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Abstract—The purpose of this study is mainly to predict collision 

frequency on the horizontal tangents combined with vertical curves 
using artificial neural network methods. The proposed ANN models 
are compared with existing regression models. First, the variables 
that affect collision frequency were investigated. It was found that 
only the annual average daily traffic, section length, access density, 
the rate of vertical curvature, smaller curve radius before and after 
the tangent were statistically significant according to related 
combinations. Second, three statistical models (negative binomial, 
zero inflated Poisson and zero inflated negative binomial) were 
developed using the significant variables for three alignment 
combinations. Third, ANN models are developed by applying the 
same variables for each combination. The results clearly show that 
the ANN models have the lowest mean square error value than those 
of the statistical models. Similarly, the AIC values of the ANN 
models are smaller to those of the regression models for all the 
combinations. Consequently, the ANN models have better statistical 
performances than statistical models for estimating collision 
frequency. The ANN models presented in this paper are 
recommended for evaluating the safety impacts 3D alignment 
elements on horizontal tangents. 
 

Keywords—Collision frequency, horizontal tangent, 3D two-lane 
highway, negative binomial, zero inflated Poisson,  artificial neural 
network.  

I. INTRODUCTION 
HE  policy on highway geometric design plays an 
important role for improving road safety and reducing 

collisions [1]. Collision prediction models for individual 
design elements of highways have been used in the design 
guide of the Transportation Association of Canada [2]. The 
two-lane rural highways have more severe safety problems 
than urban highways [3]. Regression models for estimating 
collision frequency for three-dimensional (3D) alignments on 
two-lane rural highways have been developed for horizontal 
curves and tangents [4, 5].  

Straight-line segments of the roadways which are named 
horizontal tangents can be classified as independent and non-
independent [6]. If the tangent is non-independent, the 
element sequence curve-to-curve, not the interim tangent, 
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controls the safety evaluation process. If the tangent is 
independent, the element sequences curve-to-tangent and 
tangent-to-curve would control the safety evaluation process. 

 To the effect of horizontal tangents on the safety at 
horizontal curves has been examined by a number of 
researchers. Fink et al. [7] found that the effects of approach 
tangent length and approach sight distance were not clear in 
the collision prediction model, but suggested that the adverse 
safety effects of long approach tangent and short approach 
sight distance become more pronounced on sharp curves. 
Brenac [8], based on a review research work in European, 
described the tangent length as an external factor to the safety 
on horizontal curves. The results showed that the collision rate 
on horizontal curves increases when the radius decreases and 
the length of the straight alignment (or the curve with radius 
greater than 1000 m) that precedes the horizontal curve 
increases.   

A thorough literature review of the safety effect of grade by 
Hauer [9] showed that the results were inconsistent as to the 
effect of grade on collision frequency, while other studies 
found that grades under 6% have relatively little effect on the 
collision rate, and that collision rate increases sharply on 
grades of more than 6%. For combined horizontal and vertical 
alignments, some research has been conducted on the safety 
effect of their coordination and interaction, mainly focusing 
on the combination of curvature and grade [10, 11]. Easa and 
Mehmood [12] have developed an optimization model based 
on substantive safety for horizontal alignments on flat terrain. 
The model has used collision prediction models for horizontal 
curves and tangents, and the authors have stressed the need for 
developing collision prediction models for 3D alignments. 
Previous studies on tangents have focused more on their 
influences on horizontal curves that follow them. Little work 
has been done on the effects of the horizontal curves before 
and after the tangent [5].  

The data used for developing the collision models for 
horizontal tangents on 3D alignments were prepared by You 
and Easa [4]. The data were obtained from the Highway 
Safety Information System (HSIS) which includes many 
variables related to collision frequency, roadway, traffic 
volume, and 3D alignment. Four years of data (2002 − 2005) 
on about 5,760 km (3,600 miles) of rural two-lane highways 
with legal speed limits in the range 88 − 104.6 km/h (55 – 65 
mi/h) were analyzed in this study. The reader is referred to [4, 
5] for more details on the data collection process. 
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II. PREPARATION OF COMBINATIONS AND 
VARIABLES 

The method of data preparation is described in [5]. Each 
roadway route was subdivided into road sections with 
individual horizontal tangents, in which the vertical curves 
were determined and thus the combination types of horizontal 
tangents and vertical curves. This method allows exploring the 
interaction of combined horizontal tangent and vertical 
alignments. A roadway route was divided into sections with 
specific combinations of horizontal tangents and vertical 
alignment in that year when the data were collected. The same 
road section was considered in a different observation year as 
a separate road section. This process allows the year-to-year 
changes on highway geometric design and traffic conditions to 
be considered in the model. 

Three combinations of horizontal tangents and vertical 
curves were selected, as shown in Table 1. The determination 
of these combination types, however, is not always 
straightforward because horizontal and vertical curves may 
overlap. This is described in Figure 1. Cases a and d involve 
situations where a horizontal tangent fully overlaps with a 
vertical curve or vice versa. Cases b and c involves partial 
overlapping, with only vertical point of curvature or vertical 
point of tangency lying on the horizontal tangent, respectively. 
For horizontal tangent on crest vertical curve, it was found 
that only the natural logarithm of AADT, section length L, and 
access density AD were statistically significant. All 
characteristics of the crest vertical curve (e.g. rate of vertical 
curvature) were not found to be significant. The smaller 
radius, ratio of larger radius to smaller radius, and the binary 
variable for the turning direction of the horizontal curves that 
precede and follow the tangent were insignificant. The cross-
section variables were not detected as significant variables. 
This result was attributed to the small number of observations. 

 
TABLE I COMBINATION OF HORIZONTAL TANGENTS AND VERTICAL CURVES 

Combination 
Number Combination Type Variables 

1 
Horizontal Tangents 

Combined with 
Crest Vertical Curve 

AADT, L, AD 

2 
Horizontal Tangents 

Combined with 
Sag Vertical Curve 

AADT, L, K, AD 

3 

Horizontal Tangents 
Combined with 

Multiple Vertical 
Curves 

AADT, L, K, W, AD, 
R 

 
For horizontal tangent on sag vertical curve, the rate of 

vertical curvature K was found to be statistically significant in 
explaining the variability in collisions in addition to access 
density and the nature logarithm of AADT and section length. 
However, by examining their chi-square values in the NB 
model, the contribution for the rate of vertical curvature K was 

very small (χ2 = 246, 132, 5, and 13 for log (AADT), log (L), 
K, and access density AD, respectively). The smaller radius, 
ratio of larger radius to smaller radius, and the binary variable 
for the turning direction of the horizontal curves that precede 
and follow the tangent were not found to be significant. The 
cross-section variables were not found to be significant, either. 
 

 
 
Fig. 1. Classification of horizontal tangents combined with vertical 
curves [5] 
 

The results for horizontal tangent on multiple vertical 
curves showed that the rate of vertical curvature, total 
roadway width, access density, smaller curve radius before 
and after the tangent, and the nature log of AADT and section 
length were statistically significant variables. However, the 
contributions of the rate of vertical curvature K, total roadway 
width W, access density AD, and smaller curve radius R 
before and after the tangent were relatively small as 
determined by their chi-square values in the NB model (χ2 = 
1142, 1621, 4, 6, 37, and 10 for log (AADT), log (L), K, W, 
AD, and R, respectively). The negative sign of the estimated 
coefficient for the smaller radius R before and after the 
tangent suggests that as the smaller radius increases, collision 
frequency decreases. 
 

III.  FORMATION OF STATISTICAL MODELS 

The statistical models were estimated by You and Easa [5]. 
The variables which are related to vertical curves, grades, 
horizontal tangent, and cross-section, were used. The variables 
that contribute to collision occurrence on horizontal tangents 
are related to the horizontal curves before and after the 
tangents and the vertical alignment that overlaps with them. 
During the process of developing the collision prediction 
models, potential influencing factors that may affect collision 
frequency were considered in the analysis. Subsequently, a 
preliminary investigation to determine the best statistical 
technique (Poisson, NB, ZIP, or ZINB) for each alignment 
combination was conducted. The final models for horizontal 
tangents combined with vertical curves were selected.  

The SAS statistical package [13] was used to estimate all 
models. The models were estimated using the generalized 
linear model (GLM). Four statistical modeling techniques 
were applied for each of the three combinations. The Poisson 
model was first estimated to identify the independent 
variables. The Lagrange multiplier and Wald tests were 
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conducted to test the overdispersion of the data. The NB, ZIP, 
and ZINB models were then examined. In determining 
whether the zero-inflated model (ZIP or ZINB) provides an 
improvement over the traditional Poisson or NB model, the 
Vuong-statistic test [14] was carried out for the ZIP versus the 
Poisson, the ZINB versus the NB, and the ZIP versus the NB. 
If this statistic does not favour any model, the model with the 
smallest value of the Akaike Information Criterion (AIC) was 
selected. 

A horizontal tangent combined with vertical curves has 
three possible situations, which correspond to Combination 1-
3 in Table 1. Collision occurrences on the highways are 
usually sporadic events, which are represented with no 
reported collisions for most of the road sections. For example, 
a total of 6,619 sections of horizontal tangent combined with 
multiple vertical curves were obtained. It is worth noting that 
69.6% of the horizontal tangents experienced zero collisions. 
The zero-inflated regression models (ZIP and ZINB) have 
been widely employed to model collision counts with typical 
excess zeros due to their improved statistical fit in comparison 
with the Poisson and NB models [15]. Four statistical 
modeling techniques (Poisson, NB, ZIP, and ZINB) were 
therefore explored to fit the actual data distributions. The final 
three models that have the lower AIC value are then selected 
for combination 1-3 as follows [5] 
 
Y = AADT0.8434 L0.8936 exp(−7.1290 + 0.0569 AD)                                                                                                       
                                                                                               (1) 
 
Y = AADT0.8769 L0.7464 exp( −7.1503 − 0.00032 K + 0.06446 
AD )                                                                               (2) 
  
Y = AADT0.8701 L0.9154 exp(−6.7907 − 0.00008 K − 0.01218 W 
+ 0.06782 AD − 0.00003 R )                                      (3) 
 
where Y = expected collision frequency on the road section 
(number of collisions per year), AADT = annual average daily 
traffic (veh/day), L = length of horizontal tangent (mi), K = 
rate of vertical curvature (ft per %), W = total roadway width 
(ft), AD = access density (number of driveways per mile), and 
R = smaller curve radius before and after the horizontal 
tangent (ft). Table 2 shows the Voung test and AIC values of 
Eqs. 1-3. 
 

TABLE II RESULTS OF STATISTICAL MODELS FOR ALL COMBINATIONS 

 Combination 1 
(NB) 

Combination 2 
(ZIP) 

Combination 3 
(ZINB) 

Voung 
Test -1.42 1.81 1.43 

AIC 1965.2 2211.2 10470 

 
The results of the three separate models developed for 

horizontal tangents combined with vertical curves show that 
vertical curves (sag or multiple curves) have a significant 
effect on collision occurrence on horizontal tangents, as 

indicated by the rate of vertical curvature. The effect of crest 
vertical curves was found to be insignificant.  

Sight distance on the independent tangent sections, which is 
affected by only the vertical curves, was analyzed. It was 
found that sight distance and K were highly correlated which 
is expected as sight distance equals the product of A and K, 
where A is algebraic difference in grade. Therefore, only the K 
variable was included in the models. In most tangent 
combinations, the results showed that collision frequency 
decreases as the total roadway width increases, consistent with 
the results of previous studies for horizontal curves. In 
addition, the access density was found to be a significant 
variable that adversely affects road safety as the access density 
increases. 
 

IV. ARTIFICIAL NEURAL NETWORK  

ANN has been successfully applied in a number of diverse 
fields including transportation engineering prediction models. 
The traffic systems’ excessive variables and their complex 
character make it difficult to predict the results. The actual 
components of traffic predictive ability may be enhanced 
through the use of ANN analysis that is able to examine 
nonlinear interactions among variables. The ANN method, 
which enables the prediction of complex relationships and has 
many successes in this regard, is superior to the statistical 
methods. Recent research indicates that even though the 
statistical methods are useful in understanding the 
characteristic of raw data, they are not as successful as ANN 
method in the prediction problems.  In addition, in ANN 
method there is no need to have any pre-assumption in their 
formation. This property makes the ANN method very useful 
in many engineering applications. 

The ANN method has a few troublesome conditions in 
addition to its advantages. First, the ANN model works like a 
black box. That is, while the ANN model is trained the effects 
of the variables are not known explicitly. Hence even 
unidentified relationships exist in the model. The other 
disadvantage is that while the ANN model is trained there 
exists a state of memorizing instead of learning. Even if the 
performance of the training data is very well, the results of the 
test data may not be suitable, including adjustment of itself to 
the training data and decreasing the error rate to small 
numbers. To avoid these problems, one must arrange the 
training, validation, and test data appropriately and maintain 
the epoch number’s magnitude at a reasonable level.  

The ANN model consists of artificial neurons that are 
related functionally. Artificial neurons are like simple 
mathematical expressions of biological neurons. The neurons 
are the centers of the mathematical operations of the ANN 
model. A good illustration that helps understand this structure 
is shown in Figure 2. 
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Fig. 2. An artificial neuron 

 
The basic relationships of the ANN mode are given by 
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where n = transfer function’s input, R = number of inputs, w = 
weights, p = neuron’s inputs, b = bias value, a = artificial 
neuron’s output, and f = transfer function.  

Neurons are related to each other by their weights. These 
weights are determined by training and contain the dataset’s 
characteristic. As shown in Eq. 4, p input values are 
multiplied by their weights, added respectively, and the bias 
value is added. Thus, the first part of the artificial neuron’s n 
value is obtained. Afterwards the n value is used in the 
transfer function and a value, which is artificial neuron’s 
output, is achieved (Eq. 5). 

Neurons constitute the layers that have small neuron groups 
before they form the ANN model. Namely, the ANN model 
consists of layers and the layers consist of neurons. The 
hidden layers exist between those layers in which there are 
enough neurons. There is no relationship between the neurons 
of the same layers. The input layer admits the new data and 
delivers them to all neurons of the other layers. The neurons 
are related with the weights between the preceding and the 
following layers. The data of the input layer are processed by 
mathematical operations in the hidden layers. Here the number 
of hidden layers and the number of neurons in the layers can 
be increased according to the complexity of the problem. The 
output layer takes the processed data that come from the 
hidden layers and produces as output the whole ANN 
network.  

ANN method is an artificial intelligence technique because 
of its ability of training. The model is trained by the training 
set after determining the structural properties of the ANN 
model. The trained model is tested by the testing set. Thus, it 
can be understood that either the model is trained well 
(predicts the testing set accurately) or it memorizes the 
process (the performance of the model for testing set is not 
acceptable). During the training process the weights between 
the neurons are arranged for the purpose of their input and 
output values. The epoch number, which expresses the 
number of applications of the training data to the model, 
continuously changes its own value and each data’s 

application within it to decrease the errors. The weights 
change till reaching the determined error value, epoch number 
or validation fail. The training process occurs by gradually 
altering the weights. After the training process, the model is 
tested and the training and test performance is evaluated. The 
formula presented in Eq. 6 was used for MSE calculation. 
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where MSE = mean square error, y = real or observed value, ŷ 
= predicted value of the model, and h = number of data points. 
     
V. DEVELOPING OF THE ANN MODELS TO ESTIMATE 

COLLISION FREQUENCY 

Collision frequency is estimated in this study based on 
supervised neural networks. It uses the multi-layer feed-
forward networks which are applied frequently in ANN 
models. The estimated ANN models, as shown in Figure 3, 
have an input layer, a hidden layer, and an output layer. It is 
enough to have one general hidden layer to solve complex 
problems [16, 17]. In this study, only one hidden layer was 
considered enough to predict collision frequency. To 
determine the best ANN architecture to predict the collision 
frequency, different ANN models were constructed, trained, 
and tested. When constructing the ANN model, the number of 
neuron in the hidden layer was changed from 1 to 25 and the 
training algorithms were changed. Popular training algorithms 
of the Matlab program are chosen for the training of the 
models. They are Gradient Descent, Gradient Descent 
Moment, and Levenberg-Marquardth (LM) training 
algorithms [18]. The Purelin, logsig, and Tansig functions of 
the Matlab program is used for the transfer function of the 
neurons. This function has a linear character, whereas the tan-
sig and log-sig transfer functions show an S-shaped curve 
character. Each time, a new ANN model was obtained and its 
performance was compared according to the MSE value. The 
ANN model that has the lowest MSE was selected for the 
prediction of collision frequency.   
 

 
 

Fig. 3. A feed forward neural network 
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A. Horizontal Tangent Combined with Crest Vertical Curve 
To obtain the best ANN model, in which the annual average 

daily traffic, length of horizontal tangent, access density are 
used as input and the collision frequency on a horizontal 
tangent combined with a crest vertical curve as output, many 
different models were formed as shown in Figure 3. These 
models have different transfer functions, are trained by 
different training algorithms, and have different number of 
neurons in their hidden layers. It is observed that the best 
ANN model has 9 neurons in its hidden layer and is used in 
the LM training algorithm and the Tansig transfer function. 

Figure 4 shows the MSE of the ANN model which depends 
on the epoch number for the training, validation, and test data 
sets. The best line shown in Figure 4 illustrates the start point 
of the overfitting. In this study, with the aid of the maximum 
validation failure criterion, the training process of the ANN 
model was terminated. In the Matlab, it was accepted that 
when the MSE values of the training and validation data sets 
are decreasing simultaneously, this shows that the learning 
process continues. However, when the MSE values of the 
training data set continues to decrease while the MSE values 
of the validation data set tend to increase, the training process 
may be stopped. The training also stopped when the validation 
error continues to increase for six iterations.  

As shown in Figures 4 and 5, the training stopped at 
iteration 20. The best validation performance occurs by 
iteration 14. Figure 4 also shows that the results are 
reasonable because of the following considerations: the final 
MSE is small, the test and validation data set errors have 
similar characteristics, and no significant overfitting has 
occurred by iteration 14. Also changing the gradient and mu at 
the training process is seen in Figure 5. The gradient value 
changed between 0.0039 and 114.2843. The value of mu 
changed between 0.0001 and 1.0. 
 

 
Fig. 4. Variation of MSE value of training, validation, and test 
datasets during the training process of ANN for Combination 1 
 

 
Fig. 5. Variation of parameters during the training process of ANN 
for Combination 1 
 
Building Explicit Formulation based on ANN model. By using 
optimum weights and bias of ANN model explicit 
mathematical formulation can be obtained. The transfer 
functions in the hidden and output layers must also be 
considered in the explicit mathematical formulation [19]. 
Taking the annual average daily traffic, length of horizontal 
tangent, access density, as independent parameters into 
account, the collision frequency can functionally be expressed 
as follows: 
 

CF = f(AADT, L, AD)                (7) 
 
where CF = collision frequency. To derive an explicit ANN-
based formulation for the collision frequency as a function of 
the input parameters, weights and biases of the trained ANN 
model were used to extract an explicit expression. This 
expression is given by 
 

 
                                                 (Combination 1)                   (8) 

 
where T = transpose, Purelin stands for Purelin transfer 
function, n = input of the transfer function, and Tansig stands 
for tangent sigmoid transfer function which is given by   
 

1
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It should be noted that all of the numeric variables were 
normalized to a range of [-1, 1] before being introduced in the 
ANN model using the following equation 

 

min
minmax

minminmax

)(
)()( y

xx
xxyyy +

−
−−

=      (10)                           

 
where y = normalized value, ymax = maximum value of 
normalized values (+1), ymin = minimum value of normalized 
values (-1), x = value of variable, xmin = minimum value of 
variable values, and xmax = maximum value of the variable 
values. The minimum and maximum values of each variable 
are given in Table 3. 
 

TABLE III RANGE OF THE VARIABLES FOR COMBINATION 1 

Variable Min Max 

Collision Frequency 0 7 

Annual Average Daily  Traffic 175 23352 

Length of Horizontal Tangent 0.01 5.46 

Access Density 0 25 

 
B. Horizontal Tangents Combined with Sag Vertical Curve 

To predicted collision frequency on horizontal tangents 
combined with sag vertical curve, similar models ANN 
models were formed. In this case, the best ANN model has 5 
neurons, LM training algorithm, 12 epoch numbers, tan-sig 
transfer function in hidden layer and Purelin transfer function 
in output layer.  Figure 6 shows the changing of gradient, mu 
and validation failure of the training set according to the 
epoch number. The gradient value changed between 0.0126 
and 16.63. The value of mu increased from 0.001 to 1.0. 
Because the validation failure occurred at the iteration 18, the 
training process stopped and no significant overfitting has 
occurred by iteration 12 where the best validation 
performance occurs.  

Figure 7 presents the MSE performance for the training, 
validation, and test datasets between the ANN output and 
target values according to the epoch number. As noted, the 
MSE are very close and they have the same characteristics. 
MSE consistency among the three datasets is a good evidence 
of how the ANN model is well trained. The explicit neural 
network formulations for the collision frequency derived from 
the proposed ANN model can be expressed as follows 

 

 
                                                  (Combination 2)                 (11) 

                                                                                           

where K = rate of vertical curvature. It should be noted that all 
of the numeric variables were normalized to a range of [-1, 1] 
using Eq. 10 before being introduced the ANN model using 
values listed in  Table 4.   
 

 
 
Fig. 6. Variation of parameters during the training process of ANN 
for Combination 2 
 

 
Fig. 7. Variation of MSE value of train, validation and test data set at 
training process of ANN for Combination 2 
 
 

TABLE IV RANGE OF THE VARIABLES FOR COMBINATION 2 

Variable Min Max 

Collision Frequency 0 5 

Annual Average Daily Traffic 175 29474 

Length of Horizontal Tangent 0.01 2.13 

Rate of Vertical Curvature 33.445 5000 

Access Density 0 25 
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C. Horizontal Tangents Combined with Multiple Vertical 
Curves 

The best ANN model for horizontal tangents combined with 
multiple vertical curves was developed in a similar manner.  
The best ANN model has 10 neurons, LM training algorithm, 
7 epoch numbers, tan-sig transfer function in hidden layer and 
Purelin transfer function in output layer, is obtained.  

Figure 8 shows the gradient change, mu and validation 
failure of the training set according to the epoch number. The 
gradient value changed between 0.0515 and 51.5598. The 
value of mu increased from 0.001 to 1.0. Because the 
validation failure occurred at iteration 12, the training process 
stopped and no significant overfitting has occurred by 
iteration 7 where the best validation performance occurs. MSE 
performance of the training, validation and test sets is shown 
in Figure 9. The MSE values are very close. In addition, the 
MSE consistency among the three data sets is a good evidence 
of how the ANN model was well trained. 
 

 
Fig. 8. Variation of parameters during the training process of ANN 
for Combination 3 
 

 
Fig. 9. Variation of MSE value of the training, validation, and test 
datasets during the training process of ANN for Combination 3 

Similar to the previous two combinations, for Combination 3 
an ANN based equation is developed by using the optimum 
weights, bias and transfer functions of the ANN model. The 
explicit neural network formulations for the collision 
frequency derived from the proposed ANN model is given by 
 
 

 
                                                         (Combination 3)           (12) 

 
where W = total roadway width and R = smaller curve radius. 
Similar to the previous combinations, Eq. 10 was used to 
normalize the numeric variables to the range [-1, 1]. Table 5 
shows the minimum and maximum values of the variables of 
combination 3.   
 

TABLE V RANGE OF THE VARIABLES FOR COMBINATION 3 

Variable Min Max 

Collision Frequency 0 14 

Annual Average Daily Traffic 122 26359 

Length of Horizontal Tangent 0.05 16.37 

Rate of Vertical Curvature 32.347 12661 

Total roadway width 23 47.547 

Access Density 0 17.647 
Smaller Curve Radius 
Before or after horizontal tangent 225 50000 

 
VI. COMPARISON OF REGRESSION AND ANN MODELS  

The results of the ANN models were compared with those 
of the regression models using MSE criteria. The comparisons 
for the three combinations are shown in Table 6. As noted, the 
statistical performances of the ANN models are better than 
those of the regression models for estimating collision 
frequency. It is clear that the ANN models have the lowest 
mean square error values than those of the other models. 
Consequently, the ANN models have better prediction 
capability than those of the statistical models in predicting 
collision frequency on horizontal tangents combined with 
vertical curves. 
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TABLE VI  STATISTICAL COMPARISON OF PERFORMANCE OF THE REGRESSION 
AND ANN MODELS FOR ALL COMBINATIONS 

 MSE 
ANN Regression 

Combination 1  0.207 0.210a 

Combination 2 0.245 0.268b 

Combination 3 0.687 0.712c 

 a NB model.  b ZIP model.  c ZINB model 
 

VII. APPLICATION EXAMPLES 
To demonstrate how the proposed explicit ANN equations 

can be applied, three examples, one for each of the three 
alignment combinations, are presented.  

A. Example 1: Horizontal Tangent Combined with Crest 
Vertical Curve 

The variables of the Combination 1 are AADT, L, and AD. 
For the CF, the initial values of variables were used as AADT 
= 4566, L = 0.17, and AD = 5.88. To input the parameters in 
Eq. 8, initial values of those parameters must first be 
normalized using Eq. 10 and the maximum and minimum 
values which were given in Table 3. The normalized values 
are as follows AADT = -0.621, L = -0.941, and AD = 0.529. 
These normalized values are the values of input parameters 
that must be used in Eq. 8. After that, the input layer values 
(the preceding normalized values) are multiplied by the 
weights between the input and hidden layers, which are given 
by the first matrix in Eq. 8. This yields the first column of 
Table 4 which is a vector. Then the bias vector of the hidden 
layer (third matrix of Eq. 8) is added, giving the second 
column of Table 7 which is a vector and its transpose is 
obtained. This matrix is then input to the Tansig transfer 
function (Eq. 9) which gives a vector as shown in the third 
column of Table 7.   
 

TABLE VII COMBINATION 1 IMPLEMENTATION PROCESS VALUES 

First Step Second Step Third Step 
-3.244 -0.321 -0.310 

-4.965 13.082 1.000 

18.106 1.963 0.961 

2.257 -6.316 -1.000 

5.682 -1.931 -0.959 

5.380 2.415 0.984 

-0.109 1.572 0.917 

6.286 20.913 1.000 

2.954 1.907 0.957 

 
The resulting vector is multiplied by the weights matrix 

between the hidden and output layers (fourth matrix of Eq. 8). 
This multiplication gives a value of -10.134. After that the last 
bias value (9.282) is added and a value of -0.852 is obtained. 
Finally, the obtained value is applied to the Pureline transfer 
function and a value of -0.852 is obtained. This value is the 

predicted normalized CF. The exact value of CF is obtained 
using the normalized equation (Eq.10). Note that -0.852 is the 
normalized value and the aim is to obtain the exact CF value, 
so an inverse process of the normalization must be applied. 
After this process, a value of 0.519 for CF is obtained for 
Combination 1.  

 

B. Example 2: Horizontal Tangent Combined with Sag 
Vertical Curve 

For Combination 2, AADT = 6692, L = 0.5, K = 373.832, 
and AD = 4 were selected as the initial values of the variables. 
These initial values were normalized using Eq. 10 and the 
maximum and minimum values shown in Table 4. The 
normalized values are calculated as AADT = -0.555, L = -
0.538, K = -0.863, and AD = 0.680. These values are 
multiplied by the weights matrix which is the first matrix in 
the Eq. 11. This multiplication yields the first column of Table 
8 which is a vector. The bias vector of the hidden layer (third 
matrix in Eq. 11) is then added. The obtained vector is the 
second column of Table 8 and its transpose is then obtained. 
The values of the matrix are transferred by the Tansig transfer 
function (Eq. 9) and a vector is obtained and its values are 
shown in third column of Table 8.   
 

TABLE VIII COMBINATION 2 IMPLEMENTATION PROCESS VALUES 

First Step Second Step Third Step 
1.266 0.150 0.149 

-0.054 -2.965 -0.995 

-0.753 -0.380 -0.363 

-3.023 -1.603 -0.922 

-1.629 0.112 0.111 

 
Then this vector is multiplied by the fourth matrix of Eq. 

11, which represents the weights between the hidden and 
output layers, giving a value of 0.532. The last bias value (-
1.243) is then added and a value of -0.711 is obtained. Finally, 
applying the Pureline transfer function gives a value of -
0.711. The inverse normalization process results in CF = 
0.722 for Combination 2.  

C. Example 3: Horizontal Tangent Combined with Multiple 
Vertical Curve 

For this example (Combination 3), the initial values of 
AADT, L, K, W, AD, and R were used as 23829, 0.5, 349.784, 
40, 2, and 2865, respectively. Using Eq. 10 and the values in 
Table 5, the initial values of these variables were normalized, 
giving AADT = 0.807, L = -0.945, K = -0.950, W = 0.385, AD 
= -0.773, and R = 0.894. These normalized values were used 
in Eq. 12.  

The input layer values are multiplied by the weights 
between the input and hidden layers, which is the first matrix 
in Eq. 12. The values demonstrating the first column of Table 
5 are obtained as a vector. Then the bias vector of the hidden 
layer (third matrix in Eq. 12) is added and the second column 
of Table 9 is obtained as a vector. This vector is transposed. 
Then, the matrix is input to the Tansig transfer function (Eq. 
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9) to obtain a vector. The values of this vector are the third 
column of Table 9.   

 
TABLE IX RESULTS OF SOME STEPS OF COMBINATION 3 

First Step Second Step Third Step 
-0.743 0.693 0.600 

-2.316 -0.735 -0.626 

-3.175 -2.212 -0.976 

-2.755 -0.368 -0.352 

6.932 6.569 1.000 

-0.659 1.944 0.960 

0.482 2.577 0.989 

0.742 0.329 0.318 

-3.951 -5.633 -1.000 

-2.943 -6.259 -1.000 

 
This vector is multiplied by the weights matrix between the 

hidden and output layers (fourth matrix of Eq. 12), yielding -
0.638. The output bias value of -1.243 was then added giving 
-0.727. This value is applied to the Pureline transfer function 
and a value of -0.727 is obtained. Then using the inversion 
process, the predicted normalized value of CF is obtained as 
1.912 for Combination 3.  

VIII.  CONCLUSIONS   
This study has explored the safety effects of horizontal 

tangents combined with vertical curves using neural network 
models. The collision prediction models were established   
using artificial neural network for these horizontal tangents 
and were compared with the existing regression models. The 
comparison demonstrates that, while the regression method is 
useful in understanding the characteristics of the raw data, the 
ANN method provided better results for predicting collision 
frequency on horizontal tangents.  

The study by You and Easa [5] has identified the variables 
which are related to vertical curves, horizontal tangents, and 
cross-sections. The regression models were estimated using 
the significant variables for all combinations [5]. The ANN 
models of the present study were estimated by applying the 
same variables for each combination. After the ANN models 
were analyzed, explicit formulations for the ANN models 
were developed. The MSE values of the ANN models were 
0.207, 0.245, and 0.687 for Combinations 1, 2, and 3, 
respectively, compared with 0.210, 0.266, and 0.712 for 
regression models. 

These results show that the statistical performance of the 
ANN models in estimating collision frequency is slightly 
better than that of the regression models based on the MSE 
criterion. Although the ANN models are more complex, their 
implementation in computer applications would be as easy as 
regression models. Therefore, the ANN models are 
recommended for evaluating the safety impacts of 3D 
alignment elements on horizontal tangents. An attractive 
feature of the ANN method is that it does not require any pre-
assumption in its formulation. The developed ANN models 

can be used in the explicit safety evaluation of highway 
geometric design.  
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