension
When A = 0, the geometric mean. Whdr= -1, the harmonic n is a mappingl,; R" x R'— R such that:

mean. Whem! = 2, the quadratic mean. Whan= -, the

i=1

minimum. 10 12
Note that if the arguments have different weigttien, the dn(AB) = (_ZM b, l/‘j 14
generalized mean is transformed in the weightedigdimed niz

mean. With this information, we can define the GOWA
operator as follows. whereg; andb; are theth arguments of the sefsandB and A
is a parameter such th&f] (-, ).

Definition 3. A GOWA operator of dimensionis a mapping | we give different values to the paramefemwe can obtain
GOWA R'— R that has an associated weighting vestbof 4 wide range of special cases. For examplé=ifl, we obtain
dimensionn such that the sum of the weights is 1 apd]  the normalized Hamming distance. Af= 2, the normalized
[0,1], then: Euclidean distance. 1A = 0, the normalized geometric

distance. IfA = -1, the normalized harmonic distance. Note
v that the formulation shown above is the generalresgion.
J (3) For the formulation used in fuzzy set theory seeeiample

[31]-[33].

Sometimes, when normalizing the Minkowski distanee,

whereb; is thejth largest of they, and/ is a parameter such prefer to give different weights to each individufistance.
thatA O (—oo, o).

n
GOWAay, &,..., @) = (Zijf
i1

1047



International Journal of Business, Human and Social Sciences

ISSN:
Vol:2,

2517-9411
No:9, 2008

Then, the distance is known as the weighted Minkowspossible in order to formulate this type of aggt@Egasuch as:

distance. It can be defined as follows.

Definition 5. A weighted Minkowski distance of dimension

MOWAD(A,B)
A fundamental aspect of the MOWAD operator is the
reordering of the arguments based upon their vallieat is,

is a mappingd, R" x R" — R that has an associatedthe weights rather than being associated with acipe
weighting vectorW of dimensionn such that the sum of the argument, as in the case with the usual Minkowsstadce,

weights is 1 aney; O [0,1]. Then:

(5)

]l//l

wherea, andb; are theth arguments of the sefsandB and A
is a parameter such thaf] (—co, ).

In this case, we can also obtain a wide range efiapcases
by using different values in the parameleiFor example, il
= 1, we obtain the weighted Hamming distancel ¥ 2, the

dun(AB) = {Z W |a b |

i=1

weighted Euclidean distance.Af= 0, the weighted geometric

distance. I1f = -1, the weighted harmonic distance.
I1l. THE MINKOWSKI ORDEREDWEIGHTED
AVERAGING DISTANCEOPERATOR

The Minkowski OWAD (MOWAD) operator represents a
extension of the traditional normalized Minkowslkstdnce by
using OWA operators. The difference is that we deorthe
arguments of the individual distances accordintpéir values.
Then, we can calculate the distance between twoeglts, two
sets, two fuzzy sets, etc., modifying the resuttoading to the
attitudinal character of the decision maker. Foareple, this
type of distance is useful when a decision makentsvao

are associated with a particular position in théeoing. This
reordering introduces nonlinearity into an otheewiinear
process.

If D is a vector corresponding to the ordered argunﬁjﬁts
we shall call this the ordered argument vector, Whds the
transpose of the weighting vector, then the MOWAD
aggregation can be expressed as:

MOWAD(d,, ..., d) = WD) @)
Note that from a generalized perspective of thedering
step, we can distinguish between the descendindadviski
OWAD (DMOWAD) and the ascending Minkowski OWAD
(AMOWAD) operators. Note also that it is possibte use
them in situations where the highest value is &t besult and
in situations where the lowest value is the bestlteBut in a
Mmore efficient way, it is better to use one of thén one
situation and the other one for the other situatias it is
explained in [12], [25] for the OWA operator. Th&/DWAD
operator has the same definition than the MOWADrafoe.

Definition 7. An AMOWAD operator of dimensiom is a
mapping AMOWAD R" x R" — R that has an associated
weighting vectorW of dimensionn such that the sum of the

compare two fuzzy subsets but he wants to give MOjfsights is 1 andy, O [0,1]. Then, the distance between two

importance to the highest individual distance beeate
believes that it will be more significant in theadysis. Note
that this type of normalized distance operator dam
constructed by mixing the Minkowski distance withAV®@

operators, by mixing the Hamming distance with GOWA

operators or by mixing the Hamming OWAD operatothwi
generalized means. It can be defined as follows.

Definition 6. A Minkowski OWAD operator of dimensiomis

a mappingMOWAD R' x R" — R that has an associatedpararneter such thalt
weighting vectorW of dimensionn such that the sum of the

weights is 1 anay; O [0,1]. Then, the distance between twi
setsA andB is:

1/A
MOWAD(dy, Gy,..., d) = [ZWJ Df} ©)
j=1

where D; is thejth largest of thed, andd; is the individual
distance betweed\ and B. That is,d; = Oa; — b1 A is a

parameter such thatl (-co, ). As we can see, we adapt the

characteristics of the Minkowski distance to thareleteristics
of the OWA operator. Note that different notationse

setsA andB is:

1/ A
AMOWAD(y, Os,..., ¢) = (ZWJ Df} ®
=L

where D; is thejth lowest of thed, andd; is the individual
distance betweer and B. That is,d; = O — b0 A is a
(-0, ). As we can see, the elements
D (j= 1, 2, ...,n) are ordered in an increasing wai; < D,
o S D,. Then, it is possible to see that the weightshef t
DMOWAD are related to those of the AMOWAD by using

= W*,41, Wherew, is thejth weight of the DMOWAD and
W*nj:1 thejth weight of the AMOWAD operator.

The MOWAD operator is a mean or averaging operator.
This is a reflection of the fact that the operasocommutative,
monotonic, bounded and idempotent for both the DMEDN
and the AMOWAD operator. It is commutative becaasg
permutation of the arguments has the same evatu&timat is,
MOWAD(d;,dy, ...,d,) = MOWADeye,,...,,), Where €y,...,8)

s any permutation of the argumends, (..,d,). It is monotonic
because ifd, > e, for all d, then, MOWADd,,d,,...,d,) >
MOWAD(e,&,,...,&). It is bounded because the MOWAD
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aggregation is delimitated by the minimum and treximum. obtained whew; = a, w, = 1 -a, w; = 0, for allj # 1,n, then,
That is, Min{d} < MOWADd,,0d,,...,dy) < Max{d}. It is MOWADUd,, d,..., dy) = a Max{d} + (1 - a) Min{d;}. Note
idempotent because ifd = d, for all d, then, thatif g = 1, the Hurwicz MOWAD criteria becomes the

MOWAD(d,,d, --,dn) =d. maximum distance and ifr = 0, it becomes the minimum
Another interesting issue to analyze is the atiitald distance.

character of the MOWAD operator. Based on the measu Remark2: Whenw; = Im fork<j<k+m-1 andw = 0
developed _for the _GOWA operators in [17], it can by j > k + mandj < k, we are using the window-MOWAD
formulated in two different forms depending on tlype of gperator that it is based on the window-OWA oper§id].

ordering used. For the first form we get the follogv Note thatk andm must be positive integers such tkatm - 1
< n. Also note that iln =k = 1, then, the window-MOWAD is
n n-j A transformed in the maximum. th = 1, k = n, the window-
aW) = | Y w; (—_J (9) MOWAD becomes the minimum. And iifi = n andk = 1, the
j= n window-MOWAD is transformed in the normalized

Minkowski distance.
And for the second, we get: Remark3: If w; =w, = 0, and for all others; = 1/(n - 2),
we are using the olympic-MOWAD operator that ibased on
n 1)/ 2 the olympic average [16]. Note thatrif= 3 orn = 4, the
aW) = [zwj (J_j ] (10) olympic-MOWAD average is transformed in the MOWAD
j=1 n-1 median and ifm =n - 2 andk = 2, the window-MOWAD is
transformed in the olympic-MOWAD operator.

Note that we will also select one of these two éqna Remark4: The median and the weighted median can also be
according to the problem analyzed. That is, ouectigln will used as MOWAD operators. For the MOWAD mediarm i
be different depending on if we are in a situatwmere the 0dd we assignv, . 1, = 1 andw; = 0 for all others, and this
highest argument is the best result or in a sitnatvhere the affects the [ + 1)/2]th largest argumerd. If n is even we

lowest value is the best result. assign for examplen,, = W) + 1 = 0.5, and this affects the
arguments with then(2)th and [(/2) + 1]th largest. For the
IV. FAMILIES OFMOWAD OPERATORS weighted MOWAD median, we select the argument trest

the kth largestd;, such that the sum of the weights from kto
A. Analysing the Weighting Vector W is equal or higher than 0.5 and the sum of the hsiffom 1

By choosing a different manifestation of the weight tok-1is less than 0.5.
vector in the MOWAD operator, we are able to obtain Remarks: Another type of aggregation that could be used
different types of aggregation operators. For exampe can the E-Z MOWAD weights that it is based on the E-WV@®
obtain the maximum distance, the minimum distartbe, Weights [18]. In this case, we should distinguigtween two
normalized Minkowski distance and the weighted Miwkki ~ classes. In the first class, we assigi 0 forj = 1 ton -k and
distance. w; = (1k) for j =n -k + 1 ton, and in the second class we

For the DMOWAD operator, the maximum distance i@ssignw; = (1k) forj =1 tok andw; = 0 forj > k. Note that for
obtained whemw; = 1 andw, = 0, for allj # 1. The minimum the first class, the maximum distance is obtaiféd=i 1 andb,
= Max{a}, and the normalized Minkowski distancekif n. In
the second class, the minimum distance is obtafried 1 and
b, = Min{&}, and the normalized Minkowski distancekif n.
In [4], Filev and Yager suggested two methods faiaming
e OWA weights. Following their methodology we apply
ese methods for the MOWAD weights as follows. Hor
first method, the weights can be expressedvas a, w, =
" . Wha(1 — wy)/wy, andw; = w4(1 —wy) forj = 2 ton - 1. For
MOWAD(dy, ..., d) = Dy, whereDy is thekth largest or ' onq method, the weights are obtaineshasl- a, w;
lowest of the argument. = Wo(1 — W)/, andw = wi(L —w;) for j = 2 ton - 1

The normalized Minkowski distance and the weighted ° ol 1= n) T0r) = .

. - . Remark 6: Another useful approach for obtaining the
Minkowski distance are also particular cases ofM@WAD . . . )

; . L o weights is the functional method introduced by Ygd#®] for

operator. The normalized Minkowski distance is otad .

- ) . . - . the OWA operator. For the MOWAD operator, it can be
whenw; = 1/, for all j. The weighted Minkowski distance is ized as foll Létbe a functionf: [0. 1 01
obtained wheij = i, for alli andj, wherej is thejth argument Summarized as follows. Lgtbe a functiory: [0, 1] ~ [0, 1]
of D; andi is theith argument ofi,. such.thatf(O) :.f(l) gnq f(x) = f(y) for x .> y. Wg call this

Remarkl: Other families of aggregation operators cowdd bfun_ctlonh_a basmf un|F |ntervalb rn_on?]tonlc functloBL_(M).
obtained by choosing a different manifestatiorhim weighting Using this BUM function we obtain the MOWAD weighs

vector. For example, the Hurwicz MOWAD criteria istI‘j=1t0n as

distance is found whem, = 1 andw; = 0, for allj # n. And for
the AMOWAD operator, the maximum distance is fowitn
w, = 1 andw; = O, for allj # n, and the minimum distance is
found wherw, = 1 andw; = 0, for allj # 1. As we can see, thet
maximum and the minimum distances are obtainPT
independently of the value of the parametekore generally,
if we = 1 andw; = 0O, for allj 2 k, we get for any/,
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w; = [lj— f[’—_lj (11) W= e (16)
n n J n /b )9
Z]:l( i)

It can easily be shown that using this method whsatisfy
that the sum of the weights is 1 agd] [0,1]. where g O (-, ), by is the jth largest element of the
Remark7: By using the orness or attitudinal charactet arargumentsd. In this case, we also get the normalized
the dispersion measure it is also possible to plits weights Minkowski distance ifr = 0 and ifa = , we get the minimum
of the MOWAD operator. For example, following [8]ew distance.
could develop the maximal entropy MOWAD (MEMOWAD) Remark9: Another interesting family is the S-MOWAD
as follows operator based on the S-OWA operator [13], [15kdh be
subdivided in three classes, the “orlike”, the “iéef and the
n generalized S-MOWAD operator. The “orlike” S-MOWAD
Maximize: —ij Inw; (12) operator is found whew; = (1h)(1 - a) + a, andw; = (1h)(1
=1 - a) forj = 2 ton with a O [0, 1]. Note that ifa = 0, we get
the arithmetic mean and i = 1, we get the maximum. The
N o\Vl2 “andlike” S-MOWAD operator is found whem, = (1h)(1 -
Subject to:[zwj(n_Jj ] - aw) (13) B +Bandw = (Lh)(1- A forj = 1 ton- 1 with A0 [0, 1].
j= \n-1 Note that in this class, = 0 we get the average angGiE 1,
we get the minimum. Finally, the generalized S-MOWA
wherea 0 [0, 1], w; 0 [0,1], and the sum of the weights is 1.0perator is obtained whem; = (1h)(1 - (a + f)) + a, w, =
Note that other methods similar to the MEMOWAD abbe (1)1 - (a+ f)) + B, andw; = (1h)(1 - (a + B)) forj =2 to
developed for obtaining the MOWAD weights followinige N~ 1 wherea, 20 [0, 1] anda + B< 1. Note that ifa = 0, the
same methodologies than [5]—[6], [9]-[10]. Then, vauld generalized S-MOWAD operator becomes the “andlike”
obtain for example, the maximal renyi entropy MOWADMOWAD operator and i = 0, it becomes the “orlike” S-
weights, the minimal variability MOWAD weights, the MOWAD operator. Also note that i + 5= 1, the generalized
minimax disparity MOWAD weights, etc. S'—MOWAD. qperator becomes the Hurwicz generalized
Remark8: Other families of MOWAD operators could bedistance criteria. ,
obtained such as the weights that depend on theegafgd Remark 10: A further type of aggregfanon operators that
objects [13]. Note that in the MOWAD operator, thecould be used in the.MOWAD operator is the cent€d¥dA
aggregated objects are individual distances. Ttienyeights operator [19]. Following t_he same methodology,_wald say
depend on the distances between the elements diffaeent Fhaﬁ a MOWAD, operator is a centgred aggregatlorfa]pe.lf
sets. For example, we could develop the BADD-MOWAD! i symmetric, strongly decaying and inclusive. i

operator that it is based on the OWA version depedoin SYMMELric ifw =W, -. Itis strongly decaying whein< j < (n
[13]. + 1)/2 therw; <w; and wheri >j 2 (n + 1)/2 therw;, <wj. Itis
inclusive if wj > 0. Note that it is possible to consider a
b softening of the second condition by usimgs w; instead ofw;
i n' j14 < w;. We shall refer to this as softly decaying certere
ijlbf’ MOWAD operator. Note that the normalized Minkowski
distance is an example of this particular case eftared-
Q/IOWAD operator. Another particular situation of the
centered-MOWAD operator appears if we remove thed th
condition. We shall refer to it as a non-inclusieentered-
MOWAD operator. For this situation, we find the rizd
MOWAD as a patrticular case.

Remarkl1: A special type of centered-MOWAD operator is
the Gaussian MOWAD weights which follows the same
- (@-by)“ (15) methodology than the Gaussian OWA weights suggdsyed

Z’_‘_l(l_bj)a Xu [11]. In order to define it, we have to consideGaussian

1= distributionn(y, o) where

where g O (-, ), by is the jth largest element of the
argumentsd;, that is, the individual distances. Note that th
sum of the weights is 1 ang O [0,1]. Also note that itr = 0,
we get the normalized Minkowski distance andrif o, we
get the maximum distance. Another family of MOWAD
operator that depends on the aggregated objects is

Wj

where g O (-, ), by is the jth largest element of the 1

argumentgd;. Note that in this case & = 0, we also get the Un =—Zj =n+i 17
normalized Minkowski distance and & = «, we get the = 2

minimum distance. A third family of MOWAD operatthat

depends on the aggregated objects is
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1a , operator or by mixing the Hamming distance with @& QA
o, = FZ(] - 1) (18)operator.
i=1

Assuming that

1
J2nao,

1/2
EOWAD(d,, dy,..., &) = [ij DJ?J (22)
j=1

o (i=Hn)? 1203 (19)

n(j) =

From a generalized perspective of the reorderieg, sive
we can define the MOWAD weights as can distinguish between the descending EOWAD (DE@YVA
operator and the ascending EOWAD (AEOWAD) operator.

With the EOWAD operator it is also possible to dbta
It — (20) another parameterized family of aggregation opesatbat
zj:f](J) zjzle'("”“) 1203 include for example, the maximum distance, the mmimn
distance, the normalized Euclidean distance andviighted
Euclidean distance.
Remark 14: Another particular case obtained with the
B. Analysing the Parametér MOWAD operator is the OWGAD operator [24]. This eds

If we analyze different values of the parametewe obtain found whenA = 0. Note that it is possible to construct it in
another group of particular cases such as the Hagiardered another way such as by mixing the Hamming distavitiethe
weighted averaging distance (HOWAD) operator, th@WGA operator or by mixing the geometric distandthwhe
Euclidean ordered weighted averaging distance (EOYWA OWA operator.
operator, the ordered weighted geometric averadiance
(OWGAD) operator and the ordered weighted harmonic
averaging distance (OWHAD) operator.

Remark 12: The Hamming OWAD operator or simply
OWAD operator [22] is found when the parameler 1. In
this type of distance, we introduce a reordering tle
individual distances in order to aggregate thenthimm most
efficient way according to the interests of theisien maker.

It can be constructed as a particular case of tiBAMD
operator, but it is also possible to constructyitrhixing the
OWA operator with the Hamming distance.

n o (i=Hn)?120%

Note that the sum of the weights is 1 apd [0,1].

OWGAMd,, o, ..., d) = i D;" (23)
j=1

In this case, we can distinguish between the de&ogn
OWGAD (DOWGAD) operator and the ascending OWGAD
(AOWGAD) operator. Note that the geometric operstor
cannot aggregate negative numbers and the value. zer
Therefore, this distance aggregation operator ig aseful in
some special situations. Note also that it is pdesito
transform this operator, so it can deal with zeranegative
| numbers [34].

HOWAD(dy, O, ..., d) = sz D, (21) Note that it is also possible to obtain anotheaputerized
=1 family of aggregation operators. With the OWGAD nier,
we can obtain among others the maximum distance, th

In this case it is possible to distinguish betweescending Minimum distance, the normalized geometric disteamue the
(DHOWAD or DOWAD) and ascending (AHOWAD or Weighted geometric distance.

AOWAD) orders. Remark15: Another special case found in the MOWAD

With the HOWAD operator it is also possible to dbta OPerator is the OWHAD operator. In this cades —1. Note
another parameterized family of aggregation opesatach as that the OWHAD operator can also be constructeednbyng
the maximum distance, the minimum distance, thenatized the harmonic distance with the OWA operator or kiximg
Hamming distance and the weighted Hamming distafibe. the Hamming distance with the OWHA operator.
maximum and the minimum distances are obtained aas

been gxplai_ned With_ the MOWAD operator. The r?ormadi OWHAL(d,, &b,..., d) = 1 (24)
Hamming distance is found whes = 1h, for all j. The nw;

weighted Hamming distance is obtained wheni, for all i Z_:l[T

andj, wherej is thejth argument oD; andi is theith argument =

of di.

Remark13: The Euclidean OWAD operator [21], [23] or From _a_gen_eralized perspective of the reor_deriag,stve
also the ordered weighted quadratic averaging rista cggwgztjlngwsh betweend thhe descer(;dmg O(\)/\\;\I/-||_,|A\AISD
(OWQAD) operator is found when the parameter 2. Note (AOWHAD) opetrator and the ascending
that it can be constructed as a particular casheoMOWAD ( ) operator.

operator or by mixing the Euclidean distance with OWA with the OWHA.D operat_or it is also ppssmle to abta
another parameterized family of aggregation opesat@d/e
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can obtain among others the maximum distance, themom With this information we can develop different agggtion
distance, the normalized harmonic distance andvsighted methods in order to select a strategy. First, vee gaing to
harmonic distance. The maximum distance is obtaimeen consider four basic aggregations that are partiasaes of the
w, = 1 andw; = 0, for allj # 1, and the minimum distance MOWAD operator su_ch as th_e normalized Ha_mming d_'EEa
whenw, = 1 andw; = 0, for allj # n. The normalized harmonic the normalized Euclidean distance, the weighted rHiag
distance is found whem; = 1h, for all j. The weighted dl_stance and the_welgh_ted_EucI|dean distance. Nt we
harmonic distance is obtained wheni, for all i andj, where will use the following weighting vectdV = (0.1, 0'_2’ 0.2,0.2,
j is thejth argument ob; andi is theith argument of;. 0.3), when necessary. The results are the following

TABLE Il
V. MOWAD OPESR_l,_A’;I';)TRéI\(Isl'I;EI-éE SELECTIONOF AGGREGATED RESULTS
In the following, we are going to develop an ilhagive NHD NED WHD WED
example in order to see the results obtained iratfggegation =2 0.28 0.29 0.21 0.28
by using different types of MOWAD operators. We lwil S 0.34 0.41 0.36 0.42
analyze the selection of strategies the decisiokemaeeds to S 034 0.37 031 035
find the best strategy according to his interéstse that other S 03 0.36 03 0.36
selection problems could be developed such aselbet®on of S 0.32 0.38 0.28 0.32

human resources, the selection of financial pragutte

selection of investments, etc. [7], [23]-[25], [3{37]. As we can see, the best alternative accordingésettiour
Assume that an enterprise is considering its glsbategy cases is the strate@y because it has the lowest distance.

for the next year and they are thinking in somengea in Now, we are going to study the results obtaineddigg the

order to obtain more benefits. In order to do ke, ltoard of OWAD operator, the AOWAD operator, the EOWAD

directors has established five possible strate§jethat the operator and the AEOWAD operator.

enterprise could develop in the future.

TABLE IV
(1) S consists in implement strategy 1. AGGREGATED RESULTS 2
(2) S consists in implement strategy 2.
(3) S;consists in implement strategy 3. OWAD AOWAD EOWAD AEOWAD
(4) S, consists in implement strategy 4. St 0.25 031 0.27 0.32
(5) S consists in implement strategy 5. S 0.28 0.4 0.349 0.46
_ ) ) S 0.29 0.39 0.327 0.42
_After careful rev_lew of the mfo_rmatlon,_ the expetiave s 0.24 0.36 0293 0.42
given the following general information. They have
summarized the information of the strategies ire fimain S 0.26 0-38 0-309 0.43
characteristicsC; with the following results. Note that the
results are valuations between 0 and 1. As we can see, we will select a different stratdgpending
on the particular case of MOWAD operator used ie th
TABLE | aggregation. If we use the AOWAD operator, the ECOVA
CHARACTERISTICS OF THE STRATEGIES operator or the AEOWAD operator, the optimal choidk be

the strategys,. And if we use the OWAD operator, then the

G = Cs Ca Cs best alternative is the strateSy
S 0.5 0.7 0.8 0.6 0.5 If we try to order the strategies, a typical sitbatwhen we
S 0.8 0.9 0.2 0.4 0.5 want to consider more than one alternative, we s&m that
S 05 0.7 0.6 0.3 0.7 each distance aggregation operator gives us araiffeesult
% 0.7 0.9 0.6 0.2 0.6 leading to different decisions.
S 0.2 0.7 0.8 0.7 0.5
TABLE V
According to the objectives and policies of theeeptise, ORDERING OF THE STRATEGIES
the experts have established the ideal strategyhhécompany NHD SIS IS=Ss OWAD SISISISIS
independently of the strategies available. They ehav  nNep siststists, AOWAD stslsists
established the fOIIOWing valuations for it. WHD S:LFSs}S&S\gFSz EOWAD SJ_%S&SSFS\;FSZ
WED SIS IS tStS AEOWAD  Si/S=SiiS$tS
TABLE Il

CHARACTERISTICS OF THE IDEAL STRATEGY .
As a general conclusion for the example, we cantlsae

Cy Co Cs Cs Cs depending on the method used in the selection psoarur
Ideal 0.9 1 0.9 0.9 0.8
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decision will be different. Note that the metho@dihas to be
in accordance with the interests of the decisiokana

VI. CONCLUSION

We have studied different types of distance measiiest,
we have reviewed some basic aggregation operatmts &s
the OWA operator, the GOWA operator and the norzedli
Minkowski distance. With this initial informationwe have
introduced the MOWAD operator. We have considei@ues
of its main properties such as the distinction leet
descending and ascending orders. Next, we havdopexdka
wide range of particular cases of the MOWAD opearatach

as the HOWAD operator, the EOWAD operator, the OVIGA

operator and the OWHAD operator. We have seenthiese
special cases also provide a parameterized family
aggregation operators with similar properties thtre
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we have seen that depending on the distance agigrega

operator used, the result is completely different.
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using OWA operators in the Minkowski distance whiwds
been applied in strategic management. In futureare$, we
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