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Abstract—Discrimination between different classes of environ-
mental sounds is the goal of our work. The use of a sound recog-
nition system can offer concrete potentialities for surveillance and
security applications. The first paper contribution to this research
field is represented by a thorough investigation of the applicability
of state-of-the-art audio features in the domain of environmental
sound recognition. Additionally, a set of novel features obtained by
combining the basic parameters is introduced. The quality of the
features investigated is evaluated by a HMM-based classifier to which
a great interest was done. In fact, we propose to use a Multi-Style
training system based on HMMs:. one recognizer is trained on a
database including different levels of background noises and is used
as a universal recognizer for every environment. In order to enhance
the system robustness by reducing the environmental variability, we
explore different adaptation agorithms including Maximum Like-
lihood Linear Regression (MLLR), Maximum A Posteriori (MAP)
and the MAP/MLLR agorithm that combines MAP and MLLR.
Experimental evaluation shows that a rather good recognition rate
can be reached, even under important noise degradation conditions
when the system is fed by the convenient set of features.

Keywords—Sounds recognition, HMM classifier, Multi-style train-
ing, Environmental Adaptation, Feature combinations.

|. INTRODUCTION

Environmental sounds were described as the sounds which
fill our everyday acoustic environment [1]. The panoply of
environmental sounds is vast, it includes the sounds generated
in domestic, business, and outdoor environments. Recently,
some efforts have been directed towards systems capable of
detecting and classifying environmental sounds [1], [2], [3].
For example, a system able to recognize indoor environmental
sounds can offer concrete potentialities for surveillance and se-
curity applications. Furthermore, these functionalities can also
be used in portable tele-assistive devices, to inform disabled
and elderly persons affected in their hearing capabilities about
relevant environment sounds (warning signals, etc.).

In the field of environmental sound recognition, many previ-
ous works[1], [2], [4], [5] have focused on recognizing single
sound events. Few studies have been reported concerning the
broader task of automatic sound recognition when many sound
classes are considered. Early works in this vein proposed
systems devoted to specific tasks such as sound alerting aid [6],
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considering some classes of stationary signals (bells, phone,
door rings, etc.) and using standard statistical classification
procedures based on spectral and temporal features. Later, new
classifiers were explored using Hidden Markov Models[7] and
Neural Networks [8].

Many other works deal with stationary soundst. An exten-
sive thesis was published by Couvreur [1], including a com-
plete bibliographic review of the statistical sound recognition
domair?.

In [4], the author used various pattern recognition frame-
works® to design noise classification algorithms. In [13], [3]
several audio signal analysis methods was evaluated using
several classifiers and a great interest was devoted to im-
pulsive sound analysis techniques, including traditional time-
frequency transformations, speech-typical coefficients and
psycho-acoustical features.

In [14], the author describes a coherent framework for
understanding the perceptual organization of sounds. This
semina work has stimulated much interest in computational
studies of hearing. Such studies are motivated in part by the
need for practical sound separation systems and sound source
recognition [15], which have many applications including
noise-robust automatic speech recognition [4] and automatic
music transcription [16]. This emerging field has become
known as computational auditory scene analysis (CASA).

Among previous CASA works, we emphasize the emerg-
ing research in [17] in the field of speech and spesker
recognition, which demonstrates that non-stationary (time-
frequency) techniques can be applied to sound classification
and can produce good results. Therefore, in [18], [19], [20]
both stationary frequency-based techniques and non-stationary
time-frequency-based feature extraction techniques were tested
in combination with several common classification techniques®
for their suitability to environmental sound recognition.

Generaly, the developed Automatic Sounds Recognition
(ASR) systems were very sensitive to variations between
training and testing conditions, whether these variations were
related to changes in acoustic environment or incorrect mod-
elling assumptions. Hence, to successfully develop ASR ap-

1For example, ringing sounds classification [9], helicopter noise identifica-
tion [10], and recognition of music instruments [11] or music types [12].

2]t introduces three classifiers for use in separate noise event recognition
(car, truck, airplane etc.).

3such as the Quadratic Gaussian Classifier (QGC), Least-Square Linear
Classifier (LS-LC), Nearest-Neighbor Classifier (NNC), and Decision Tree
Classifier (DTC).

“traditionally used in speech or in musical instrument recognition.
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plications, it is crucial to take into account such discrepancies.
This can be achieved using different kinds of techniques [21]
aiming essentially at finding robust and invariant signal fea-
tures, improving the modelling techniques, modifying recogni-
tion parameters or features using adaptation or compensation
techniques [22], and using robust decision strategies [23].

Various environment-independent (EI) sounds recognition
systems have widely been studied in recent years because they
show good performance on average owing to their capability of
including a wide variety of environment individualities. How-
ever, their performance is till lower than that of well trained
environment-dependent (ED) sounds recognition systems. En-
vironment adaptation technique has been one breakthrough
regarding this problem, and has been applied aongside El
sounds recognition systems.

In this paper, the developed system is intended for the
recognition of limited classes of environmental sounds and is
motivated by a practical surveillance application. That system
which is able to classify a number of different sounds found in
environments typical to daily life seems to be better accepted
by humans than video camera monitoring. This work forms
part of a larger investigation into the integration of sound
surveillance in a monitoring application.

Firstly, we treat the applicability of a range of audio
features in the domain of environmental sound classification.
Therefore, we propose to use a set of dedicated audio features,
composed of several classical ones together with origina
wavelet-based features. The efficiency of this set of audio
features as well as the way they are combined is evaluated and
compared to established, standard features. The performance
of our technique is evaluated on a data set of sounds collected
from the commercial databases [24], [25], which include
sounds ranging from screams to explosions, gun shots or glass
breaks. The quality of the features is examined with the HMM-
based classifier. Moreover, the paper focuses on environment
adaptation of the acoustic Hidden Markov Models [26] by
applying a particular training mode called the Multi-Style train-
ing. The objective of acoustic model adaptation techniques is
to derive a new set of acoustic models from the reference
models given some adaptation data reflecting test acoustic
conditions.

The remainder of this paper is organized as follows. Sec-
tion Il gives an overview of the HMMs-based sound classifier:
pre-processing and baseline classifier. Environmental adapta-
tion of HMMs to real world background noises is presented
in Section 111. Experimental set-up and results are provided in
Section 1V. Section V concludes the paper with a summary
and discussion.

II. AHMM-BASED SOUND CLASSIFIER
A. Notations

Let S be the set of sounds, shared in N classes denoted
Si1,...,Sn. Each class contains m; training sounds and m/,
adaptation sounds, i = 1,...,N. Sound #j in class S, is
denoted s; j, (i = 1,...,N,j = 1,...,m; +m}). Generaly,
the pre-processor converts a recorded acoustic signal s; ; into
atime-localized or a frequency-localized representation. Such

representations are obtained by splitting the signal s; ; into 7; ;
overlapping short frames and computing a vector of features
T4, t = 1,...,T;; with dimension d which characterize
each frame.

B. Pre-processing: Features extraction

The features extraction is an important part of a recognizer.
If the features are ideally good, the type of classification
architecture won’t have much importance. On the apposite, if
the features can't discriminate between the concerned classes,
no classifier will be efficient. Ideally good features should
present the following properties:

« they have to emphasize the differences between classes.

« they have to be robust to noise disturbance, preserving
the class separability as far as possible.

« ahigh correlation between features should be avoided as
much as possible.

In this paper, we consider environmental sounds, thus
features initially designed for speech seem well adapted.
However, environmental sounds may differ significantly from
speech, thus we additionally consider features that take care of
the possible high non-stationarity of the sounds. Thus, the fea-
tures selected include those derived from the Discrete Fourier
Transform (DFT), the Discrete Cosine Transform (DCT) and
the Discrete Wavelet Transform (DWT). The advantage of
DFT and DCT is that a few coefficients suffice to represent
most of the origina signal. However, we note that the DWT
takes the original signals in time/space domain and transforms
them into time/frequency or space/frequency domain, thus
keeping the time variable in a natural way.

1) Time-domain features:

o The Zero-Crossing Rate (ZCR) is defined as the number
of times the sign of a time series s, changes within a
frame. It roughly indicates the frequency that dominated
during that frame. The ZCR is closely related to the
spectral centroid (see below) as they both measure a
unique frequency over aframe. It is defined for the frame
k with the length L as:

L
ZCR(k) = % S [sign(se(r + 1)) — sign(s(r))] ()

« The short-time average energy (referred to as “Energy”
in the following) is the energy of a frame:

Ereray(k) = - 3" sy ()P @
T k
7=0

2) Frequency-domain features:

« The Spectral Centroid (SC) represents the balancing point
of the spectral power distribution. It is calculated as the
average of the frequencies, weighted by the amplitudes.
This is the first moment of the spectrum with respect to
frequency. SC is commonly associated with the measure
of brightness of a sound. The individual centroid of a
spectral frame is defined as:

S iSkli]
SC(k) = ==—02=_——= 3
) Syt Slil ©®
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For the k*" frame, S[i] is the magnitude corresponding
to the i** frequency and N is the length of the Discrete
Fourier Transform (DFT).

The Spectral Roll-off point (SRF) measures the frequency
below which a certain amount of the power spectrum lies.
This feature is related to the spectral skewness and it
changes for sounds with different frequency ranges. It is
calculated by summing up the power spectrum samples
until the desired percentage or threshold (referred to as
TH below) of the total energy is reached. Considering
the DFT of a frame, the SRF is defined as:

I N
SRF (k) = max{I\ Y |Sk(i)|> < TH > |Sk(i)|*}
=0

=0
4
where T H is between 0 and 1. The commonly used value
is 0.93.

localized information about the sound waveform that
standard Fourier analysis cannot capture: Different from
Fourier-based analysis, Wavelet Transforms (WT) use
short duration basis functions to measure the signal high
frequency content and long duration basis functions for
low frequency content (constant-Q analysis) [30].

The WT implements a bank of filters, which are scaled
versions of a prototype filter 1 (¢) given by:

Vra(t) = a*%@b(t—g), ¢ € L? (L? is afinite energy space)

(6)
where parameters 7 and « are called trandation and
scaling parameters respectively. The term ¢~1/2 is used
for energy normalization. The DWT of a signal s can be
obtained as:

D(j, k) =277/2 Zs(z’)wz‘%‘ — k) @

3) Linear Prediction, Perceptual Linear prediction and cep-
stral features. These features are used to describe the spectral
shape of a signal.

o The Mel-Frequency Cepstral Coefficients (MFCCs) are

where 4, j and k are integers. By choosing the scaling
factor as dyadic (27) the resultant transform is known as
dyadic DWT. If the wavelet decomposition is computed

extracted by applying the discrete cosine transform to the
log-energy outputs of mel-scaling filter-bank [27].
Linear Prediction Cepstral Coefficients (LPCCs) are ex-
tracted using the autocorrelation method [28]. Given the
linear predictive coefficientsax, k = 1,..., N, the Linear
Predictive Cepstral Coefficients (LPCCs) are determined
by the following recursive relationship:

¢l = asg,
{ Cp = Z;ll(l — Tkl)ancn_k +an, n=1,...,P

©)
where P < N is the desired number of cepstral coeffi-
cients.
Perceptual Linear Prediction analysis (PLP) is avariation
of theoriginal linear prediction analysis. The main idea of
this technique is to take advantage of three main psycho-
acoustical properties of the human ear for estimating the
audible spectrum, namely: Spectral resolution of the crit-
ical band, Equal-loudness curve and Intensity-loudness
power law. PLP maps the linear prediction spectrum to
the nonlinear frequency scale of the human ear. The
perceptual linear prediction coefficients (PLPCC) are an
extension of the LPCCs.

4) Robust features:
o In its origina formulation, PLPCCs are not robust to

signal distorsion. By employing a RASTA (Relative Spec-
tral) filter [29], PLP analysis becomes more robust to
distortion. The resulting technique is called RASTA_PLP
analysis which consists in a specia filtering of the
different frequency channels of a PLP analyzer. The
RASTA method replaces the conventional critical-band
short-term spectrum in PLP and introduces aless sensitive
spectral estimation. RASTA_PL P makes PLP more robust
to linear spectral distortions.

Wavelet-based features: We propose a new set of wavelet-
based feature vectors, derived from wavelet coefficients.
The wavelet coefficients capture time and freguency

up to a scale 27, the resultant signal representation is not
complete. The lower frequencies corresponding to scales
larger than 27 must also be computed and added. These
lower frequency components can be evaluated by using
the following equation:

A(G k) =273 "s()g (2 7i—k)  (8)
where ¢*(i) is the complex conjugate of the scaling
function ¢(i).

The DWT can be viewed as the process of filtering
the signal using a low pass (scaling) filter and high
pass (wavelet) filter. Thus, the first layer of the DWT
decomposition of a signal splits it into two bands giving
a low pass version and a high pass version of the signal.
The low pass signal gives the approximate representation
of the signal while the high pass filtered signal gives the
details or high frequency variations. The second level
of decomposition is performed on the low pass signa
obtained from the first level of decomposition. Thus
a wavelet decomposition results in a binary tree like
structure which is left recursive (where the left child
usually represents the lower frequency band). For more
information about the Wavelet Transform (WT) and its
implementations, interested readers may refer to [31],
[30].

In practice, features based on standard diding window
Fourier analysis implicitly assume that the analyzed sig-
nal is stationary over each window. However, in the case
of surveillance sound signals, impulsive events are often
met, and the local stationarity assumption is inaccurate.
One could select a short duration window, but this makes
the frequency resolution poor, due to the Heisenberg-
Gabor inequality [32].

By using wavelets, which somehow implements multiple
time resolution analysis, two very short bursts can be
separated in time by going to the high frequencies.
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Therefore, this analysis can be used for the signals which
have short-duration high-frequency components and long-
duration low-frequency components. This is indeed a
property of most impulsive sounds.

5) Feature combinations: In order to approach the perfect
feature set as much as possible, we propose to combine the
above features by including them, or not, into the feature
vector used to perform classification. This optimisation ap-
proach is important essentially in the presence of acoustical
variability due to real world background noises. Thus, a set of
robust features was selected (PLP_RASTA and Wavel et-based
features) for the feature combinations.

Our approach is different from the commonly used feature
selection process which consists of choosing a maximal infor-
mative subset from a given set of features. Statistical methods,
such as the Principal Component Analysis (PCA) [33] that
maximizes the variance among the features, are often applied
for feature selection. Besides, PCA can be used to generate
new features based on existing ones [34]. In this paper, the
proposed method is not dealing with features selection but
with features vectors selection. It consists of evaluating several
features vectors separately and selecting the most performing
ones for use as basis features vectors which are necessary
issued from basic signal processing transforms (such as DFT,
DCT and DWT). Then, to each selected basis vector, another
set of vectors will be added and the performance of the final
features vector (obtained by concatenating the basis and the
added vectors) will be evaluated.

In order to facilitate the study of the composite vec-
tor quality, the basis for the feature combination are only
the individual features issued from cepstral-based transforms
and wavelet-based transforms. This, since, it is noteworthy
that individual temporal-based features (Zero-Crossing Rate
and short-time average energy) and frequency-based features
(Spectral Centroid and Spectral Roll-off point) can not capture
critical information for distinguishing between the different
sounds, and thus they only perform well if used as additive
features.

The research for an optimal solution is achieved by the
following strategy. Starting from a well performing features
vector we add other features that showed to be independent
(i.e. with low redundancy and minimal correlation). Concate-
nating several basis features vectors is also possible. The
composite vector is obtained by concatenating various basis
features representing various representation domains. Features
or groups of features that do not improve retrieval quality are
removed from the combination. Considering severa features
from various representation domains is very important. Time-
based features are extracted from the signal in time domain.
Spectral features are derived after the signal has been trans-
formed using one of the signal processing transforms previ-
oudly described. Whereas, wavelets-based features capture the
time-frequency representation of the signal.

The quality of the vectors with combined features is eval-
uated with the proposed classification technique based on
HMMs with gaussian mixtures.

C. The basdline classifier

The classification of a signal is usualy performed in two
steps. First, a pre-processor employs signal processing tech-
nigues to generate a set of features characterizing the signal to
be classified. These features form a feature vector. A decision
rule is then utilized by the classifier to assign the pattern to a
particular class. During the training phase, the classifier will
learn how to discriminate between the various classes. Then,
unlabelled patterns can be classified by the system during
the test phase. This type of learning is called the supervised
learning.

In our case, for the classification of environmental noise
sources, the class could be screams, explosions, gun shots,
glass breaks, etc. During the supervised training phase, class
labels identifying the elements of a set of training samples are
provided to the system so that it can adjust the parameters
of the classifier to obtain optimum performance according to
the minimization of the error rate criterion [26], [1]. Once the
system has been sufficiently trained for a particular pattern
recognition application, its parameters are "frozen” and the
classifier is put into service.

In the literature [13], many classifier structures and training
methods have been proposed, based on various computational
paradigms such as artificial neural networks, fuzzy logic or
statistics. In this paper, we will only consider the statistical
paradigm, which has been developed with the powerful tools
of statistical decision theory [1]. In the statistical approach, the
feature vectors are modelled by random variables, the training
of the classifier is viewed as a statistical estimation problem,
and the classification itself as a hypotheses testing problem.

In the following, let T = {1, g, ..., An} be the set of N
possible classe labels and assume that the pattern generation
mechanism is state \; with a priory probability, or prior, P();).
For the noise recognition problem, the state of the pattern
generation mechanism J\; is the nature of the noise source
(e.g. screams, glass breaks,...) and P();) is equivalent to the
proportions of events caused by the noise source \;. The
d-dimensional feature vector x is obtained at the output of
the pre-processor. The feature vector takes its values in a d-
dimensional subset Q c R? called features space. To each state
of the pattern generation mechanism \; corresponds a class of
patterns with a class conditional probability density function
(or pdf) p(x \ A;) describing the distribution of the pattern
for that particular state. The goal of pattern recognition is to
decide on the state of the pattern generation mechanism based
on the observation of the realization of the random variables
X. That is, we want a decision rule A assigning a pattern vector
X to class A(x) € A for every possible value of x in €.

A common way to represent a classifier is in terms of a
set of discriminant functions g;(x),i = 1,...,n. The effect
of any decision rule \(x) is to divide the feature space into
n digoint decision regions €, ..., <), separated by decision
surfaces. Thus, the decision rule can be written as:

AX) =N if xeQ, ©

where
QO ={z € Q:gi(z) > g;(x),Vj #i}. (20
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For more details about decision rules see [1].

D. Discussion: Applicability of HMM's to automatic sounds
recognition

All the pre-processing methods convert the original acoustic
signal into a sequence of continuous-valued vectors. Which
dlow, in the training phase, the utilization of continuous
HMM'’s. Many sounds recognition systems presented in the
literature classify a sound event based on its spectral char-
acteristics only. The feature vector used for classification is
computed either over the entire sound event or from a short
frame of the sound signal. In the second case, each short frame
extracted from the sound event is classified independently. The
performance of both methods suffers from the fact that the
temporal evolution of the sound event is not taken into account
whereas this temporal evolution contains features that can help
the classification.

To improve the classification performance, it seemsinterest-
ing to use a classifier exploiting time-frequency information
instead of spectral information only. In fact, features could be
computed and the structure of the sequence of these features
could also be analyzed to classify the sound event as a whole
rather than on a frame by frame basis [1].

In this paper, because of their transient nature, the con-
sidered sounds are well suited to be modelled by Ieft-right
HMM'’s. The structure of a HMM will reflect the structure of
the modelled process. Left-right HMM'’s are particularly well
suited to model transient signals which have a particular tem-
poral signature. They are commonly used in speech processing
to model words. In the context of sounds recognition, left-right
models will be used to model impulsive events such as a glass
breaks or screams. However, ergodic HMM's are well suited
to model stationary signals.

The type of HMM's that will be used must be selected
and their parameters including (number of states, transition
probability matrix structure, etc.) must be chosen. In fact, a
Hidden Markov Model (HMM) consists of a series of states
connected together to form a Markov Chain [26]. These states
can be desired by an emission probability which is typically
a probability density function, and a transition probability
matrix. The transition probability matrix will describe the
likelihood of the next set of input vectors resulting in a match
for the same state or a match in another state.

E. Feature selection procedure

For a sufficiently large training set, it is possible to select
the optimal set by applying an original cross-validation pro-
cedure [35], as described in Algo. 1.

Algo. 1: Optimization procedure for feature combinations

« Step O: Initialization
— Select an initial combination of features
« Step 1: Iterations

— Add or remove one feature from the combination,
resulting in a new set of features
— forp=1,...,P,do

« Fori =1,...,N, randomly split S; in two approxi-
mately equal parts denoted S; and S? respectively.
x Compute the class-conditional pdf's for the sets

{S1,...,5x5}
* For each datum x in {Sf,...,S8%}, compute p(x \
i) for i = 1,..., N and assign x to the class that

verifies Eq. (9).

* Evaluate &,, the number of misclassifications (i.e.,
the number of data assigned to a class they do not
belong to)

— compute the average number of errors £ =

21 /P

I11. ENVIRONMENTAL ADAPTATION OF HMMsS 1O
BACKGROUND NOISES

To design an automatic sounds recognition system adapted
to a new environmenta situation, the class-conditional pdf's
from the library of pre-trained elements need to be adapted to
a new situation. This can be done by the adaptation approach
that describes a transformation function g(.) for each of the
selected classes )\;. The development of a classifier adapted to
a specific background noise can thus be performed as follows.
First, we pick the adequate elements from the library of pre-
trained source types. Then, we modify their pdf's® so that
they are suited to the new environment. If there are N possible
sound sources, each can have its own model of variation g;(x).
Finally, we construct the decision rule based on the modified
pdf’s.

A. Adaptableness of the classifier to different situations

An automatic sounds recognition system may encounter
many different types of sounds and many different mea
surement conditions®. Of course, it is possible to perform a
new training of the classifier each time the background noise
change. But a new training requires new labelled training
samples, which must be provided by a human expert. For
that reason, this solution is not acceptable. On the other
hand, training a classifier for alarge number of environmental
conditions is also theoretically possible, but such training
is not practical”. However, insensitivity to the variations in
observation conditions will often be obtained to the detriment
of its performance on specific cases. In fact, even with good
environment independent (El) systems some environments are
modelled poorly, and it is still the case that environment depen-
dent (ED) systems can give significantly better performance
with sufficient environment-specific training data. Possible
solutions [1] to preserve the performance when environmen-
tal conditions change are adaptable classifiers and adaptive
classifiers. Adaptable classifiers are trained in a particular
situation but can be adapted by the user to a different situ-
ation by 'tuning’ some pre-processor or classifier parameters
without having to retrain the system completely. However,
adaptive classifiers can perform this adaptation automatically

5i.e., their means and covariance matrices for Gaussian models

Sonly real world background noises will be considered in our work

7it would require an enormous amount of training data that represents the
variability of the patterns of all possible classes of sounds
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without the need for external supervision. In this paper, some
algorithms for the conception of an adaptable classifier are
introduced.

B. The multi-style training

Our system uses a Hidden Markov Model (HMM) frame-
work for classifying arange of different sounds. Its originaity
resides in the HMMs training mode which consists in using
both clean and noisy sets [36]. In fact, two training modes
can be defined: either training on clean data only or training
on clean and noisy (multi-condition) data. The advantage of
training on clean data only is the modelling of sounds without
distortion by any type of noise. Such models should be suited
best to represent all available sound information. The highest
performance can be obtained with this type of training in
case of testing on clean data only. But these models contain
no information about possible distortions. One possible solu-
tion is building a library of recognizers for various environ-
mental conditions. The recognizer "closest” to the operating
environmental conditions is then picked out of the library.
Though training a recognizer for every noisy environment is
conceivable, this approach remains time-consuming. Thus a
straightforward way to cope with the environment variability is
to train an El system using the approach of multi-style training.
This is implemented by pooling data from different acoustical
environments, similar to the common strategy for speaker-
independent systems, which is to combine training data from
a number of speakers.

To achieve environment-independence using multi-style
training, data from various acoustical environments will be
necessary. The problem is the number of environments. For
the similar problem of spesker variability, in [37] the au-
thors found that 80 speakers were needed to achieve speaker
independence. It is not clear how many different acoustical
environments would be necessary to provide sufficiently broad
coverage to obtain environment independence.

Moreover, it was shown in [38] that multi-style training
increased the robustness at the expense of sacrificing per-
formance with respect to the case of training and testing
on the same condition. In this paper, we propose a multi-
style training approach: the training database includes different
levels of environmental noises added to the origina signals
(scenes) and the recognizer can be successfully tested in
every noisy environment. Moreover, in order to enhance the
system robustness, the proposed solution uses environmental
adaptation techniques in the multi-condition training system.

C. Adaptation techniques

1) MLLR and Regression Classes: MLLR was originaly
developed for speaker adaptation [39] but can equaly be
applied to situations of environmental mismatch. In MLLR
adaptation an initial set of environment independent models
are adapted to the new environment by transforming the mean
and/or the variance parameters of the models with a set of
linear transforms. The transformations are trained so as to
maximize the likelihood of the adaptation data with the trans-
formed model set. Originally transformations were estimated

only for the mean parameters but recently the approach has
been extended so that the Gaussian variances can also be
updated [40]. In our work, due to computational reasons,
MLLR is only implemented for diagonal covariance, single
stream and continuous density HMMs. The transformation
matrix used to give a new estimate of the adapted mean is
given by

a=0Q¢ (11)

where Q is d x d transformation matrix (d is the dimension
of the data) and ¢ is the mean vector, ¢ = [a1 g ... ag)”.
The transformation matrix 2 is obtained by solving a maxi-
mization problem using the Expectation-Maximization (EM)
technique [41]. This technique is also used to compute the
variance transformation matrix [40].

The adaptation method based of MLLR can be applied in
a very flexible manner, depending on the available amount of
adaptation data. If a small amount of data is available then
a global adaptation transform can be generated and applied
to every Gaussian component in the model set. However, as
more adaptation data becomes available, improved adaptation
is possible by increasing the number of transformations. Each
transformation is now more specific and applied to certain
groupings of Gaussian components. Rather than specifying
static component groupings or classes, a robust and dynamic
method is used for the construction of further transformations
as more adaptation data becomes available. MLLR makes use
of aregression class tree to group the Gaussians in the model
set, so that the set of transformations to be estimated can be
chosen according to the amount and type of adaptation data
that is available. The tying of each transformation across a
number of mixture components makes it possible to adapt
distributions for which there were no observations at all. With
this process al models can be adapted and the adaptation
process is dynamicaly refined when more adaptation data
becomes available.

2) Model Adaptation using MAP: Model adaptation can
also be accomplished using a maximum a posteriori (MAP)
approach [42]. This adaptation process is sometimes referred
to as Bayesian adaptation. MAP adaptation involves the use
of prior knowledge about the model parameter distribution.
Hence, if we know what the parameters of the model are likely
to be (before observing any adaptation data) using the prior
knowledge, we might well be able to make good use of the
limited adaptation data, to obtain a decent MAP estimate. This
type of prior is often termed an informative prior.

For MAP adaptation purposes and in our case, the infor-
mative priors used are the environment independent model
parameters. The update formula for a single stream for state
and a mixture component is

9
—_— 12
at e (12)

T N+te
where ¢ is a weighting of the a priori knowledge to the adap-
tation data, IV is the occupation likelihood of the adaptation
data, « is the environment independent mean and & is the
mean of the observed adaptation data [42].
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3) Model Adaptation using MAP/MLLR: MAP adaptation
is specifically defined at the component level and it requires
more adaptation data to be effective when compared to MLLR.
When larger amounts of adaptation training data become
available, MAP begins to perform better than MLLR, due
to this detailed update of each component. In fact the two
adaptation processes can be combined to improve performance
still further, by using the MLLR transformed means as the
priors for MAP adaptation (by replacing in Eq. (12) with the
transformed mean of Eq. (11)). In this case components that
have a low occupation likelihood in the adaptation data, (and
hence would not change much using MAP alone) have been
adapted using a regression class transform in MLLR.

V. EXPERIMENTAL SET-UP AND EVALUATIONS
A. Database description

The major part of the impulsive sound samples used in
the recognition experiments is taken from different sound
libraries available on the market [24], [25]. Considering several
sound librariesis necessary for building a representative, large,
and sufficiently diversified database. Some particular classes
of sounds have been built or completed with hand-recorded
signas. All signals in the database have a 16 bits resolution
and are sampled at 44100 Hz. In this way, al possible
audio spectrum components can be exploited for recognition
purposes. This point is very important for impulsive sounds,
whose frequency bandwidth can be rather extended, because
of sharp tempora attacks (such as guns and explosions). Fur-
thermore, some considered sounds show an important energy
content in the highest frequencies, as glass breaks for example.

During database construction, great care was devoted to
the selection of the signals. When a rather genera use of
the recognition system is required, some kind of intra-class
diversity in the signal properties should be integrated in the
database. Even if it would be better for a given recognition
system, to be designed for the specific type of encountered
signals, it was decided in this study, to incorporate sufficiently
diverse signals in the same category. As a result, one class
of signals can be composed of very different tempora or
spectral characteristics, amplitude levels, and duration and
time location.

The selected impulsive sounds belong to the classes listed
below. Aswe can see, al categories are typical of surveillance.
The number of considered samples for each sound category is
indicated in Table I.

TABLE |
DATABASE DESCRIPTION

\ Classes [ Train | Adaptation | Test | Total |
human screams 35 12 26 73
explosions 30 11 21 62
glass bresks 40 15 32 88
phone rings 25 11 15 51
door slams 200 33 81 314
dog barks 25 9 21 55
gunshots 150 25 50 225
children voices 40 17 30 87
machines 30 12 18 60

\ Total [ 575 | 145 [ 295 | 1015 |

Furthermore, other non-impulsive classes of sounds (ma-
chines, children voices) are also integrated in the experimen-
tation. Their utilities come on the occasion of robustness eval-
uation. We note that the number of items in each class is de-
liberately not equal, and sometimes very different. Moreover,
explosion and gunshot sounds are very close to each other.
Even for a person, it is sometimes not obvious to discriminate
between them. They are intentionaly differentiated, to test
ability of the system in separating very close classes of sounds.

B. The Environment Independent (El) system

The baseline recognizer is trained using the previously
described database. One real world background noise® is
added to each scene at Signal to Noise Ratios (SNRs) ranged
from -10dB to 30dB. The obtained environmental independent
system is called the baseline recognizer and is trained on more
than 5500 different sounds. In real applications, the El system
will be able to classify various sounds recorded in different
environmental conditions. To make preliminary experimentsin
order to test that system, it is necessary to choose a particular
environment (for example a real world background noise at
SNR=5 dB) and to adapt the El models by adaptation data
which are contaminated by the same noise at the same level.
Later we will demonstrate that the obtained adapted system
performs the baseline recognizer.

C. The adapted system parameters

Our objective is to adapt the current well trained environ-
ment independent models to the characteristics of a particular
environment using a small amount of adaptation data. Thus,
we trained acoustic models on artificially perturbed sounds
material. Experimental evaluation on environmental adaptation
using MAP, MLLR and MAP/MLLR techniques illustrates a
recognition improvement over the baseline system results. We
assume that for MLLR we update the mean and/or the variance
model parameters which are designed in the figure 1 by (m)
and (v). The three algorithms are applied on the database
previously described for supervised adaptation experiments
using various amounts of adaptation data. The smallest set
contains 10 scenes and the largest one contains 156 scenes.
The efficiency of these adaptation formulations is visible in
Fig. 1 (a).

In the experiments, features are computed from al the
samples in each sound. The analysis window is Hamming
with length 25 ms, with 50 % overlap. The feature vectors
are formed with MFCCs. Evauations are obtained using a
HMM-based classifier with 3 hidden states (left-to-right) and
5 Gaussians components in each state (whose parameters are
learnt by 3 iterations in the Baum-Welch algorithm [43], [41]).

As we can see, al the adaptation methods lead to an
important improvement of the recognition accuracy when
compared with the result done by the baseline system (without
adaptation). By using 156 adaptation scenes, the error rate of
the adapted recognizer improves over the baseline system by
more than 30% for rather all the considered algorithms.

8This noise was extracted from the Noisex-92 database and re-sampled at
44100 Hz.
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Fig. 1. (a) Recognition rates (%) by applying different adaptation agorithms for various SNR (dB) values (10 utterances are used), (b) Recognition rates
(%) by applying different adaptation agorithms for various SNR (dB) values (156 utterances are used)

The efficiency of the MAP/MLLR formulation is then
illustrated for a variable amount of adaptation data where an
additional improvement is obtained over the MLLR and MAP
results. For only 50 scenes and in bad operating conditions
(SNR=5 dB) the recognition rate increases from 78.15% to
90.15% (Table I1).

TABLE I
RECOGNITION ACCURACY (%) FOR VARIOUS AMOUNTS OF ADAPTATION
DATA (N) BY USING VARIOUS ADAPTATION METHODS

\ Real world background noise (RSB=5 dB) |
[ N [ MLLR(m) [ MLLR(m&v) | MAP | MAPMLLR(mM&V) ]

10 76 77.23 86.46 73.85
30 84 84.00 88.00 89.23
50 87.08 85.54 88.62 90.15
70 88.31 87.38 89.23 89.95
100 86.77 86.15 86.46 89.23
130 87.69 87.08 87.69 89.54
156 87.08 86.77 86.46 89.54

In order to have a rapid adaptation, many tests are done
using a small amount of adaptation data. Fig. 1 (b) shows
that 10 scenes are sufficient to have good improvement of the
recognition accuracy by applying the MAP agorithm.

D. Results with individual features

We have presented above classification results obtained
when retaining only a feature vector based on MFCCs. Then,
in order to enlight the usefulness of the features presented in
Subsection I1-B we will present here the results done using
the other individual features.

Tab. 11l provides the results obtained by the adaptation
techniques, where the performance rate is computed as the
percentage number of sounds correctly recognized and it is
given by (H/N) x 100%, where H is the number of correct
sounds and N is the total number of sounds to be recognized.

The use of wavelet coefficients is motivated by their abil-
ity to capture important time and frequency features. The

Daubechies wavelets with 4 vanishing moments are used.

RASTA_PLP is an improvement of the traditional PLP
method and consists in a specia filtering of the different
frequency channels of a PLP analyzer. The RASTA method
replaces the conventional critical-band short-term spectrum
in PLP and introduces a less sensitive spectral estimation.
RASTA_PLP makes PLP more robust to linear spectral dis-
tortions.

E. Effects of features combination

In this section, we illustrate that different feature combi-
nations can lead to quite different performance, see Tab. 1V,
where the combinations displayed are obtained by including
incrementally in the combinations other features that are
known to be little correlated with the already selected ones
(feature correlations has been investigated in many previous
works, see [13], [44] for instance). The results for each
combination are evaluated by the HMM-based classifier.

In [44], it is shown that the information of LPC coefficients
is aready captured by the more expressive MFCCs. Our
experiments confirm this conclusion. This is also true for PLP
features. Hence, we do not include LPC and PLP coefficients
in the combination whenever MFCCs are already included. For
highly redundant groups of features we choose only individual
representative components. [13] shows that adding temporal
features can improve the classification performance. Thus, we
added ZCR and the average energy which are one-dimensional
features. ZCR is closely related to the fundamental frequency
of frame. In the case of environmental sounds the fundamental
frequency may be similar for different classes; this is why
ZCR is not suited to classification as a single feature. Due
to the low-dimension of the tested temporal features (ZCR
and the average energy) and the frequency features (SRF and
SC), they fail to represent data information. Nevertheless, these
features may improve retrieval quality in combination with the
preselected basis features (as showed in Subsection 11-B).
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TABLE 1l
EFFECTS OF ADAPTATION (156 ADAPTATION SCENES) USING VARIOUS INDIVIDUAL FEATURES.

Non Adapted System Adapted System
Features Clean Data  Noisy Data MAP MLLR MAP/MLLR
SNR=40dB SNR=5dB SNR=5dB  SNR=5dB SNR=5dB
PLP 91.38 77.08 77.08 83.15 88.23
LPC 91.69 76.77 80.23 83.15 88.54
MFCC 92.9 77.15 84.69 89.02 90.15
DwcC 89.46 70.23 77.08 77.08 78.69
PLP_ RASTA 89.23 78.46 84.69 84.69 84.69
TABLE IV

EFFECTS OF FEATURES COMBINATIONS.

\ Features | Number of features | Recognition Rate (%) |
MFCC + Energy + RF + centroid + ZCR 16 93.73
DWC + MFCC + Energy + log energy + RF + centroid + ZCR 67 93.8
PLP_ RASTA + Energy + RF + centroid + ZCR 16 93.2

In general, combinations involving spectral and time-based
features are useful, since they combine information of the two
complementary domains: while spectral features characterize
the frequency contents, time-based features incorporate tem-
poral information and loudness.

It is clear that some features are not able to discriminate
between the classes successfully when used alone. The DWT
coefficients do not separate wel some classes. This can be
partly explained by the fact that DWT coefficients are mostly
informative for low frequencies, and they tend to neglect high
frequencies. This justifies the use of 12 MFCCs in addition to
DWT coefficients. As can be seen in Tab. |V, this significantly
improves the discrimination ability.

V. CONCLUSION

In this paper, we have addressed the problem of the
automatic recognition of environmental sounds. Since, our
work was motivated by a practical surveillance application,
it was necessary to be able to classify auditory scenes under
important noise degradation conditions.

Thus, it was demonstrated that by adapting the system
models and then, by applying a features combinaison method,
a visible improvement in the discrimination ability of an
automatic sounds recognition system can be showed, even
under important noise degradation conditions.

There are many interesting directions in which to continue
the research. others classifiers can be studied and more re-
search is needed on studying how to select the best features
combinations for each type of classifier.
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