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Abstract—Data Warehouses (DWs) are repositories which contain
the unified history of an enterprise for decision support. The data must
be Extracted from information sources, Transformed and integrated
to be Loaded (ETL) into the DW, using ETL tools. These tools focus
on data movement, where the models are only used as a means to
this aim. Under a conceptual viewpoint, the authors want to innovate
the ETL process in two ways: 1) to make clear compatibility between
models in a declarative fashion, using correspondence assertions and
2) to identify the instances of different sources that represent the
same entity in the real-world.

This paper presents the overview of the proposed framework to
model the ETL process, which is based on the use of a reference
model and perspective schemata. This approach provides the designer
with a better understanding of the semantic associated with the ETL
process.

Keywords—conceptual data model, correspondence assertions,
data warehouse, data integration, ETL process, object relational
database.

I. INTRODUCTION

NOWADAYS enterprises have an increasing need to take
decisions as fast and accurate as possible. The com-

petition is very high and who holds reliable and strategic
information in the right moment has the advantage. One way
to achieve such a goal is by making use of data warehousing,
which provides processes and technologies to build integrated
data repositories called Data Warehouses (DWs). The data in
those repositories represents the unified history of an enterprise
at a suitable level of detail to be useful for analysis [1]. The
data warehouse will act as a source for a wide range of appli-
cations such as OLAP (On-Line Analytical Processing), data
mining and other advanced analysis techniques. A simplified
architecture of a DW system is presented in Fig. 1.

Fig. 1. Simplified data warehouse architecture.

In architecture presented in Fig. 1, the data must be
Extracted from different information sources, Transformed
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and integrated to be Loaded (ETL) into the DW. DW data
is then delivered to Data Marts (DM), probably with some
more changes. DMs are subsets of DW data designed to serve
specific demands of a particular group of users. Moreover,
either a DW or a DM should be created and accessed through
metadata that provides detailed documentation for data in the
DW system, such as applied transformations and origin of
data.

The ETL process is the major stage in any DW system.
It deals with the complexity inherent in the multiplicity of
autonomous and heterogeneous data sources, such as where the
data is and which data represents the same concept. Although
important, the ETL tasks are made in an ad hoc fashion, most
of them by different automatic (or semi-automatic) tools while
others are manual. Some of these tools were developed in the
academic world (e.g. ARKTOS tool and IBIS tool), and others
in the market (e.g. Sunopsis and BO) – see [2] for a survey.
However, they either do not deal with conceptual modelling
or they use ad hoc formalism.

Nowadays, these problems are the hardest to deal with
because DWs are growing rapidly in two ways. Firstly, DW
increases in data volume from 20 to 100 terabytes or even
pedabytes [3]. Secondly, DW expands data models complexity
(both in sources and in DW), which implies the rise of the
difficulty of managing and understanding these models [4], [5].
Although there are specialized tools with graphical interface
to do the mapping between the source information and the
DW system, they are mostly procedural. It means that the
knowledge of procedures and policies are hidden in diverse
codes, which are totally dependent on experts and technicians.
These tools focus strongly on data movement, as the models
are only used as a means to this aim.

In an ETL process for building a DW system, it is not
concerned just with mapping between schemata, but also with
an effective data integration that expresses a unified view of
the enterprise. In this context, it is crucial to have a conceptual
reference model [6], [3], [7]. A Reference Model (RM) is an
abstract framework that provides a common semantic that can
be used to guide the development of other models and help
with data consistency [3].

There are, mainly, two approaches to build a DW, the top-
down and the bottom-up. In the top-down approach [1] a DW is
first built followed by DMs. On the other hand, the bottom-up
approach [8] starts with the DMs to get the DW. Nevertheless,
in spite of the seeming differences, “both approaches collect
data from source systems into a single data store (named
data warehouse in the top-down approach and staging area
in the bottom-up one), from which DMs are populated [9].”
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In addition, both strategies need to keep historical information
of component entities and classification entities, as well as
keep information about events that occur in the business
(stored in transaction entities [10]).1 Both approaches, earlier
or later, store this information on a multidimensional form;
moreover, in the top-down approach, the data integration
is done using a normalized model with extentions to keep
historical information. The ETL process is present in both
approaches, although the execution of it differs between the
two strategies. In this research, both approaches are equally
applicable.

In order to consider the growing complexity of source and
DW data models, it is proposed to take a declarative approach,
which is based on making explicit the relationship between
data sources and data warehouse taking into account the
Reference Model, independently of the ETL process involved.
Furthermore, the ETL process itself can use this information.

II. OVERVIEW

The present proposal offers a way to express the existing
data models (source, DW, DM, RM) and the relationship
between them. The approach is based on:

1) Schema language (LS), which is used to describe the
actual data models (source, DW, DM, RM). The formal
framework focuses on an object-relational paradigm,
which includes definitions adopted by the main concepts
of object and relational models as they are widely
accepted in literature – cf. [11], [12].

2) Perspective schema language (LPS) is used to de-
scribe perspective schemata. A perspective schema is
a special kind of schema that describes a data model
(part or whole) (target schema) in terms of other data
models (base schemata). LPS mainly extends LS with
two components: Correspondence Assertions (CAs) and
Matching Functions (MFs). Correspondence Assertions
formally specify the relationship between schema com-
ponents. Matching functions indicate when two data en-
tities represent the same instance of the real world. LPS

includes data transformations, such as names conversion
and data types conversion. When the target schema is
described in the scope of a perspective schema, instead
of just referring an existing schema, the perspective
schema is called view schema.

Fig. 2 illustrates the basic components of the proposed ar-
chitecture and their relationships. The schemata RM, DW, DM,
S1,...,Sn, S’1, S’2 represent, respectively, the reference model,
the data warehouse, a data mart, the source schemata S1,...,Sn,
the view schemata S’1 (a viewpoint of schema S1), and S’2 (an
integrated viewpoint of schemata S2 and S3). The relationship
between the RM and the other schemata is shown through
the perspective schemata Ps′1|RM ,..., Ps′n|RM ,PRM|DW (de-
noted by the solid arrows). Once the perspective schemata
Ps′1|RM ,..., Ps′n|RM ,PRM|DW is declared, a new perspective
schema (Ps′1,s′2,...,s′n|DW ) between the DW schema and the

“Component entities define the details or ’components’ of each business
transaction” while “classification entities represent hierarchies embedded in
the data model, which may be collapsed into component entities [...] [10].”

Fig. 2. Proposed architecture.

source schemata (designed by a dotted arrow) can be deduced.
This inferred perspective schema shows the direct relationship
between the DW and its source information, and can be used
to automatically materialize the ETL process. All schemata
(including the perspective ones) are stored in a metadata
repository.

The remainder of this paper is laid out as follows. Sec-
tions III and IV illustrate, through examples, the proposal
discussed in this paper: Section III shows the languages to
describe schemata and perspective schemata, and Section IV
presents the process of inference. Section V briefly reviews
related work on conceptual models for DWs and for ETL.
The paper ends with Section VI, which points out the new
features of the approach presented here and in ongoing or
planned future work on this topic.

III. SCHEMA LANGUAGES

This Section introduces the languages used to describe the
schemata and perspective schemata.

In the remainder of the paper, consider a simple sales
scenario comprising a data source S1, a reference model
RM, and a data warehouse DW. The schemata are shown in
Fig. 3. S1 and RM include information about sales of products,
being that in ITEM.unitpriceS1

the values are stored in dollars
while in SALE ITEM.unitpriceRM they are stored in euros. DW
contains historical information about customers and products,
as well as summarized information regarding sales. The re-
lation DW.SALE ITEM stores the amount (prodsold amtDW)
and the quantity total (prodsold qtyDW) of each product
(prod id skDW) sold per customer (cust id skDW) and per
sale date (date id skDW). The historical data is kept using
three properties: start date, end date, and current flag.
Start date and end date indicate the historical range of
when each tuple was current. Start date stores the date when
the tuple was inserted into the relation. End date stores
the date when the tuple is no longer current, or the null
value in case it is still current. Current flag store true or
false indicating if the tuple is the current one or not. The
properties prod id skDW, cust id skDW, and date id skDW

are surrogate keys automatically generated by the system.
Though, it is not shown in Fig. 3, all relations have keys and
some of them have foreign keys.
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Fig. 3. Motivating example.

A. Basic Schema Language

The schema language LS is used to describe all actual
schemata (source, DW, RM, and DM) of a DW system. It is
general, flexible and expressive enough to allow the projection
of traditional and non-traditional applications, and so enable
the manipulation of complex data – cf. [4], [13], [5].

This language includes definitions adopted by the main
concepts of object and relational models as they are widely
accepted in literature. Thus, LS includes the notions of type,
typed value, object, tuple, property (in the relational literature,
it is named attribute [14].), class, relation, signature method,
method, key, foreign key, schema, state of a schema, and path
expression. All these concepts are formally defined in [15]
and are not explained here. However, they are close to the
normal definition. Instead of the formal definition, we present
an example to clarify the notation of LS :

Example 1: The relation PRODUCT of the schema S1 presented
in Fig. 3 has the following declaration in LS :

(PRODUCT, {prod idS1:integer, prod nameS1:string})
which is formed by (<relation name>,<relation type>).

B. Perspective Schema Language

The language LPS is used to define perspective schemata. A
perspective schema describes a data model, part or whole (tar-
get schema), in terms of other data models (base schemata).
The language LPS includes new concepts beyond those in
language LS :

• to express the subset of the target schema that will be
necessary in the perspective schema;

• to determine when two objects/tuples are distinct repre-
sentations of the same object in the real-world (named
the instance matching problem);

• to establish the semantic correspondence between
schemata’s components.

The target schema may have much more information than it
is required to represent in a perspective schema, namely when
the target schema is the Reference Model. Hence, it is required
to clearly indicate which elements of the target schema are in
the scope of the perspective schema. This is done in LPS using
‘require’ declarations. For instance, consider the perspective
schema PS1|RM between the schemata RM (the target schema)
and S1 (the base schema) both as presented in Fig. 3. For
this perspective schema, the following relations from RM are
needed:

• require(PRODUCT,{pidRM,pnameRM})
• require(SALE ITEM, {sidRM, pidRM, quantityRM, unit-

priceRM})
• require(SALE, {sidRM, sale dateRM, cidRM})
• require(CUSTOMER, {cidRM, cnameRM, caddressRM})

Note that, for instance, the properties: ptypeRM from
RM.PRODUCT, posted dateRM and discount amtRM

from RM.SALE, and cregion idRM and cphoneRM from
RM.CUSTOMER are not shown as being required.

1) Matching Functions: From a conceptual viewpoint, it is
essential to provide a way to identify instances of different
schemata that represent the same entity in the real-world. The
proposal here is to use matching functions, which can include
various techniques for matching instances, including some of
those used in data cleaning, such as lookup tables, user-defined
functions, heuristics and past matching. These functions, as
occur in [16], define a 1:1 correspondence between the
objects/tuples in families of corresponding classes/relations.
In particular, this work is based on the following matching
function signature:

match : ((S1 [R1] , τ1)× (S2 [R2] , τ2))→ Boolean, (1)

being Si schema names, Ri class/relation names, and τi the
data type of the instances of Ri, for i ∈ {1,2}. When both
arguments are instanced, match verifies whether two instances
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match((S1 [PRODUCT],τ1)×(RM[PRODUCT],τ2))→Boolean
match((RM[PRODUCT],τ2)×(DW[PRODUCT (current flag = true)],τ3))→Boolean

Fig. 4. Examples of matching function signatures.

are semantically equivalent or not. If only one argument is
instanced, e.g. S1.R1, then it obtains the semantically equiv-
alent S2.R2 instance of the given S1.R1 instance, returning
true when it is possible, and false when nothing is found or
when there is more than one instance to match.

In some scenarios one-to-many correspondence between
instances are common, e.g. when historical data is stored in
the DW. In this case, a variant of match should be used, which
has the following form:

match : ((S1 [R1] , τ1)× (S2 [R2 (predicate)] , τ2))→

Boolean. (2)

predicate is a boolean condition that determines the context
in which the instance matching must be applied in S2.R2.

Some examples of matching functions signatures involving
schemata of Fig. 3 are presented in Fig. 4. The implementation
of the matching functions shall be externally provided, since
their code is very close to the application domain.

2) Correspondence Assertions: The semantic
correspondence between schemata’s components is declared
in this proposal through the Correspondence Assertions
(CAs), which are used to formally assert the correspondence
between schema components in a declarative fashion. CAs
are classified in four groups: Property Correspondence
Assertion (PCA), Extension Correspondence Assertion
(ECA), Summation Correspondence Assertion (SCA), and
Aggregation Correspondence Assertion (ACA). Examples of
CAs are shown in Fig. 5 and explained in that Section.

Property CAs relate properties of a target schema to the
properties of base schemata. They allow for dealing with
several kinds of semantic heterogeneity such as: naming
conflict (for instance synonyms and homonyms properties),
data representation conflict (that occurs when similar contents
are represented by different data types), and encoding conflict
(that occurs when similar contents are represented by different
formats of data or unit of measures). Furthermore, it can
declare: i) Boolean conditions where the property’s value
depends on the validation of one (or several) condition(s);
ii) calculations where the value of a property is the result
of a calculation involving two or more properties of a same
instance.

For example, the PCAs ψ1 and ψ3 (see Fig. 5) deal with, re-
spectively, naming conflict and encoding conflict. ψ1 links the
property pidRM of RM.PRODUCT to the property prod idS1

of S1.PRODUCT. ψ3 assigns unitpriceRM of SALE ITEM to
unitpriceS1 of ITEM using the function dollarTOeuro to
convert currencies from dollars (stored in unitpriceS1) to
euros (stored in unitpriceRM ).

The Extension CAs are used to describe which ob-
jects/tuples of a base schema should have a corresponding
semantically equivalent object/tuple in the target schema.
For instance, the relation RM.PRODUCT is linked to relation

S1.PRODUCT through the ECA ψ4 presented in Fig. 5. ψ4 de-
termines that RM.PRODUCT and S1.PRODUCT are equivalent,
i.e., for each tuple of PRODUCT of the schema S1 there is one
semantically equivalent tuple in PRODUCT of the schema RM,
and vice-versa.

There are five different kinds of ECAs: equivalence, selec-
tion, difference, union, and intersection. The ECA of union
is not close to union of sets, rather it indicates a relation
similar to the natural outer-join of the usual relational models.
For instance, consider the view schema Sv with the relation
PRODUCT(code, description, category) which is related to
two relations: PRODUCT in S1 (in Fig. 3), and PROD(code,
description,category) in schema S2 (not presented in any
figure) through the ECA ψ5 shown in Fig. 5. ψ5 determines
that PRODUCT in Sv is the union/join of PRODUCT in S1 and
PROD in S2, i.e., for each tuple of PRODUCT of the schema
S1 there is one semantically equivalent tuple in PRODUCT of
the schema Sv, or for each tuple of PROD of the schema S2

there is one semantically equivalent tuple in PRODUCT of the
schema Sv , and vice-versa.

In an ECA, any relation/class can appear with a selection
condition, which determines the subset of instances of the
class/relation being considered. This kind of ECA is especially
important to the DW because through it the current instances
of the DW can be selected and related to the instances of their
sources (which usually do not have historical data). For exam-
ple, consider the ECA ψ6 presented in Fig. 5. ψ6 determines
that a subset of instances of the relation DW.PRODUCT, whose
value of the property current flagDW is true, is the same as
those instances of the relation RM.PRODUCT.

The Summation CAs are used to describe the summary of
a class/relation whose instances are related to the instances of
another class/relation by breaking them into logical groups that
belong together. There are two kinds of SCAs: groupby and
normalize. Both group instances are based on one or more
properties, but groupby is used to indicate that some type
of aggregate function will be used and normalize is used to
indicate a normalization process. For example, the instances
of the relations DW.SALE ITEM and RM.SALE ITEM are con-
nected through the SCA ψ7 displayed in Fig. 5. ψ7 determines
that DW.SALE ITEM is the grouping of RM.SALE ITEM

based on values of pidRM, RM.SALE ITEM•FK1•cidRM, and
RM.SALE ITEM • FK1• sale dateRM.2 In other words, there
is a tuple in DW.SALE ITEM for each group of tuples
in RM.SALE ITEM that have the same value for product
(pidRM), customer (RM.SALE ITEM•FK1•cidRM) and sale
date (RM.SALE ITEM•FK1•sale dateRM).

In order to exemplify a SCA of normalization,
consider the source schema S2 (not presented in

2RM[SALE ITEM] • FK1 • cidRM and RM[SALE ITEM] • FK1 •

sale dateRM are path expressions, with FK1 being a foreign key of
RM.SALE ITEM that refers to RM.SALE. These paths means that there is a
link through FK1 from which is obtained, respectively, the customer identity
(RM.SALE.cidRM) and the value of sale date (RM.SALE.sale dateRM).
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Property Correspondence Assertions (PCAs):
ψ1: PS1|RM [PRODUCT] • pidRM → S1 [PRODUCT] • prod idS1

ψ2: PRM|DW [PRODUCT] • prod idDW → RM [PRODUCT] • pidRM

ψ3: PS1|RM [SALE ITEM] • unitpriceRM → dollarTOeuro
(

S1 [ITEM] • unitpriceS1

)

Extension Correspondence Assertions (ECAs):
ψ4: PS1|RM [PRODUCT] → S1 [PRODUCT]
ψ5: Sv [PRODUCT] → S1 [PRODUCT] ���� S2 [PROD]
ψ6: PRM|DW [PRODUCT (current flagDW = True)] → RM [PRODUCT]
Summation Correspondence Assertions (SCAs):
ψ7: PRM|DW [SALE ITEM] (prod id skDW, cust id skDW, date id skDW)→groupby (RM [SALE ITEM] (pidRM,

FK1•cidRM,FK1•date id skRM))
ψ8: PS2|RM [PRODUCT] (pidRM)→normalize (S2 [PRODUCT SALES] (product numberS2))
Aggregation Correspondence Assertions (ACA):
ψ9: PRM|DW [SALE ITEM] • prodsold qtyDW → ψ7, sum (RM [SALE ITEM] • quantityRM)
ψ10: PRM|DW [SALE ITEM]•prodsold amtDW→ψ7, sum (RM [SALE ITEM]•quantityRM×RM [SALE ITEM]•unitpriceRM)

Fig. 5. Examples of correspondence assertion.

any figure), which contains a denormalized relation
PRODUCT SALES(product numberS2, productS2,
quantityS2, priceS2, purchase orderS2) and the schema
RM presented in Fig. 3. PRODUCT SALES holds information
about sold items in a purchase order as well as information
logically related to products themselves, which could be in
another relation, occurring in schema RM. The SCA ψ8,
displayed in Fig. 5, determines the relationship between
PRODUCT SALES and RM.PRODUCT when a normalization
process is involved, i.e., it determines that RM.PRODUCT is
a normalization of S2.PRODUCT SALES based on distinct
values of property product numberS2.

This research also deals with denormalizations, which is
defined using path expressions (component of the language
LS).

The Aggregation CAs link properties of the target schema to
the properties of the base schema when a SCA is used. When
the SCA is of groupby, the ACAs may contain aggregation
functions. This proposal only deals with aggregate functions
supported by most of the queries languages, like SQL-99
[14], i.e. summation, maximum, minimum, average and count;
although more complex aggregation is supported in some
object-relational databases – cf. [17].

The ACAs, similar to the PCAs, allow for the description
of several kinds of situations; therefore, the aggregate expres-
sions can be more detailed than simple property references.
Calculations performed can include, for example, ordinary
functions (such as sum or concatenate two or more properties’
values before applying the aggregate function), and Boolean
conditions (e.g. count all male students whose grades are
greater or equal to 10).

Returning to the motivating example, the ACAs ψ9 and ψ10

(displayed in Fig. 5) link the properties of DW.SALE ITEM

and RM.SALE ITEM. ψ9 determines that the value of the
property prodsold qtyDW is the summation of the quantity
of product sold for each customer for each date, being that
the grouping is obtained in ψ9 by ψ7. ψ10 determines that
the value of the property prodsold amtDW is the amount of
product sold for each customer for each date. In ψ10 the
grouping is obtained by ψ7, as occurs in ψ9, and the amount of
product sold is calculated using the formula: price × quantity.

IV. INFERRING NEW PERSPECTIVE SCHEMATA

After the perspective schemata has been defined, the next step
is to infer a new perspective schema, based on all perspective
schemata prior defined (see Fig. 6). This inferred perspective
will connect the DW directly to its sources and can be used
to automatically materialize the ETL process. For example,
consider the perspective schemata PRM|DW and PS1|RM; it
is possible to infer the perspective schema PS1|DW, which
directly connects the DW to the source S1. PS1|DW will have
the same classes, relations, keys, and foreign keys as defined
in original PRM|DW; and new CAs and new match function
signatures will be created.

Fig. 6. Sketch of the creation of an inferred perspective schema.

In this proposal, the deduction of new perspective schemata
are done automatically by the mechanism of inference, which
is a rule-based rewriting system. It is formed by a set of rules
having the general form:

Rule:
A⇒ B

C
(read A is rewritten in B if C is valid) , (3)

being C one or more conditions that should be satisfied.
The inference rules are recursive, since in C can exists

references to other inference rules. There are 39 rules, which
can be divided in rules for rewriting CAs (RR-CAs), rules
for rewriting matching functions (RR-MFs), and rules for
rewriting components that are presents in CAs or in matching
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(a) CAs of the perspective PS1 | DW:
ψ′

1 : PS1|DW [PRODUCT] • prod idDW → S1 [PRODUCT] • prod idS1

ψ′
2 : PS1|DW [PRODUCT (current flagDW = True)] → S1 [PRODUCT]

(b) Process of inference of ψ′1:

ψ2: PRM|DW [PRODUCT] • prod idDW → RM [PRODUCT] • pidRM ⇒
ψ′

1 : PS1|DW [PRODUCT] • prod idDW → S1 [PRODUCT] • prod idS1

——————————————————————————————-
ψ1: PS1|RM [PRODUCT] • pidRM → S1 [PRODUCT] • prod idS1

Fig. 7. Examples of inferred correspondence assertions and a CA-rewriting rule.

function signatures. Based on these rules, the system will
generate all possible CAs to the new perspective as well as all
match function signatures.

1: procedure INFER(PT , P1, ..., Pn, PI )
2: for each CA in PT .caList do
3: find all new CAs that are rewritten from CA using
4: some CA-rewriting rule;
5: add CAs to PI .caList;
6: end for
7: for each MF in PT .mfList do
8: find all new MFs that are rewritten from MF
9: using some MF-rewriting rule;

10: add MFs to PI .mfList
11: end for
12: for each E in classList/relationList/keyList do
13: create a require declaration to PI ;
14: add it, appropriately, to PI .classList/
15: PI .relationList/PI.keyList
16: end for
17: end procedure

Fig. 8. The pseudo-code to the inference mechanism.

A pseudo-code with the essence of the process to generate
a new perspective is shown in Fig. 8. In Fig. 8 PT is a
perspective schema from the reference model to the data
warehouse; Pj , 1 �= j �= n, are perspective schemata from
source schemata to the reference model; and PI is the inferred
perspective schema from source schemata to the data ware-
house. All elements of the perspective schemata are grouped in
lists: classList, relationList, keyList, caList, and mfList.
The three first lists hold require declarations of, respectively,
classes, relations, and keys and foreign keys. caList contains
correspondence assertion declarations, and mfList has match
function signatures.

The inference mechanism can be illustrated more clearly
through the running example. For each CA, originally defined
to PRM|DW (relating elements of the DW to elements of the
RM) will exist a new CA in PS1|DW. Fig. 5 only presents
some CAs of PS1|RM and of PRM|DW. Based on these CAs,
two new CAs can be inferred: ψ′

1
and ψ′

2
shown in Fig. 7(a).

The process to deduce ψ′

1
is presented in Fig. 7(b).

For each match function signature originally defined to
PRM|DW will exists a new match function signature in PS1|DW.
Fig. 4 only presents one match function signature of PRM|DW.
Based on this match function signature and on the ECAs

presented in Fig. 5, a new match function signature can be
created, shown in Fig. 9.

The inference mechanism has been developed as part of a
proof-of-concept prototype using a Prolog language. Beside
this module, the prototype consist of more five modules, such
as the schema manager, and the ISCO translator. The schema
manager module is employed by the designer to manage
the schemata (in language LS) as well as the perspective
schemata (in language LPS). The ISCO translator performs
the mapping between schemata written in LS or LPS lan-
guages to schemata. defined in a language programming called
Information Systems COnstruction language (ISCO) [18].
ISCO is based on a contextual constraint logic programming
that allows the construction of information systems. It can
define (object) relational schemata, represent data, and trans-
parently access data from various heterogeneous sources in a
uniform way, like a mediator system [19]. Thus, it is possible
to access data from information sources using the perspective
schema in ISCO. Furthermore, once the perspective schema
from source schemata to the global schema has been inferred,
as well as the new match functions have been implemented,
it can be translated to ISCO language and so the data of the
global schema can be queried.

Another advantage of the proposed work is that a particular
kind of schema evolution in a DW is transparent (when
changes occur in the source schemata or new ones are added),
since it is enough to automatically generate a new perspective
schema from the source schemata to the data warehouse one.

V. RELATED WORK

This Section addresses related work in the fields of concep-
tual modelling for data warehousing and ETL.

Available literature quotes that the conceptual models for
DW have focused on technical aspects such as multidimen-
sional data models (e.g. [20], [21], [4], [22], [23], [24]) as well
as the materialized view definition and maintenance (e.g. [25]).
In particular, the most conceptual multidimensional models are
extensions to the Entity-Relationship model (e.g. [26], [27],
[28], [29]) or extensions to UML (e.g. [30], [31], [32]). There
are only some works involving conceptual models based on
non-multidimensional aspects [33], [25], [6].

There are various approaches in existence [34], [6], [35]
for dealing with the ETL activities in a conceptual setting. So
far, the authors of this paper are not aware of any research
that precisely deals with mappings (structural and instance)
between the sources and the DW, and with the problem of
semantic heterogeneity in a whole conceptual level.
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match((RM[PRODUCT],τ2)×(DW[PRODUCT (current flag = true)],τ3))→Boolean ⇒
match((S1 [PRODUCT],τ2)×(DW[PRODUCT (current flag = true)],τ3))→Boolean
———————————————————————————————————–
ψ4: PS1|RM [PRODUCT] → S1 [PRODUCT]

Fig. 9. Example of a rule for rewriting a match function signature.

Reference in [6] presented a framework adopted in the Data
Warehouse Quality project. Similar to this study, their proposal
includes a reference model (cited as “enterprise model”)
designed using an Enriched Entity-Relationship (EER) model.
However, unlike the authors’ research, all their schemata, in-
cluding the DW schema, were formed by relational structures,
which were defined as views over the reference model. Their
proposal provided the user with various levels of abstraction:
conceptual, logical, and physical. In their conceptual level,
they introduce the notion of intermodel assertions that pre-
cisely capture the structure of an EER schema or allow for
the specifying of the relationship between diverse schemata.
However, any transformation (e.g. restructuring of schema and
values) or mapping of instances is deferred for the logical
level. In addition, they did not deal with complex data,
integrity constraints, and path expressions, as this research
does.

Reference in [34] proposed a conceptual model for dealing
with inter-relationships of attributes and concepts and with
the ETL activities in the early stages of a DW project. Their
research included a rich graphical notation and dealt with
several kinds of transformation presented in the usual ETL
process, such as surrogate key transformation, checks for
null values, primary key violations, aggregate values and data
conversion. However, they did not mention the matching of
instances, neither did their work have any mechanisms to
verify if the conceptual model was legal or not.

Reference in [35] focuses on an ontology-based approach
to determine the mapping between attributes from the source
schemata and the DW schema, as well as to identify the ETL
transformations required for correctly moving data from source
information to the DW. Their ontology, based on a common
vocabulary as well as a set of data annotations (both provided
by the designer), allows formal and explicit description of the
semantic of the sources and the DW schemata. However, their
strategy requires a deep knowledge of all schemata involved
in the DW system, in what is usually not an usual task. It is
dispensable in the proposal presented by the authors of the
current paper as each schema (source or DW) needs to be
related only to the reference model one. Additionally, in [35]
there is nothing about the matching of instances and their ETL
operations being a subset of transformations treated by us.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a declarative approach to make explicit
the relationship between data sources and the Data Warehouse
(DW), not only at a structural level, but also at an instance
level, independently of the ETL process involved. The ap-
proach considers the use of a Reference Model (RM) and can
be divided in three steps:

1) to describe all source schemata, the DW schema, a Data

Mart (DM) schema, and the (RM) schema, using the
schema language LS.

2) to describe perspective schemata to relate the schemata
declared in step 1, using the perspective schema lan-
guage LPS .

3) to infer a new perspective schema from source schemata
to the DW schema based on all perspective schemata
defined in the step 2.

It has been shown how the actual (DW, DM, RM, sources)
and perspective schemata can be described in the proposed
language and how new perspective can be deduced. This
process was illustrated with some examples. An advantage
to this approach is that it provides designers/users with a
better understanding of the semantic associated with the ETL
process. Moreover, the designers can describe the DW without
concerns about where the sources are or how they are stored. It
is possible because all schemata in the DW system are related
to the RM through the perspective schemata, and based on the
latter, the direct relationship between the DW and its sources
is automatically generated. Moreover, the schema evolution,
when the source schemata changes or new ones are added,
becomes transparent to the DW, due to use of the reference
model and of the inference process.

A prototype Prolog-based has been developed to allow the
description of schemata and perspective schemata in the pro-
posed language as well as to infer new perspective schemata
based on other ones. The matching functions can be imple-
mented using Prolog itself or external functions. In addition,
the prototype include translators from the proposed language
to the ISCO one. ISCO [18] allows access to heterogeneous
data sources and to perform arbitrary computations. Thus,
user-queries can be done, in a transparent way, to access the
information sources, like occurs in mediator systems [19].

A mediator strategy in a data warehouse context is not
appropriate. It is due to particular nature of the DW, which
uses huge data volume and require that user-queries can
be answered quickly and efficiently. Thus, for future work,
investigations will be made into how the perspective schemata
can be used to automate the materialization of the ETL
process. Another important direction for future work is the
development of a graphical user-friend interface to declare the
schemata in the proposed language, and thus, to hide some
syntax details.
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