
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3409

User Interface Oriented Application Development
(UIOAD)

Mahmood Doroodchi, Babak K. Farahani, and Mahmoud Moravej

Abstract—A fast and efficient model of application development
called user interface oriented application development (UIOAD) is
proposed. This approach introduces a convenient way for users to
develop a platform independent client-server application.

Keywords—Software Development, XML, XForms, XUL,
eForm, User Interface.

I. INTRODUCTION

RADITIONAL application development involves the
design of data model/ERD diagram, develop the database,

implement the business layer, and finally the presentation
layer. Some advanced methodologies like RAD, let developers
to develop their applications faster by facilitating advanced
and special tools. Another paradigm shift in application
development seems happening based on developing smarter
components [1,5,6] at different layers of software.
Consequently, we can expect faster and easier application
design/development. This process focuses on the higher level
of development or the user interface design. To accomplish
the task, we need a set of tools to support this methodology. In
other words, smart components would develop the back end of
the applications from the GUI, by setting all necessary
constraints, validation, business rules and other components.
We call the proposed method “User Interface Oriented
Application Development, UIOAD”. Previous related works
based on similar concepts have been brain-stormed and user
interface driven system design [2] has been proposed. But in
this approach, since the user interface (UI) forms are essential
in capturing data requirements, UI prototype can be used by
the developer as a source for developing the classes and
objects. The existence of a field on a dialog, a web page, or a
report means that the data must either be an attribute of an
object, the result of some operation on an object or series of
objects, or be calculated from some other object(s) attributes.
When the same data exists within different objects on the
same user interface, it means that those objects are related to
each other and results into an association between classes in
the class diagram. Initial repetitions for such associations
might be detected by the occurrences of the related objects. [3]

Mahmood Doroodchi is with Cardinal Stritch University, Milwaukee, WI
53217, USA.

Babak K. Farahani, and Mahmoud Moravej are with South Information
Technology Co. (www.southit.com), Iran.

Another recent attempt to create a UI centric development

is XUL [4]. XUL is designed specifically for building portable
user interfaces.

In this paper we are proposing UIOAD concept with the
supporting software architecture to create a platform -
independent information system from the GUI. In addition, a
sample commercial application based on this concept will be
introduced.

II. NEW SYSTEM DESIGN PROCESS

 In this methodology, we start the design of a new system by
first designing the user interfaces or forms of the desired
application. To accomplish this, use cases are going to be
determined first followed by designing the interfaces based on
the design of the user interfaces as shown in Fig. 1.

Fig. 1 The design process starts by designing the use cases and the

interfaces based on the use cases

Once the use cases and user interfaces are designed, the
development environment will build the supporting structure
for the new application including classes, objects, and
eventually the database and its corresponding objects,
transparently. To accomplish that, this methodology includes
three main phases: “User Interface Design”, “Parsing
Mechanism”, and “Database Generation”. Therefore, we can
assume that a system shown in figure 1 can implement this
methodology. In other words, such system requires the
following building blocks: “User Interface (UI) Designer”,
“Parser Engine”, and “Database Factory” as shown in figure
2.

Each of the shown phases is explained in more details in the
following subsections.

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3410

Fig. 2 The entire process of designing a new system

A. User Interface (UI) Design Phase
This phase includes the following parts:

• Determination of Form role in system (Systematic
viewpoint)
In this part, the flow of information from each interface
will be determined. This is done by determining each
form’s role in the system and the type of users or actors
that use each interface. Issues such as access control and
security of the users are also addressed here. Knowing
the role of the form in the system means that we try to
find out how this piece of the puzzle affects the entire
picture. Use cases interoperations and interactions are to
be determined and the information flow for each case is
specified.

• Form Detail Determination
This stage includes declaring the form details. This high
level definition will help us not only to decrease our
dependency to different platforms but also to make it
possible for high level users to design a form, so that
they could describe their forms in an abstract form. There
are some well known innovated tools/standards that are
suitable for this methodology such as XForms standard.
It will bring a distinct part in conjugation with XML
standards to design a form. Another example is XUL.
Generally our output can be one of the HTML, XForms,
XUL, MS Word, or Pdf formats.

• Interface Functional Definition
In this totally conceptual stage, an interface is defined by
defining its functionality. This is done by answering a
series of questions as shown below:

- What kind or type of information does the form get?
- What kind of necessary constraints does a particular
field in the form have?
- How do the form objects relate to the information in
other forms? (For example contents/items in the combo
boxes, option lists, …)

In this part another important aspect of XForms is

discovered. This, in conjugations with other XML standards,

provides capabilities to declare the form model absolutely
independent of the logic behind the interface.

B. Analysis and Object Production Phase
The output of the previous phase is an XForms document,

which includes the design and logic of the form. All the
designed items are coming from a standard template. The
XForm document maintains the design and the logic of the
form as a standard relation between Design and Development
phase.

This is the main phase in our proposed method. It receives
the structured input in the special format of XForm, and
transforms it to a well-defined format of the programming
languages. In fact this part will parse text into objects as
declared. This part will generate the data model as a data
structure, considering the input fields of the form. Also,
proper communication means to other classes and objects are
considered in the class definition. The methods are defined in
a very abstract and general form since the classes are made
dynamically.

C. Database Generations
After generating the classes and the relational model, the

database should be developed. Database Factory is responsible
for transformation of generated structures to the equivalent
model in a database as shown in Fig. 3.

Fig. 3 Extracting the ER model from designed forms

Transforming of the OO Model (Which has been done by

parser engine) to an ER model is a challenging process and
will be done by database factory. In this phase, inputs and
outputs are the OO structures and relational structures,
respectively.

III. METHODOLOGY IN ACTION
Once the system is built, the system information will be

stored in the system database. The first step to use the system
is to retrieve the form information and rebuild it for the user.
The next step is to get the data from the user and store the
information in the database.

A. Form Displaying/Rendering Process
This process includes presenting the form to the user

independent from the platform depending on the environment.
For the form inside a browser will be displayed using HTML.

“Form Displaying Process” can be summarized in Fig. 4
that will be explained later.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3411

Fig. 4 Forms displaying/rendering process

One of the important outputs of this process is an XForm
document that has the exact declaration of the original use
cases in the design phase. This declaration is abstract and
platform independent. As we saw in design phase, parser
engine is responsible for converting declarative model of
designed form to OO model. The other responsibility of parser
engine is to generate the actual user interface from the stored
information and according to end user's platform.

The parser receives form's declarative definition in XForms
format and then regenerates the user interface for the target
platform from the logic and the user interface design
information. For example for regular web browsers it
generates HTML codes while for PDAs it may generate WML
codes or a windows form for PC desktop applications. To
perform this task, parser uses the following parts of the system
or information:

XSL files and XSLT files: These files have the main role in
generating the interface and the look of the form for different
platforms.

Database: The parser may need to establish a connection to
the database to get some information about the sub forms or
sibling forms and use them to generate the code.

Validation: In addition to the user interface code, some
auxiliary-codes maybe needed to control/validate the input
data like by injecting javascript control codes into the HTML
forms.

Web Services: If a form requires to be connected to another
distributed system, then web services is the access method to
such system.

In this way, the form will be displayed and is ready for the
next stage.

B. Processing and Storing Data
The user fills the displayed form and returns it to the

system. Fig. 5 shows the steps clearly (it assumed the form is
an HTML one):

After filling the form by the user, the data will be delivered
to parser engine box. One of the other responsibilities of this
box is converting user's data to the proper format that would

be tangible by the system (it has different responsibilities in
"designing form" and "displaying form" phases). It should
recognize the relations between sent data and form's fields by
referring to the form's definition document (in XForms
format). This is the first step in importing user's data to system
as a structured one. The next step, which is so important, is
data validation. In "displaying form" process, the validation
was done in partial mode but the main activity would be done
after receiving user's data. In this step, user's data should be
validated against the form's logic. In other words the
declarative statements that would be supplied in form's logic
definition would be checked against the user's data to verify if
they are consistent with them or not. But as we mentioned
earlier, it may be impossible to validate the user's data at the
same place where we display the form to the user. Then it is
required to connect to the other part of same system (or even
other systems) to verify correctness of user's data. So as you
see in the Fig. 4, the validation box may connect to database
or use some web services (to connect to other systems in
distributed solutions) to see if the user's data are consistent
with other data or not. Note that we can connect to other
systems with different solutions like using RPC (Remote
Procedure Call), CORBA (Common Object Request Broker
Architecture). DCOM (Distributed COM) and so on that are
not mentioned in this diagram.

Here we have a consistency problem between distributed
databases that should be resolved by the DBAs (Database
Administrators). Of course this issue is out of this article’s
scope and depends on system designation.

After user's data is verified and relations between data and
form's components are found, the related objects would be
created from the classifiers that were made in "designing
form" phase. In other words, the user's data would be stored in
some objects (in OO concepts). Therefore the user's data are
capable to circulate through the system easily and being
processed wherever is needed because its format is
recognizable for the program generator system. Briefly, the
objects are the real instances of form's data in the format of
the classes that present the form's schema. These objects are
outputs of parser engine in this phase that could be used as
input data for other system parts later.

Finally these generated objects should be stored in
database. This process would be done by "Data Access
Methods" part. This part receives the user's data in object
format and then stores them in database as output result. This
part is responsible for mapping these received objects to such
database objects that were created in "design form" phase and
store received objects data into these database objects. Note
that the reason for this mapping in current phase is because of
input objects of this box are OO objects whereas the
equivalent objects in database are Database Objects (like
tables, views, stored procedures and so on).The received
objects would be mapped to related ones in database system as
a result. Moreover, "Data Access Methods" routine should
store related user's data information to make it available for
future access and also for specifying the state of user's data in
system. This information usually consists of one unique
identification number, date of filling form, related actors and
so on.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3412

C. Representing the Filled Forms
This stage consists of representation of a designed form

with data samples. In other words, it is the final stage of a
designed form including data.

As mentioned before we can divide this stage into two
major steps:

• Form Representation
• Injecting form's data to the rendered form

At the first step, design part of the form in XForms document
(declarative, platform dependent) is converted into as
implemented model in target platform. Obviously in this
conversion would be done by XSLT. Also for preparing
required form data which are dependent on other parts of the
system such as other forms or even other software systems, we
use web services. The second part includes the following
steps: based on XForms, related entities in database are
recognized. Data Access Component does this task, which
has been used in data store step, too. This component gets the
XForms and complementary information and retrieves the
filled forms data from the database.

Fig. 5 Processing and Storing completed forms

Fig. 6 Representing the filled forms

Major parts of the retrieved data in previous step are

unprocessed. So it is necessary to retrieve more data from
database or web services to prepare the rendered form's data.

The DAC, creates the OO structure for rendered data by
using XForms structure. After this stage the form's structure
would be available in system as a set of controls/components
dependent on platform.

The rendered controls would be transfer to the parser
engine. This engine:
• Renders the form for platform.
• Maps the prepared data to controls.
The completed form would be presented to the user.

IV. AN IMPLEMENTATION OF UIOAD

South Information Technology Co. (Sitco) is the largest
software vendor in south of Iran. Sitco eForm has been
developed to be a tool for developing new applications based
on UIOAD concept. The application has been developed as an
n-tier service oriented software based on Microsoft .NET
Framework. It uses Microsoft SQL Server as its database
engine for storing all application related information, however
it woks with any other RDMBS system such as Oracle. Sitco
eForms is a 100% web based application and covers almost all
UIOAD concepts. As a best practice Sitco eForm uses
Windows Servers Active Directory Service Services as its
user and workgroup management engine to provide a low
TCO and high ROI solution and reduced administration cost
across the enterprise.

Fig. 7 Sitco eForm Form definition page

Its form designer is developed with Macromedia Flash

Designer and generates designed forms as an extended
XForms schema. Most schema extensions were implemented
for supporting right-to-left functionality. The designer
supports most of common validations and constraints.

Fig. 8 Sitco eForm Form Designer

Sitco eForm supports forms relationship concept, which

gives the eForm developers the ability of defining general
forms as global forms and use their information in other
forms, however it supports sub form usage as an advanced

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3413

feature. Global forms information would be render as common
list based controls like radio button lists, check box lists, list
box, combo box, data grid and others.

The application generates HTML web pages as .NET
ASPX pages with its XForms server side ASPX engine. Since
the application generates ASPX pages on the fly, it utilizes all
.NET CLR features such as validators, server controls, and
others. The product supports form's element constraint
definition, onBeforeSave and onAfterSave event as a key
feature to develop real world applications based on UIOAD.

Fig. 9 Sitco eForm General Forms Information relationship and

Forms

Fig. 10 Sitco eForm rendered form sample

V. CONCLUSION

A new methodology is proposed in this paper to develop a
system from the user interface without being worried about
developing the supporting databases.

REFERENCES
[1] L. Robert Varney and D. Stott Parker, “Generative Programming,

Interface-Oriented Programming and Source Transformation Systems” .
[2] D. Batory and B. J. Geraci. Component validation and subjectivity in

GenVoca generators. IEEE Transactions on Software Engineering, pages
67 - 82, 1997.

[3] Stevan Mrdalj, User Interface Driven System Design, Eastern Michigan
University.

[4] http://www.xulplanet.com/tutorials/xultu/intro.html
[5] M. Fowler, (1997). Analysis Patterns: Reusable Object models,

Addison-Wesley.
[6] How to develop an application with Sitco E-Forms, Sitco Internal

Document.
[7] Sitco eForm Concepts and Architecture, Sitco Internal Document.

