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Abstract—Modern managements of water distribution system 

(WDS) need water quality models that are able to accurately predict 
the dynamics of water quality variations within the distribution system 
environment. Before water quality models can be applied to solve 
system problems, they should be calibrated. Although former 
researchers use GA solver to calibrate relative parameters, it is 
difficult to apply on the large-scale or medium-scale real system for 
long computational time. In this paper a new method is designed 
which combines both macro and detailed model to optimize the water 
quality parameters. This new combinational algorithm uses radial 
basis function (RBF) metamodeling as a surrogate to be optimized for 
the purpose of decreasing the times of time-consuming water quality 
simulation and can realize rapidly the calibration of pipe wall reaction 
coefficients of chlorine model of large-scaled WDS. After two cases 
study this method is testified to be more efficient and promising, and 
deserve to generalize in the future. 
 

Keywords—Metamodeling, model calibration, radial basis 
function, water distribution system, water quality model. 

I. INTRODUCTION 
HE pursuit of a safe drinking water has long been and 
remains a major concern of public health officials and 

water-treatment operators since the recognition of waterborne 
disease by the end of the 19th century. Increased attention has 
been directed toward protecting the nation’s health in addition 
to quenching its thirst[1]. Under driving force of complying with 
increasingly stringent governmental regulations and 
customer-oriented expectations, modeling water quality in 
water distribution systems has become a widely accepted tool 
in support of water supply planning, operations, and research.  

Modern managements of WDS need water quality models 
that are able to accurately predict the dynamics of water quality 
variations within the distribution system environment. Such 
models would have possible applications in predicting water 
quality degradation problems, calibrating system hydraulics, 
designing water quality sampling programs, optimizing the 
disinfection process, evaluating the water quality aspects of 
distribution network and storage-reservoir improvement 
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projects, and assessing alternative operational and control 
strategies for maintaining and improving water quality in 
distribution systems[2].  

Water quality models need to be calibrated before they can 
be applied to solve system problems. Reference [3] had list that 
numerous investigators have emphasized the importance of 
calibrating a model. Effective water quality model demands 
accuracy of hydraulic models and its accurate parameters. So 
the calibration of hydraulic model is the basic of calibration of 
water quality model. Water distribution model calibration is 
typically accomplished by adjusting network parameters so that 
model results match field measurements. It can be categorized 
into trial and error and optimized methods, manual and 
automated methods, simple parameters and grouped parameters 
methods, rough-tuning or macro-calibration and fine-tuning or 
micro-calibration method based on different classified 
criterion. 

In the past, Reference [4; 5] used genetic algorithm (GA) to 
calibrate the parameters of hydraulic models. Reference [6] 
provided Markov chain Monte Carlo calibration algorithm by 
incorporating spatial correlation into the parameter estimation 
framework for network model calibration. Reference [7] used 
artificial neural networks (ANN) to perform the hydraulic 
model calibration, which obtained pipe’s roughness from 
pressures and flow rates. Reference [8] used fussy logic to 
capture knowledge from people who manually calibrate those 
networks, because process could become automatic in this way. 
Otherwise, calibration of water network model can be 
integrated with leakage distribution in the process of hydraulic 
calibration [9]. Reference [10] considered the uncertainties in 
measurement and estimation and provides a measure of the 
quality of the calibration. Reference [11] made full use of 
information from tracer studies as well as information from 
pressure surveys, which would be helpful to calibration of both 
hydraulic and water quality model.  

The literatures presented above are only the part of 
calibration of hydraulic model. Though the underlying 
philosophy of water quality calibration is the same as that of 
hydraulic calibration, the water quality calibration will cost 
more computing time than calibration of hydraulic model, even 
reaching more than a hundred times. Newly, some programs to 
calibrate water distribution models have been available and 
have occasionally been used on real water systems, such as the 
Darwin Calibrator of Haestad Methods [12; 13] using a GA 
solver to optimize relative parameters, it is difficult to apply on 
the large-scale or medium-scale real system for long 
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computation time. We have to seek new method to calibrate the 
parameters of water quality model. 

This paper is organized as follows. Section 2 provides the 
brief background discussion of this topic preparing for 
subsequent sections. It is followed by a specified description of 
new method in section 3. In section 4, a large-scale water 
distribution network applies this method to optimize the 
parameter of water quality model. The final section concludes 
this method and restates the key traps in the optimal process. 

II. BACKGROUND 

A. Water Quality Model 
Most water quality models make use of one-dimensional 

advective-reactive transport to predict the changes in 
constituent concentrations due to transport through a pipe. It 
can be written as follows. 

( )c cv R c
t x

∂ ∂
+ =

∂ ∂
                                  (1) 

Where c is the concentration of a constituent; t is time; v is 
the flow velocity; x is the distance and R represents the 
constituent reaction relationship. Water quality model used in 
this paper is based upon a parcel tracking algorithm. It tracks 
the change in water quality of discrete parcels of water as they 
move along pipes and mixes together at junctions between 
fixed-length time steps. In order to do this it needs to know the 
rate at which the substance reacts and how this rate might 
depend on substance concentration. Reactions can occur both 
within the bulk flow and with material along the pipe wall. 

Bulk flow reactions are the reactions that occur in the main 
flow stream of a pipe or in a storage tank, unaffected by any 
processes that might involve the pipe wall. A water quality 
model simulates these reactions using n-th order kinetics, 
where the instantaneous rate of reaction (R in unit of 
mass/volume/time) is assumed to be concentration-dependent, 
given as:  

b( ) K nR c c=                                       (2) 
Where Kb is a bulk rate coefficient; c is reactant 

concentration (mass/volume) and n is a reaction order. Kb has 
units of concentration raised to the (1−n) power divided by 
time. It is positive for growth reactions and negative for decay 
reactions. It also considers reactions where a limiting 
concentration exists on the ultimate growth or loss of the 
substance. In this case the rate expression for a growth reaction 
becomes: 

( 1)
b( ) K ( ) n

LR c c c c −= −                              (3) 
Where cL is the limiting concentration. Thus, there are three 

parameters (Kb, cL, and n) that are used to characterize bulk 
reaction rates. Different values of these parameters lead to 
different kinetic models. Bottle test is recommended for 
determining the bulk reaction coefficient such as chlorine 
decay factor. It provides a good baseline value and reference 
for constructing a water quality model[12; 14; 15].  

In addition to bulk flow reactions, constituent reactions 
occur with material on or near the pipe wall. The rate of this 

reaction is dependent on the concentration in the bulk flow and 
pipe wall conditions, given as: 

w( ) K nAR c c
V

=                                    (4) 

Where Kw is a wall reaction rate coefficient, (A/V) is the 
surface area per unit volume within a pipe. It converts the mass 
reacting per unit of wall area to a per unit volume basis. n is the 
wall reaction order taking value of either 0 or 1, so that the unit 
of Kw is either mass/area/time or length/time. Both Kw and n are 
site specific and need to be calibrated for water distribution 
pipes. 

Water quality model with combined bulk and wall decay 
gives better results than a single decay coefficient. Reliability 
of wall demand Kw estimation results in very low model error 
[14]. Combined bulk and wall decay is adopted in this paper. 

B. Metamodeling 
Metamodeling research has been published since 1970, it has 

been a major research field during the last decade [16; 17]. The 
basic idea of metamodeling is to construct an approximate 
model using function values at some sampling points, which 
are typically determined using experimental design methods 
[18]. The main purpose of metamodeling is to reduce the cost, 
time, and amount of effort required during a simulation 
analysis. It is usually a supplementary model that can be 
alternatively used to interpret a more detailed model. The goals 
of metamodeling cover understanding, prediction, 
optimization, and verification and validation [19]. Metamodels 
are constructed in three stages, i.e. estimation, analysis and 
validation. Its process can involve both qualitative and 
quantitative factors [20].  

The most popular metamodeling approach in simulation 
involves the use of parametric polynomial regression models in 
response surface methods [16], which is formulated as follow: 

1 1
( )

qm

kj k j
j k

Y p Xβ
= =

= ∑∑                                  (5) 

Where Y is the output vector; X is the input vector; m is the 
dimension of input vector; q is a polynomial order. Metamodel 
can be classified into parametric and nonparametric techniques 
[21]. The most popular types of metamodels are polynomial 
regression models, splines, kriging and neural networks [19]. 
The metamodel might model only a local portion of the 
simulated system or may encompass the complete simulated 
system, a global metamodel. Trade of between accuracy and 
computational expense and between local and global 
information must be considered when developing a simulation 
metamodel. 

The use of metamodels as surrogates for WDS simulation 
models has been very rare to date. Reference [22] used ANN in 
place of the simulation model KYPIPE to calibrate pipe 
roughnesses. Roughness coefficients were optimized using a 
GA linked to the ANN. This metamodeling example in WDS 
optimization ran approximately at twice the speed of the 
hydraulic simulation model, suggesting that the ANN 
metamodeling technique has potential for increasing the 
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computational efficiency of WDS optimization. ANNs are used 
as a surrogate model to optimize the drinking water distribution 
[23]. The neural networks may be used to obtain precalibrations 
or guides for a manual calibration, but they are insufficient 
when used as unique calibration tools [5]. 

C. Radial Basis Functions 
Neural networks have seen an explosion of interest over the 

last few years, and are being successfully applied across an 
extraordinary range of problem domains, in areas as diverse as 
finance, medicine, engineering, geology and physics. Neural 
networks are very sophisticated modeling techniques, capable 
of modeling extremely complex functions. In particular, neural 
networks are non-linear. It also keeps in check the curse of 
dimensionality problem which bedevils attempts to model 
non-linear functions with large numbers of variables. Neural 
networks can accommodate a combination of continuous 
variables and discrete numeric variables. Additionally, most 
neural network paradigms are global models, so a single neural 
network could be developed to model the entire simulation 
response surface. This differs from polynomial regression 
metamodeling, where the regression surface is fitted to a 
locality, i.e. a subset of the response surface. 

Radial basis functions (RBF) were originally developed by 
Hardy to fit irregular topographic contours of geographical data 
[21; 24]. RBF networks enjoy the best approximation property 
among all feed-forward networks and which have produced 
excellent fits to arbitrary contours of both deterministic and 
stochastic response functions[25]. Radial basis function 
networks have an input layer, a hidden layer of radial units and 
an output layer of linear units. The RBF metamodel is based on 
radial basis functions using cones (circular hyperboloid), and it 
is mathematically represented as follows: 

1
( ) ( )

n

i i
i

f x w x xφ
=

= −∑                                  (6) 

Where n is the number of sampling points, x is the vector of 
input variables, xi is the center of basis functionφ , i  is any lp 
norm (typically is Euclidean norm, this kind of norm is used in 
this study) and wi is the unknown weighting coefficient. 
Therefore, an RBF is actually a linear combination of n basis 
functions with weighted coefficients. Some of the most 
commonly used basis functions include: 

Thin-plate spline: 
2 2( ) log( )r r crφ = , 0 1c< ≤ ; 

Gaussian:  
2

( ) crr eφ −= , 0 1c< ≤ ; 
Multiquadric:  

2 2( )r r cφ = + , 0 1c< ≤ ; 
Inverse multiquadric: 

2 2

1( )r
r c

φ =
+

, 0 1c< ≤ . 

RBF can be expressed as matrix format: 

f Aλ=                                            (7) 

Where f = [f (x1), f (x2), …, f (xm)]T, ( )ij i jA x xφ= −  i = 1, 

2 , …, m;  j = 1, 2, …,n 
The coefficient vector λ  is obtained by solving Eqs (7). An 

RBF using the aforementioned highly nonlinear functions does 
not work well for linear responses. To solve this problem, we 
can augment an RBF by including a polynomial function such 
that. 

1 1

( ) ( ) ( )
n m

i i j j
i j

f x w x x c p xφ
= =

= − +∑ ∑                    (8) 

Where m is the total number of terms in the polynomial, and 
cj (j = 1, 2,…, m) is the corresponding coefficient.  

The advantage of RBF is found to be the best for overall 
performance on accuracy, robustness, problem types, sample 
size, efficiency, and simplicity compared to response surface 
method (RSM), kriging method (KM), and multivariate 
adaptive regression splines (MARS), based on evaluations of 
the coefficient of multiple determination (R2), relative average 
absolute error (RAAE), and relative maximum absolute error 
(RMAE) [26].  

One of disadvantages of RBF is more expensive than RSM, 
because it uses a series of computationally expensive functions 
for a single model; therefore, it is less efficient in performing 
function evaluations. This drawback becomes apparent when 
solving multi-objective design optimization problems in which 
millions sometimes even billions of solutions need to be found 
in order to develop the Pareto Frontier. Another disadvantage 
of using RBF is that model fitness cannot be checked using 
ANOVA, because by definition an RBF passes exactly through 
all the design points [18].  

III. METHODOLOGY 
Water quality modeling of WDS is a time-consuming task, 

which has to solve the hydraulic equation firstly, i.e. the 
equations of continuity and energy, for transient analysis the 
equations of momentum are necessary. The water quality 
computing step is shorter than hydraulic one and the number of 
computing times will be more than hydraulic one. Additionally 
water quality analysis must take extended-period simulation, or 
it will be no-good for long distance pipelines as the constituent 
can’t reach the relative node. From my previous experiences, a 
medium-scale network with 6000 nodes and 6000 pipes will 
cost near one minute time to make a 24-h simulation (15 
min/step, 96 steps in all; normal computer configuration: 512M 
/ 1.7G). Optimization algorithms may require a few hundred to 
several thousands of model simulations to converge to a unique 
set of parameters. For example, an optimization using GA with 
30 populations and 100 generations needs 3000 min (50 h). In a 
word, water quality simulation in each iterative program of 
specified optimization belongs to costly functions that is 
computationally challenging. 

Because of the enormous computational cost involved, an 
analyst is typically willing to perform only a small number of 
function evaluations when optimizing such costly functions. 
Our goal, then, is to develop global optimization algorithms 
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that produce reasonably good solutions with a very limited 
number of function evaluations. A more practical type of 
optimization method for computationally expensive function is 
one that is based on a metamodel presented as before (also 
known as response surface model or surrogate model). The 
purpose of the metamodel is to serve as an inexpensive 
approximation to the costly evaluation function that can help 
identify promising points for costly function evaluation. 

Reference [27] presented a new framework, CORS 
(Constrained Optimization using Response Surface), for 
solving costly evaluation function optimization. The CORS 
method is a flexible framework and can be used to different 
fields. But it should be adjusted and reinforced according to the 
characters of applied objects. 

Based on the framework of CORS method and the characters 
of water quality model of WDS, a new combinational 
algorithm, CORS-RBF-GA, is designed which combines the 
CORS framework, RBF network and GA to calibrate the 
parameters of water quality model. The flowchart of CORS is 
the same as the left side of fig 1 (step1-6), the RBF network is 
the water quality metamodel, GA is the optimizing method of 
metamodel. In addition, the algorithm of CORS-RBF-GA is 
also reinforce by using the generability checking and cluster 
analysis. The algorithm of CORS-RBF-GA is presented as 
follows. 

Step 1 is to select initial evaluated points. Set and select a 
finite initial set of points 1  { , , }kS x x= "  which are prepared 
for water quality simulation and fit the RBF network. S is a 
vector when only one parameter is calibrated, and a matrix with 
m row (the number of calibrated parameters) and k column (the 
number of points) when more than one parameter. The method 
of selecting evaluated points includes factorial design (grid), 
Latin hypercube and orthogonal arrays. The most known 
technique is the factorial design which requires fitness function 
evaluations at KN design points, where N is the number of 
design variables and K the number of levels defined between 
the lower and upper bounds of each variable. Usually, K is 2 or 
3, depending on the effects we want to model[28]. After 
experimental comparison, we found that the number of 
experimental points should be beyond 100 for more than two 
parameters that should be calibrated. 

Step 2 is to do water quality simulation. Data from water 
quality simulation can be used directly or changed to other 
form, which typically are transformed into discrepancy 
between calculated data and measured data. These data will 
play a role as output of RBF network, while the evaluated 
points as input. Basis function employs the Gaussian function 
because MATLAB is based on this one. In this paper the 
predicted error, f(x), is adopted to the output of RBF network 
and defined as follow in order to calibrated the parameters 
according to minimize the discrepancy. The data of boundary 
condition of WDS are manually treated firstly with the goal of 
focusing on this method singly. 

( ) ( ) -  i i if x g x m=  1,i n= "                          (9) 

1
( ) ( )

n

i
i

f x f x
=

= ∑                                    (10) 

Where ( )ig x  is the calculated value of No. i monitoring 
node; mi is the measured value of No. i monitoring node; n is 
the total number of monitoring nodes. Note that the calculated 
values of monitoring nodes are zero in the early period of 
extended period simulation of WDS until the disinfectant pass 
through these nodes. So f(x) must start to accumulate from the 
time that is above water age of every node. 

Step 3 is to save evaluated points and the value of 
accumulated error. Evaluated points are saved into 

1 { , , }kS x x= "  and the values of error 
into 1{ ( ), , ( )}kE f x f x= " . When the following optimization 
produces new data, S adds one point after the last point and E 
adds the evaluated value with respect to new added point. Note 
that To prevent oscillation in the RBF interpolation, the large 
error values should be replaced by the median of all available 
error function values [29]. 

Step 5 is to fit or update RBF. The RBF is an approximated 
metamodel as a surrogate of WDS, which is key part of the 
whole algorithm. Based on data set S and E, the former is input 
and the latter is output, new RBF network will be trained and 
updated in each iteration. For practical purposes, it should be 
intuitively clear that the rate of convergence is somehow 
dependent on how well the RBF model approximates the water 
quality model and also on how well we solve the optimization 
problem on the RBF network. In first time we should optimize 
the spread parameter of RBF which is so important that directly 
influence the degree of approximation. Quasi-Newton Methods 
or GA [30] can be used to solve this optimization. After the 
optimized spread parameter has been found a new RBF 
network should be train again. 

Step 6 can use different optimization method, such as 
nonlinear programming or GA, to find minimized point in 
surface of RBF function which will be the next evaluated point. 
In former research we found that nonlinear programming is 
easy to make matrix is close to singular or badly scaled, it will 
result in optimization terminated early. GA is recommended as 
a universal optimization method. Objective function and 
constraint condition are presented as follows. 

Minimize f’(x)                                        (11) 
Subject to:  

jx x β− ≥ Δ     1, , 1j k i= + −" , jx S∈  0 1β≤ ≤     (12) 

( )0.5 1.5
( )

x i
x k

≤ ≤     , 1, ,i k m= "                       (13) 

Where
1 1D

max mini jj k ix

x x
≤ ≤ + −

∈

Δ = −
∼

∼
& & , x  is the cover points 

defined beforehand which covers the whole hypercube domain. 
Function f’ is the RBF. x(i) and x(k) are the elements of the 
vector of x, m is the dimension of x. 

The purpose of the constraint is to drive the algorithm 
towards unexplored regions and prevent the algorithm from 
prematurely converging to some possibly undesirable points. 
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To be able to perform both local and global search in this 
scheme, we use β to control the distance range from high values 
for global search to low values to local search. Detailed proved 
process can be referred to [27]. Inequality constraints (13) 
restrict the grouping parameters (wall reaction coefficients), 
assuming that there are no great discrepancies among the 
parameters. 

Step 4 and 7 are identification of convergence condition and 
obtainment of optimized values via optimization of RBF 
metamodel. According to following case study we found that 
many combinations of wall reaction parameters can have the 
near same influence on predictions of monitoring points in 
WDS. So we have to select the point as the final result that has 
the best generalization ability among the options. Step 8 
utilizing the data from step 8 compare the generalization ability 
of given new evaluated points from RBF optimization, which 
computes individually the total predicted error of given period 
of water quality behaviors. Step 9 is the end of methodology. 

This method is realized in MATLAB programming 
language, and RBF network and GA call functions of 
corresponding toolbox. Water quality modeling is operated 
using EPANET programmer's toolkit, the EPANET2.dll is 
incorporated into main program. 

IV. CASE STUDY 
Example network is shown in Fig. 2 and used to apply the 

new method. It is a water utility in the southern of China. This 
network has 6909 nodes, no tank, and 7452 links, totaling 513 
km of pipe. It is supplied from the four treatment plants. 
Hydraulic model is calibrated manually and automatically with 
GA. The extended period is set 72-h and time step is 15 min. 
Hydraulic demands and boundary conditions are set according 
to real operation data after manual treatment. This network 
includes six monitoring points which monitor residual chlorine, 
turbidity, pH and temperature, and are red quadrate in Fig. 2. 
This section will study two cases. Case 1 is to get whole 
response surface intuitively based on different bulk and wall 
reaction coefficient. Case 2 is real calibration of example 
network which bulk reaction parameter is obtained from bottle 
test as a baseline and wall reaction coefficients are divided into 
six groups. 

A. Case 1 
This case does not set the bulk and wall reaction coefficient 

does not make grouping, these are both arguments for the error 
surface. Limiting the number of parameters is to present the 
surface intuitively, for the space of more than three dimensions 
can’t express simply using figure. The two parameters both 
range from -6 to 0, but the units are different. Unit of bulk 
reaction coefficient is 1/d and reaction order is 1st-order. Unit 
of wall reaction coefficient is meter/d and reaction order is 
1st-order. The figures are showed as follows. The 144 data is 
obtained via water quality modeling and error calculation under 
the domain specified by bulk and wall reaction coefficients. All 
data are presented in Fig. 3 (a), for looking carefully we remove 
some edge data in Fig. 3 (b). The area of minimized total error 

is a line style and it means that different combination of wall 
and bulk reaction coefficient can obtain near same total error 
from Fig. 3 (c). In practical case, bottle test provides a good 
baseline value and reference for bulk reaction coefficient of a 
water quality model, and then we can find the best parameters 
for model. 

B. Case 2 
The selection of values for the candidate policies is problem 

dependent. This paper uses a uniform discretized lattice over 
the allowable ranges of the six input variables; however more 
sophisticated methods such as k-p designs, Latin hypercube 
sampling or Bayesian techniques may well improve neural 
network metamodels[31].  

To enhance the accuracy of calibration, in this case we use 
cluster analysis method, hierarchical cluster analysis, to divide 
the whole pipes into six groups. Hierarchical cluster analysis 
attempts to identify relatively homogeneous groups of wall 
reaction coefficient based on selected characteristics, which 
include pipe diameters, pipe materials, construction time, flow 
rates, flow velocity, location (quantified by means of average 
coordinates). As SPSS provides a powerful statistical analysis, 
SPSS 14.0 is used to operate cluster analysis. 

The initial evaluated points, total 128 (2*26) points, are 
obtained using simple grid method. Using this method 
presented in the paper result can be obtained soon and the 
process is shown in Fig. 4. Fig. 4(a) presents the whole process 
and the training data fluctuate acutely from No.1 to 128 reflects 
partly that the RBF network represents the whole approximated 
space. We select 100 data to train the RBF network and 28 data 
to optimize the spread parameter of RBF network. The 
following process shows the real optimization process in fig 
4(b) that surges in the early stage and smoothes or coverage to 
the minimum in the latter. 

In order to test the influences of different environment of 
optimization, we have compared four kinds of optimization and 
the results are shown in Fig. 5. First series is only optimization 
of two parameters that are bulk and wall reaction coefficients 
the same as case 1. This smooth line presents a few numbers of 
combinations of the two parameters, but the performance 
function, total error, is a little bit higher than other series. 
Second series represents that we fit the RBF network using 
given the spread parameter other than using optimal value. This 
kind of optimization fluctuates in the early stage because the 
RBF network needs longer time to enhance the fitting ability as 
increase of data. Third series represents the same data as fig 4 
(b) and the optimization subjects to the inequality constraints 
(13) (six wall reaction coefficients, spread parameter 
optimization). The RBF network becomes stability is shorter 
because of the contribution of the spread parameter 
optimization. In fourth series, the inequality constraints (13) are 
not used. In the early stage the line surges a short time, then 
becomes gentle incline. But there are two unwilling juts in the 
range from No. 22 to 28. It testifies that some margin inputs, for 
example [-0.5, -6.0, -6.0, -3.5, -4.2, -6.0], will bring more total 
error because short of initial fitting points can not fit the RBF 
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surface more accurate in margin region while these can do well 
in the middle of network. 

One of comparisons of predicted values and measured values 
is showed in Fig.  6. From the figure you can find the predicted 
line is smoother than the measured one, there are a big 
difference in the early time of every day from 1 to 9 o’clock. 
According to simply research we find the possible reason is the 
influence of flow velocity the same as other research findings 
[32]. The contrastive figure of one monitoring point is 
presented in Fig.  7. Another possible reason may be that the 
pipe water is still in the leading out thin branch pipe at the water 
quality monitering station, which will be no refilling chlorine 
into this pipe at this pierod. While the simulation concentration 
is upstream pipeline relative to this monitoring location in 
WDS (Fig. 8), this difference of position contribute to the 
simulating error. In order to solve this problem the deeper 
research should be executed in the future. 

Comparison of computational times is listed in Table I, 
which compare EPANET linked to GA and the new method 
presented in this paper. The total computing time of RBF 
metamodeling is only 10.3 % of the one of EPANET linked to 
GA which is adopted normally. Every water quality simulation 
needs 3 min, and the sampling data are produced after water 
quality simulations based on every initial evaluated point. Thus 
sampling computing time should be 128×3min, namely 6 h and 
24 min. Optimization time of the former method is calculated 
by assuming GA parameters adopted normal values, 100 
generations and 20 populations. Generalization ability 
checking is carried out 12 d long simulation and finds the 
optimal value in the end. 

 
TABLE I 

COMPARISON OF COMPUTATIONAL TIMES 

Methods 

Sampling 
Data (h : 

min) 

Training 
Spread 

Parameter 
Optimization 

(h : min) 

Generalization 
Checking (h : 

min) 
Total(h 
: min) 

GA   

100:00 
(100×20×3 

min)  100:00
RBF 

metamodeling 
6:24(128×

3min) 1min 
2:35 (50×3min 

+ 50×6s) 
1:30 

(10×3×3min) 10:30 

 

V. CONCLUSION 
This paper presents a new method using RBF metamodeling 

as a surrogate to be optimized for the purpose of decreasing the 
times of time-consuming water quality simulation. The 
CORS-RBF-GA algorithm succeeds in calibrating the 
parameters of water quality model more efficiently than 
EPANET linked to GA. In order to assure the quality of 
optimization and avoid traps, key points should be restated and 
obeyed: 

1. The sampling data should be adequate, in general above 
100. 

2. The spread parameter should be optimized; this will 
enhance the fitting level. 

3. The constraints between two parameters should add to the 
constraint conditions of main optimization. 

4. Generalization ability checking can decrease the influence 
of local target value, namely measured value. 

 
Although the new method can solve the problem of 

computational time, there also are some works to be researched 
more deeply in the future, such as considering data uncertainty 
the same as former hydraulic calibration in the water quality 
calibration and quantification of other influence factors to bulk 
and wall reaction coefficients. 
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 Fig. 1 Flowchart of calibration of water quality model of WDS 
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Fig. 2 Example network 
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(c) 

Fig. 3 Error surface with respect to bulk and wall reaction coefficients  
(a) All data; (b) Remove edge data; (c) Change view of figure (b) 
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(b) 

Fig. 4 The process of optimization via RBF approximation (a) The 
whole process include initial training and optimization; (b) 

Optimization process 
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Fig. 5 Different optimization based on different conditions 
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Fig. 8 The schematic plan of water quality monitoring location 
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