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Abstract—We study different types of aggregation operators such 

as the ordered weighted averaging (OWA) operator and the 
generalized OWA (GOWA) operator. We analyze the use of OWA 
operators in the Minkowski distance. We will call these new distance 
aggregation operator the Minkowski ordered weighted averaging 
distance (MOWAD) operator. We give a general overview of this 
type of generalization and study some of their main properties. We 
also analyze a wide range of particular cases found in this 
generalization such as the ordered weighted averaging distance 
(OWAD) operator, the Euclidean ordered weighted averaging 
distance (EOWAD) operator, the normalized Minkowski distance, 
etc. Finally, we give an illustrative example of the new approach 
where we can see the different results obtained by using different 
aggregation operators. 
 

Keywords—Aggregation operators, Minkowski distance, OWA 
operators, Selection of strategies.  

I. INTRODUCTION 

HE distance measures are very useful techniques that have 
been used in a wide range of applications such as fuzzy set 

theory, multicriteria decision making, business decisions, etc. 
Among the great variety of distances we can find in the 
literature, the Minkowski distance represents a generalization 
to a wide range of them such as the Hamming distance, the 
Euclidean distance, the geometric distance and the harmonic 
distance.  

Often, when calculating distances, we want an average 
result of all the individual distances. We call this the 
normalization process. In the literature, we find principally two 
types of normalized distances. The first type is the case when 
we normalize the distance giving the same weight to all the 
individual distances. The second type is the case when we 
normalize the distance giving different weights to the 
individual distances. Then, assuming that we are using the 
Minkowski distance, for the first type we will obtain the 
normalized Minkowski distance and for the second type the 
weighted Minkowski distance.  
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Sometimes, when calculating the normalized distance, it 
would be interesting to consider the attitudinal character of the 
decision maker. A very useful technique for the aggregation of 
the information considering the attitudinal character of the 
decision maker is the ordered weighted averaging (OWA) 
operator introduced by Yager in [1]. The OWA operator 
provides a parameterized family of aggregation operators that 
include the maximum, the minimum and the average criteria. It 
has been used in a wide range of applications such as [2]–[21].  

In this paper, we suggest a new type of distance measure 
consisting in normalize the Minkowski distance with the OWA 
operator. Then, the normalization developed will reflect the 
attitudinal character of the decision maker and it will provide a 
parameterized family of distance operators that include the 
maximum distance, the minimum distance and the average 
distance. We will call this generalization as the Minkowski 
ordered weighted averaging distance (MOWAD) operator. By 
studying special cases of the MOWAD operator, we will be 
able to develop a wide range of distance operators such as the 
Hamming ordered weighted averaging distance (HOWAD) 
operator, the Euclidean ordered weighted averaging distance 
(EOWAD) operator, the ordered weighted geometric 
averaging distance (OWGAD) operator and the ordered 
weighted harmonic averaging distance (OWHAD) operator. 
We should note that some considerations about using OWA 
operators in distance measures have been studied in [21].  

This paper is organized as follows. In Section II, we briefly 
describe some aggregation operators such as the OWA 
operator, the generalized OWA operator and the Minkowski 
distance. In Section III, we develop the MOWAD operator. In 
Section IV, we study different families of MOWAD operators 
and in Section V we present an illustrative example of the new 
approach. Finally, in Section VI, we summarize the main 
conclusions found in the paper. 

II. AGGREGATION OPERATORS 

In this Section, we briefly describe the OWA operator, the 
generalized OWA (GOWA) operator and the normalized 
Minkowski distance. 

A. OWA Operator 

The OWA operator was introduced by Yager in [1] and it 
provides a parameterized family of aggregation operators that 
include the maximum, the minimum and the arithmetic mean. 
It can be defined as follows. 

Using the OWA Operator in the Minkowski 
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Definition 1. An OWA operator of dimension n is a mapping 
OWA: Rn 

→ R that has an associated weighting vector W of 
dimension n such that the sum of the weights is 1 and wj ∈ 
[0,1], then: 

                                                               

   OWA(a1, a2,…, an) = ∑
=

n

j
jj bw

1
                                 (1)                                                                              

 
where bj is the jth largest of the ai.  

From a generalized perspective of the reordering step, we 
have to distinguish between the descending OWA (DOWA) 
operator and the ascending OWA (AOWA) operator [12]. 
Note that this distinction in the reordering step is relevant in 
order to distinguish between situations where the highest 
argument is the best result and situations where the lowest 
argument is the best result [25].  

B. GOWA Operator 

The GOWA operator [17] is a generalization of the OWA 
operator by using generalized means. The generalized mean 
was introduced in [26]–[27] and it represents a generalization 
to a wide range of mean aggregations. It can be defined as 
follows. 

 
Definition 2. A generalized mean of dimension n is a mapping 
GM: Rn 

→ R such that: 
 

    GM(a1, a2,…, an) = 

λ
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where ai is the argument variable and λ is a parameter such 
that λ ∈ (−∞, ∞). Note that depending on the value of the 
parameter λ, we obtain different types of means. When λ = ∞, 
we obtain the maximum. When λ = 1, the arithmetic mean. 
When λ = 0, the geometric mean. When λ = −1, the harmonic 
mean. When λ = 2, the quadratic mean. When λ = −∞, the 
minimum. 

Note that if the arguments have different weights, then, the 
generalized mean is transformed in the weighted generalized 
mean. With this information, we can define the GOWA 
operator as follows. 

 
Definition 3. A GOWA operator of dimension n is a mapping 
GOWA: Rn 

→ R that has an associated weighting vector W of 
dimension n such that the sum of the weights is 1 and wj ∈ 
[0,1], then: 

 

 GOWA(a1, a2,…, an) = 
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where bj is the jth largest of the ai, and λ is a parameter such 
that λ ∈ (−∞, ∞). 

From a generalized perspective of the reordering step, we 
can distinguish between the descending generalized OWA 
(DGOWA) operator and the ascending generalized OWA 
(AGOWA) operator. 

It can be demonstrated that the GOWA operator generalizes 
a wide range of aggregation operators [17] such as the 
maximum or the minimum.  

Other special cases obtained with the weighting vector of 
the GOWA operator [17] are the generalized mean and the 
weighted generalized mean. Then, the GOWA operator also 
includes the particular cases of the generalized mean such as 
the arithmetic mean, the geometric mean, the harmonic mean 
and the quadratic mean, and the particular cases of the 
weighted generalized mean such as the weighted average, the 
weighted geometric mean, the weighted harmonic mean and 
the weighted quadratic mean. 

If we analyze the parameter λ, we can also obtain another 
group of special cases such as the usual OWA operator [1], the 
ordered weighted geometric (OWG) operator [28]–[30], the 
ordered weighted harmonic averaging (OWHA) operator [17] 
and the ordered weighted quadratic averaging (OWQA) 
operator [17]. Note that this group of particular cases can be 
constructed with a descending or an ascending order. 

C. Normalized Minkowski Distance 

The normalized Minkowski distance is a distance measure 
that generalizes a wide range of distances such as the 
normalized Hamming distance, the normalized Euclidean 
distance, the normalized geometric distance and the 
normalized harmonic distance. In fuzzy set theory, it can be 
useful, for example, for the calculation of distances between 
fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets 
and interval-valued intuitionistic fuzzy sets. It can be 
formulated for two sets A and B as follows. 

 
Definition 4. A normalized Minkowski distance of dimension 
n is a mapping dm: Rn × Rn 

→ R such that: 
 

    dm(A,B) = 

λ
λ
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where ai and bi are the ith arguments of the sets A and B and λ 
is a parameter such that λ ∈ (−∞, ∞).  

If we give different values to the parameter λ, we can obtain 
a wide range of special cases. For example, if λ = 1, we obtain 
the normalized Hamming distance. If λ = 2, the normalized 
Euclidean distance. If λ = 0, the normalized geometric 
distance. If λ = −1, the normalized harmonic distance. Note 
that the formulation shown above is the general expression. 
For the formulation used in fuzzy set theory see for example 
[31]–[33]. 

Sometimes, when normalizing the Minkowski distance, we 
prefer to give different weights to each individual distance. 
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Then, the distance is known as the weighted Minkowski 
distance. It can be defined as follows. 

 
Definition 5. A weighted Minkowski distance of dimension n 
is a mapping dwm: Rn × Rn 

→ R that has an associated 
weighting vector W of dimension n such that the sum of the 
weights is 1 and wj ∈ [0,1]. Then: 

 

     dwm(A,B) = 
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where ai and bi are the ith arguments of the sets A and B and λ 
is a parameter such that λ ∈ (−∞, ∞).  

In this case, we can also obtain a wide range of special cases 
by using different values in the parameter λ. For example, if λ 
= 1, we obtain the weighted Hamming distance. If λ = 2, the 
weighted Euclidean distance. If λ = 0, the weighted geometric 
distance. If λ = −1, the weighted harmonic distance. 

III.  THE MINKOWSKI  ORDERED WEIGHTED 

AVERAGING DISTANCE OPERATOR 

The Minkowski OWAD (MOWAD) operator represents an 
extension of the traditional normalized Minkowski distance by 
using OWA operators. The difference is that we reorder the 
arguments of the individual distances according to their values. 
Then, we can calculate the distance between two elements, two 
sets, two fuzzy sets, etc., modifying the results according to the 
attitudinal character of the decision maker. For example, this 
type of distance is useful when a decision maker wants to 
compare two fuzzy subsets but he wants to give more 
importance to the highest individual distance because he 
believes that it will be more significant in the analysis. Note 
that this type of normalized distance operator can be 
constructed by mixing the Minkowski distance with OWA 
operators, by mixing the Hamming distance with GOWA 
operators or by mixing the Hamming OWAD operator with 
generalized means. It can be defined as follows. 
 
Definition 6. A Minkowski OWAD operator of dimension n is 
a mapping MOWAD: Rn × Rn 

→ R that has an associated 
weighting vector W of dimension n such that the sum of the 
weights is 1 and wj ∈ [0,1]. Then, the distance between two 
sets A and B is: 

 

   MOWAD(d1, d2,…, dn) = 
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where Dj is the jth largest of the di and di is the individual 
distance between A and B. That is, di = ai − bi. λ is a 
parameter such that λ ∈ (−∞, ∞). As we can see, we adapt the 
characteristics of the Minkowski distance to the characteristics 
of the OWA operator. Note that different notations are 

possible in order to formulate this type of aggregation such as: 
MOWAD(A,B). 

A fundamental aspect of the MOWAD operator is the 
reordering of the arguments based upon their values. That is, 
the weights rather than being associated with a specific 
argument, as in the case with the usual Minkowski distance, 
are associated with a particular position in the ordering. This 
reordering introduces nonlinearity into an otherwise linear 
process. 

If D is a vector corresponding to the ordered arguments Dj
λ, 

we shall call this the ordered argument vector, and WT is the 
transpose of the weighting vector, then the MOWAD 
aggregation can be expressed as:  

 

    MOWAD(d1, d2,…, dn) = ( ) λ/1
DWT                         (7)                                                                                    

 
Note that from a generalized perspective of the reordering 

step, we can distinguish between the descending Minkowski 
OWAD (DMOWAD) and the ascending Minkowski OWAD 
(AMOWAD) operators. Note also that it is possible to use 
them in situations where the highest value is the best result and 
in situations where the lowest value is the best result. But in a 
more efficient way, it is better to use one of them for one 
situation and the other one for the other situation, as it is 
explained in [12], [25] for the OWA operator. The DMOWAD 
operator has the same definition than the MOWAD operator. 
 
Definition 7. An AMOWAD operator of dimension n is a 
mapping AMOWAD: Rn × Rn 

→ R that has an associated 
weighting vector W of dimension n such that the sum of the 
weights is 1 and wj ∈ [0,1]. Then, the distance between two 
sets A and B is: 

 

  AMOWAD(d1, d2,…, dn) = 
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where Dj is the jth lowest of the di and di is the individual 
distance between A and B. That is, di = ai − bi. λ is a 
parameter such that λ ∈ (−∞, ∞). As we can see, the elements 
Dj (j= 1, 2, …, n) are ordered in an increasing way:  D1 ≤ D2 
≤… ≤ Dn. Then, it is possible to see that the weights of the 
DMOWAD are related to those of the AMOWAD by using wj 
= w*n−j+1, where wj is the jth weight of the DMOWAD and 
w*n−j+1 the jth weight of the AMOWAD operator. 

The MOWAD operator is a mean or averaging operator. 
This is a reflection of the fact that the operator is commutative, 
monotonic, bounded and idempotent for both the DMOWAD 
and the AMOWAD operator. It is commutative because any 
permutation of the arguments has the same evaluation. That is, 
MOWAD(d1,d2,…,dn) = MOWAD(e1,e2,…,en), where (e1,…,en) 
is any permutation of the arguments (d1,…,dn). It is monotonic 
because if di ≥ ei, for all di, then, MOWAD(d1,d2,…,dn) ≥ 
MOWAD(e1,e2,…,en). It is bounded because the MOWAD 
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aggregation is delimitated by the minimum and the maximum. 
That is, Min{di} ≤ MOWAD(d1,d2,…,dn) ≤ Max{di}. It is 
idempotent because if di = d, for all di, then, 
MOWAD(d1,d2,…,dn) = d. 

Another interesting issue to analyze is the attitudinal 
character of the MOWAD operator. Based on the measure 
developed for the GOWA operators in [17], it can be 
formulated in two different forms depending on the type of 
ordering used. For the first form we get the following: 
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And for the second, we get: 
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Note that we will also select one of these two equations 

according to the problem analyzed. That is, our selection will 
be different depending on if we are in a situation where the 
highest argument is the best result or in a situation where the 
lowest value is the best result.  

IV. FAMILIES OF MOWAD OPERATORS 

A. Analysing the Weighting Vector W  

By choosing a different manifestation of the weighting 
vector in the MOWAD operator, we are able to obtain 
different types of aggregation operators. For example, we can 
obtain the maximum distance, the minimum distance, the 
normalized Minkowski distance and the weighted Minkowski 
distance.  

For the DMOWAD operator, the maximum distance is 
obtained when w1 = 1 and wj = 0, for all j ≠ 1. The minimum 
distance is found when wn = 1 and wj = 0, for all j ≠ n. And for 
the AMOWAD operator, the maximum distance is found when 
wn = 1 and wj = 0, for all j ≠ n, and the minimum distance is 
found when w1 = 1 and wj = 0, for all j ≠ 1. As we can see, the 
maximum and the minimum distances are obtained 
independently of the value of the parameter λ. More generally, 
if wk = 1 and wj = 0, for all j ≠ k, we get for any λ, 
MOWAD(d1, d2,…, dn) = Dk, where Dk is the kth largest or 
lowest of the arguments di. 

The normalized Minkowski distance and the weighted 
Minkowski distance are also particular cases of the MOWAD 
operator. The normalized Minkowski distance is obtained 
when wj = 1/n, for all j. The weighted Minkowski distance is 
obtained when j = i, for all i and j, where j is the jth argument 
of Dj and i is the ith argument of di. 

Remark 1: Other families of aggregation operators could be 
obtained by choosing a different manifestation in the weighting 
vector. For example, the Hurwicz MOWAD criteria is 

obtained when w1 = α, wn = 1 - α, wj = 0, for all j ≠ 1,n, then, 
MOWAD(d1, d2,…, dn) = α Max{di} + (1 - α) Min{ di}. Note 
that if α = 1, the Hurwicz MOWAD criteria becomes the 
maximum distance and if α = 0, it becomes the minimum 
distance.  

Remark 2: When wj = 1/m for k ≤ j ≤ k + m − 1 and wj = 0 
for j > k + m and j < k, we are using the window-MOWAD 
operator that it is based on the window-OWA operator [13]. 
Note that k and m must be positive integers such that k + m − 1 
≤ n. Also note that if m = k = 1, then, the window-MOWAD is 
transformed in the maximum. If m = 1, k = n, the window-
MOWAD becomes the minimum. And if m = n and k = 1, the 
window-MOWAD is transformed in the normalized 
Minkowski distance. 

Remark 3: If w1 = wn = 0, and for all others wj = 1/(n − 2), 
we are using the olympic-MOWAD operator that it is based on 
the olympic average [16]. Note that if n = 3 or n = 4, the 
olympic-MOWAD average is transformed in the MOWAD 
median and if m = n − 2 and k = 2, the window-MOWAD is 
transformed in the olympic-MOWAD operator.  

Remark 4: The median and the weighted median can also be 
used as MOWAD operators. For the MOWAD median, if n is 
odd we assign w(n + 1)/2 = 1 and wj = 0 for all others, and this 
affects the [(n + 1)/2]th largest argument di. If n is even we 
assign for example, wn/2 = w(n/2) + 1 = 0.5, and this affects the 
arguments with the (n/2)th and [(n/2) + 1]th largest di. For the 
weighted MOWAD median, we select the argument that has 
the kth largest di, such that the sum of the weights from 1 to k 
is equal or higher than 0.5 and the sum of the weights from 1 
to k − 1 is less than 0.5.  

Remark 5: Another type of aggregation that could be used is 
the E-Z MOWAD weights that it is based on the E-Z OWA 
weights [18]. In this case, we should distinguish between two 
classes. In the first class, we assign wj = 0 for j = 1 to n − k and 
wj = (1/k) for j = n − k + 1 to n, and in the second class we 
assign wj = (1/k) for j = 1 to k and wj = 0 for j > k. Note that for 
the first class, the maximum distance is obtained if k = 1 and b1 
= Max{ai}, and the normalized Minkowski distance if k = n. In 
the second class, the minimum distance is obtained if k = 1 and 
bn = Min{ai}, and the normalized Minkowski distance if k = n. 

In [4], Filev and Yager suggested two methods for obtaining 
the OWA weights. Following their methodology we can apply 
these methods for the MOWAD weights as follows. For the 
first method, the weights can be expressed as w1 = α, wn = 
wn−1(1 − w1)/w1, and wj = wj−1(1 − w1) for j = 2 to n − 1. For 
the second method, the weights are obtained as wn = 1 − α, w1 
= w2(1 − wn)/wn, and wj = wj(1 − wn) for j = 2 to n − 1. 

Remark 6: Another useful approach for obtaining the 
weights is the functional method introduced by Yager [16] for 
the OWA operator. For the MOWAD operator, it can be 
summarized as follows. Let ƒ be a function ƒ: [0, 1] → [0, 1] 
such that ƒ(0) = ƒ(1) and ƒ(x) ≥ ƒ(y) for x > y. We call this 
function a basic unit interval monotonic function (BUM). 
Using this BUM function we obtain the MOWAD weights wj 
for j = 1 to n as 
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It can easily be shown that using this method, the wj satisfy 

that the sum of the weights is 1 and wj ∈ [0,1]. 
Remark 7: By using the orness or attitudinal character and 

the dispersion measure it is also possible to obtain the weights 
of the MOWAD operator. For example, following [8] we 
could develop the maximal entropy MOWAD (MEMOWAD) 
as follows 
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where α ∈ [0, 1], wj ∈ [0,1], and the sum of the weights is 1. 
Note that other methods similar to the MEMOWAD could be 
developed for obtaining the MOWAD weights following the 
same methodologies than [5]–[6], [9]–[10]. Then, we could 
obtain for example, the maximal renyi entropy MOWAD 
weights, the minimal variability MOWAD weights, the 
minimax disparity MOWAD weights, etc. 

Remark 8: Other families of MOWAD operators could be 
obtained such as the weights that depend on the aggregated 
objects [13]. Note that in the MOWAD operator, the 
aggregated objects are individual distances. Then, the weights 
depend on the distances between the elements of the different 
sets. For example, we could develop the BADD-MOWAD 
operator that it is based on the OWA version developed in 
[13].  
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where α ∈ (−∞, ∞), bj is the jth largest element of the 
arguments di, that is, the individual distances. Note that the 
sum of the weights is 1 and wj ∈ [0,1]. Also note that if α = 0, 
we get the normalized Minkowski distance and if α = ∞, we 
get the maximum distance. Another family of MOWAD 
operator that depends on the aggregated objects is 
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where α ∈ (−∞, ∞), bj is the jth largest element of the 
arguments di. Note that in this case if α = 0, we also get the 
normalized Minkowski distance and if α = ∞, we get the 
minimum distance. A third family of MOWAD operator that 
depends on the aggregated objects is 
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where α ∈ (−∞, ∞), bj is the jth largest element of the 
arguments di. In this case, we also get the normalized 
Minkowski distance if α = 0 and if α = ∞, we get the minimum 
distance. 

Remark 9: Another interesting family is the S-MOWAD 
operator based on the S-OWA operator [13], [15]. It can be 
subdivided in three classes, the “orlike”, the “andlike” and the 
generalized S-MOWAD operator. The “orlike” S-MOWAD 
operator is found when w1 = (1/n)(1 − α) + α, and wj = (1/n)(1 
− α) for j = 2 to n with α ∈ [0, 1]. Note that if α = 0, we get 
the arithmetic mean and if α = 1, we get the maximum. The 
“andlike” S-MOWAD operator is found when wn = (1/n)(1 − 
β) + β and wj = (1/n)(1 − β) for j = 1 to n − 1 with β ∈ [0, 1]. 
Note that in this class, if β = 0 we get the average and if β = 1, 
we get the minimum. Finally, the generalized S-MOWAD 
operator is obtained when  w1 = (1/n)(1 − (α + β)) + α, wn = 
(1/n)(1 − (α + β)) + β, and wj = (1/n)(1 − (α + β)) for j = 2 to 
n − 1 where α, β ∈ [0, 1] and α + β ≤ 1. Note that if α = 0, the 
generalized S-MOWAD operator becomes the “andlike” S-
MOWAD operator and if β = 0, it becomes the “orlike” S-
MOWAD operator. Also note that if α + β = 1, the generalized 
S-MOWAD operator becomes the Hurwicz generalized 
distance criteria. 

Remark 10: A further type of aggregation operators that 
could be used in the MOWAD operator is the centered-OWA 
operator [19]. Following the same methodology, we could say 
that a MOWAD operator is a centered aggregation operator if 
it is symmetric, strongly decaying and inclusive. It is 
symmetric if wj = wj+n−1. It is strongly decaying when i < j ≤ (n 
+ 1)/2 then wi < wj and when i > j ≥ (n + 1)/2 then wi < wj. It is 
inclusive if wj > 0. Note that it is possible to consider a 
softening of the second condition by using wi ≤ wj instead of wi 
< wj. We shall refer to this as softly decaying centered-
MOWAD operator. Note that the normalized Minkowski 
distance is an example of this particular case of centered-
MOWAD operator. Another particular situation of the 
centered-MOWAD operator appears if we remove the third 
condition. We shall refer to it as a non-inclusive centered-
MOWAD operator. For this situation, we find the median 
MOWAD as a particular case. 

Remark 11: A special type of centered-MOWAD operator is 
the Gaussian MOWAD weights which follows the same 
methodology than the Gaussian OWA weights suggested by 
Xu [11]. In order to define it, we have to consider a Gaussian 
distribution η(µ, σ) where 

 

∑
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we can define the MOWAD weights as 
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Note that the sum of the weights is 1 and wj ∈ [0,1]. 

B. Analysing the Parameter λ 

If we analyze different values of the parameter λ, we obtain 
another group of particular cases such as the Hamming ordered 
weighted averaging distance (HOWAD) operator, the 
Euclidean ordered weighted averaging distance (EOWAD) 
operator, the ordered weighted geometric averaging distance 
(OWGAD) operator and the ordered weighted harmonic 
averaging distance (OWHAD) operator. 

Remark 12: The Hamming OWAD operator or simply 
OWAD operator [22] is found when the parameter λ = 1. In 
this type of distance, we introduce a reordering in the 
individual distances in order to aggregate them in the most 
efficient way according to the interests of the decision maker. 
It can be constructed as a particular case of the MOWAD 
operator, but it is also possible to construct it by mixing the 
OWA operator with the Hamming distance. 

 

HOWAD(d1, d2,…, dn) = ∑
=

n

j
jj Dw

1
                          (21)                                                                      

 
In this case it is possible to distinguish between descending 

(DHOWAD or DOWAD) and ascending (AHOWAD or 
AOWAD) orders. 

With the HOWAD operator it is also possible to obtain 
another parameterized family of aggregation operators such as 
the maximum distance, the minimum distance, the normalized 
Hamming distance and the weighted Hamming distance. The 
maximum and the minimum distances are obtained as it has 
been explained with the MOWAD operator. The normalized 
Hamming distance is found when wj = 1/n, for all j. The 
weighted Hamming distance is obtained when j = i, for all i 
and j, where j is the jth argument of Dj and i is the ith argument 
of di.  

Remark 13: The Euclidean OWAD operator [21], [23] or 
also the ordered weighted quadratic averaging distance 
(OWQAD) operator is found when the parameter λ = 2. Note 
that it can be constructed as a particular case of the MOWAD 
operator or by mixing the Euclidean distance with the OWA 

operator or by mixing the Hamming distance with the OWQA 
operator. 

 

EOWAD(d1, d2,…, dn) = 

2/1

1

2














∑

=

n

j
jj Dw                    (22)                                                                             

 
From a generalized perspective of the reordering step, we 

can distinguish between the descending EOWAD (DEOWAD) 
operator and the ascending EOWAD (AEOWAD) operator. 

With the EOWAD operator it is also possible to obtain 
another parameterized family of aggregation operators that 
include for example, the maximum distance, the minimum 
distance, the normalized Euclidean distance and the weighted 
Euclidean distance. 

Remark 14: Another particular case obtained with the 
MOWAD operator is the OWGAD operator [24]. This case is 
found when λ = 0. Note that it is possible to construct it in 
another way such as by mixing the Hamming distance with the 
OWGA operator or by mixing the geometric distance with the 
OWA operator. 

  

    OWGAD(d1, d2,…, dn) = ∑
=

n

j

w
j

jD
1

                         (23)                           

 
In this case, we can distinguish between the descending 

OWGAD (DOWGAD) operator and the ascending OWGAD 
(AOWGAD) operator. Note that the geometric operators 
cannot aggregate negative numbers and the value zero. 
Therefore, this distance aggregation operator is only useful in 
some special situations. Note also that it is possible to 
transform this operator, so it can deal with zero or negative 
numbers [34].  

Note that it is also possible to obtain another parameterized 
family of aggregation operators. With the OWGAD operator, 
we can obtain among others the maximum distance, the 
minimum distance, the normalized geometric distance and the 
weighted geometric distance.  

Remark 15: Another special case found in the MOWAD 
operator is the OWHAD operator. In this case, λ = −1. Note 
that the OWHAD operator can also be constructed by mixing 
the harmonic distance with the OWA operator or by mixing 
the Hamming distance with the OWHA operator. 

 

   OWHAD(d1, d2,…, dn) = 

∑
=

n

j j

j

D
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1

1
                            (24)                               

 
From a generalized perspective of the reordering step, we 

can distinguish between the descending OWHAD 
(DOWHAD) operator and the ascending OWHAD 
(AOWHAD) operator.  

With the OWHAD operator it is also possible to obtain 
another parameterized family of aggregation operators. We 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:9, 2008

1052

 

 

can obtain among others the maximum distance, the minimum 
distance, the normalized harmonic distance and the weighted 
harmonic distance. The maximum distance is obtained when 
w1 = 1 and wj = 0, for all j ≠ 1, and the minimum distance 
when wn = 1 and wj = 0, for all j ≠ n. The normalized harmonic 
distance is found when wj = 1/n, for all j. The weighted 
harmonic distance is obtained when j = i, for all i and j, where 
j is the jth argument of Dj and i is the ith argument of di. 

V. MOWAD OPERATOR IN THE SELECTION OF 

STRATEGIES 

In the following, we are going to develop an illustrative 
example in order to see the results obtained in the aggregation 
by using different types of MOWAD operators. We will 
analyze the selection of strategies the decision maker needs to 
find the best strategy according to his interests. Note that other 
selection problems could be developed such as the selection of 
human resources, the selection of financial products, the 
selection of investments, etc. [7], [23]–[25], [34]–[37].  

Assume that an enterprise is considering its global strategy 
for the next year and they are thinking in some changes in 
order to obtain more benefits. In order to do so, the board of 
directors has established five possible strategies Si that the 
enterprise could develop in the future.  
 

(1) S1 consists in implement strategy 1. 
(2) S2 consists in implement strategy 2. 
(3) S3 consists in implement strategy 3. 
(4) S4 consists in implement strategy 4. 
(5) S5 consists in implement strategy 5. 

 
After careful review of the information, the experts have 

given the following general information. They have 
summarized the information of the strategies in five main 
characteristics Ci with the following results. Note that the 
results are valuations between 0 and 1. 
 

TABLE I 
CHARACTERISTICS OF THE STRATEGIES 

 C1 C2 C3 C4 C5 

S1 0.5 0.7 0.8 0.6 0.5 

S2 0.8 0.9 0.2 0.4 0.5 

S3 0.5 0.7 0.6 0.3 0.7 

S4 0.7 0.9 0.6 0.2 0.6 

S5 0.2 0.7 0.8 0.7 0.5 

 
According to the objectives and policies of the enterprise, 

the experts have established the ideal strategy for the company 
independently of the strategies available. They have 
established the following valuations for it. 

 
TABLE II 

CHARACTERISTICS OF THE IDEAL STRATEGY 

 C1 C2 C3 C4 C5 

Ideal 0.9 1 0.9 0.9 0.8 

With this information we can develop different aggregation 
methods in order to select a strategy. First, we are going to 
consider four basic aggregations that are particular cases of the 
MOWAD operator such as the normalized Hamming distance, 
the normalized Euclidean distance, the weighted Hamming 
distance and the weighted Euclidean distance. Note that we 
will use the following weighting vector W = (0.1, 0.2, 0.2, 0.2, 
0.3), when necessary. The results are the following. 
 

TABLE III 
AGGREGATED RESULTS 

 NHD NED WHD WED 

S1 0.28 0.29 0.27 0.28 

S2 0.34 0.41 0.36 0.42 

S3 0.34 0.37 0.31 0.35 

S4 0.3 0.36 0.3 0.36 

S5 0.32 0.38 0.28 0.32 

 
As we can see, the best alternative according to these four 

cases is the strategy S1 because it has the lowest distance. 
Now, we are going to study the results obtained by using the 

OWAD operator, the AOWAD operator, the EOWAD 
operator and the AEOWAD operator. 
 

TABLE IV 
AGGREGATED RESULTS 2 

 OWAD AOWAD EOWAD AEOWAD 

S1 0.25 0.31 0.27 0.32 

S2 0.28 0.4 0.349 0.46 

S3 0.29 0.39 0.327 0.42 

S4 0.24 0.36 0.293 0.42 

S5 0.26 0.38 0.309 0.43 

 
As we can see, we will select a different strategy depending 

on the particular case of MOWAD operator used in the 
aggregation. If we use the AOWAD operator, the EOWAD 
operator or the AEOWAD operator, the optimal choice will be 
the strategy S1. And if we use the OWAD operator, then the 
best alternative is the strategy S4.  

If we try to order the strategies, a typical situation when we 
want to consider more than one alternative, we can see that 
each distance aggregation operator gives us a different result 
leading to different decisions. 
 

TABLE V 
ORDERING OF THE STRATEGIES 

NHD S1S4S5S2=S3 OWAD S4S1S5S2S3 

NED S1S4S3S5S2 AOWAD S1S4S5S3S2 

WHD S1S5S4S3S2 EOWAD S1S4S5S3S2 

WED S1S5S3S4S2 AEOWAD S1S3=S4S5S2 

 
As a general conclusion for the example, we can see that 

depending on the method used in the selection process, our 
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decision will be different. Note that the method used has to be 
in accordance with the interests of the decision maker. 

VI.  CONCLUSION 

We have studied different types of distance measures. First, 
we have reviewed some basic aggregation operators such as 
the OWA operator, the GOWA operator and the normalized 
Minkowski distance. With this initial information, we have 
introduced the MOWAD operator. We have considered some 
of its main properties such as the distinction between 
descending and ascending orders. Next, we have developed a 
wide range of particular cases of the MOWAD operator such 
as the HOWAD operator, the EOWAD operator, the OWGAD 
operator and the OWHAD operator. We have seen that these 
special cases also provide a parameterized family of 
aggregation operators with similar properties than the 
MOWAD operator. We have also considered the usual 
families found in the weighting vector such as the window-
MOWAD, the olympic-MOWAD, the MOWAD median, the 
S-MOWAD, the centered-MOWAD, etc. Finally, we have 
presented an illustrative example of the new approach where 
we have seen that depending on the distance aggregation 
operator used, the result is completely different. 

This work represents an extension about the possibility of 
using OWA operators in the Minkowski distance which has 
been applied in strategic management. In future research, we 
expect to develop other extensions to the Minkowski distance 
by using different types of OWA operators and we will apply it 
in other decision making problems. 
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