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Abstract—Earth reinforcing techniques have become useful and 

economical to solve problems related to difficult grounds and provide 
satisfactory foundation performance. In this context, this paper uses 
radial basis function neural network (RBFNN) for predicting the 
bearing pressure of strip footing on reinforced granular bed overlying 
weak soil. The inputs for the neural network models included plate 
width, thickness of granular bed and number of layers of 
reinforcements, settlement ratio, water content, dry density, cohesion 
and angle of friction. The results indicated that RBFNN model 
exhibited more than 84 % prediction accuracy, thereby demonstrating 
its application in a geotechnical problem.  

 
Keywords—Bearing pressure, granular bed, radial basis function 

neural network, strip footing.  

I. INTRODUCTION 
N increasing proportion of building development takes 
place on poor and difficult ground, which is a real 

challenge to any geotechnical engineer, in order to provide a 
satisfactory foundation performance. The foundation behavior 
can be modified by proper ground treatment, so that its 
properties can be improved [1]. Earth reinforcing techniques 
have become useful to solve many problems in geotechnical 
engineering practices [2]. This work is concerned with a 
locally available soil in the author’s geographical location 
namely “shedi” soil. It is a lithomargic clay, which is a 
problematic weak soil, especially when fully saturated or 
submerged and without confinement [3]. Thus there is a need 
to improve its bearing capacity by 2 to 3 times, in order to 
support even light to moderately loaded structures. This work 
makes use of a compact reinforced granular bed laid over the 
soft soil to improve its bearing capacity and settlement 
response of footings placed over it. 

A review of the literature reveals that there have been 
several research work related to load carrying capacity of 
footings. The earliest attempt to calculate bearing capacity of a 
strong layer overlying a weak layer was in 1948 [4]. Similarly, 
the first significant study on soil reinforcement in foundations 
was by Binquet and Lee in 1975 [5]-[6]. Shivashankar et al.[7]  
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investigated the ultimate bearing capacity of a footing resting 
on granular bed overlying soft clay with or without an 
interfacial reinforcing layer. 

They predicted the bearing capacity ratio values considering 
different effects and compared with some of the available 
experimental values in literature.  

There is a lot of complexity involved in modeling the 
geotechnical problems. Artificial Neural Networks (ANN) is a 
form of artificial intelligence (AI), which try to simulate the 
biological structure of the human brain and nervous system 
[8]. ANNs can model the nonlinearity present in a problem 
and try to evolve a modeling system, which can help in 
prediction or classification. Some of the areas where ANN has 
been applied in geotechnical engineering include pile capacity 
prediction, prediction of settlement of structures, modeling 
soil properties and behavior, determination of liquefaction 
potential, site characterization, modeling earth retaining 
structures, evaluating the stability of slopes and the design of 
tunnels and underground openings [9]. The reason for 
increased interest in ANNs are due to their ability to solve 
direct mapping problems that are nonlinear, comprise several 
independent variables and are found to give more accurate 
solutions, when compared to traditional modeling techniques. 
They have superior prediction ability, can model complex 
behavior of materials , they can learn from experience and 
there is no need to make assumptions about the underlying 
distributions that govern the problem as required in 
conventional modeling techniques [10]-[11]. Most of the 
applications of ANN have been limited to use of multilayer 
perceptron (MLP) [12]. 

Radial basis function neural networks (RBFNN) are a 
relatively new class of neural networks, which have been used 
in classification or regression problems. They are robust 
classifiers, with the ability to generalize imprecise input data 
[13]. I. Yilmaz and O. Kaynar (2011) used MLP, RBFNN and 
ANFIS (adaptive neuro-fuzzy inference system) for prediction 
of swell potential of clayey soils and results were compared 
with multiple regressions (MR). It was found that the 
constructed RBFNN model exhibited a high performance than 
MLP, ANFIS and MR for predicting swell potential. The time 
taken by RBF for training was lesser, when compared to MLP 
and RBF was more sensitive to dimensionality [13]. 
Jaywardena & Fernando (1998) used two RBF type ANN 
models to simulate storm events in a small catchment. They 
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found that RBF models can predict runoff with accuracy 
comparable with that of MLP approach [14]. Rajeev Jain et al 
(2010) used MLP and RBFNN to predict shear strength 
parameters of medium compressibility soil, which influenced 
the basic properties of soil in unconsolidated undrained 
condition. The prediction results of ANN models were 
compared and it was found that MLP with three hidden layers 
was better than RBFNN model [15].  In this paper an attempt 
was made to explore the applicability of RBFNN to model 
bearing pressure of strip footing on reinforced granular bed 
overlying weak soil, for prediction.  

II.  EXPERIMENTAL DETAILS 
Laboratory experiments were conducted to extensively the 

bearing pressure and settlement of model strip footings of 
different widths on reinforced granular bed overlying weak 
soil. To find the basic properties of the soil and granular 
material, relevant laboratory experiment were carried out. The 
fill material used for the model tests was a weak soil, locally 
known as “shedi”. The granular material used was quarry dust, 
consisting mainly of excess fines generated from crushing, 
washing and screening operations at granite quarries. The 
relative density of the granular bed was maintained at 75 %, 
which was found to be sufficient from application point of 
view. In the experimental study, mild steel hexagonal mesh 
was used as soil reinforcement material. Loading tests were 
performed using model strip footings of 60, 80, and 100 mm 
widths on reinforced granular bed overlying weak shedi soil. 
For soil five water contents were chosen such that two were on 
the dry side of the optimum and two on the wet side of the 
optimum, with one at the optimum. A manually operated jack 
of 100 kN capacity was used for loading. Table I shows the 
experimental conditions.  

 

 
 

In order to develop the predictive model for bearing 
pressure, the following input and output parameters were 
considered for study, input – plate width (B), thickness of 
granular bed (H), number of layers of reinforcement (n), 
settlement ratio (S/B), water content  (w), dry density (γd), 
cohesion (C) and angle of internal friction (Ф ) and output – 
bearing pressure (q).  

 
 
 

A. Data Preprocessing  
The available experimental data was divided into two data 

sets namely training data set to construct and train the neural 
network model and test data set to check the performance of 
the trained model, which included data not present in the 
training set. The total data set consisted of 324 patterns, out of 
which 85 % of data (274 patterns) were used in the training set 
and the remaining 15 % (50 patterns) were used in the test set.  

The data was suitably preprocessed using a normalization 
scheme. This was done mainly to scale down the data of all 
the variables, so that all of them receive equal attention during 
training. A simple scheme was used, where each data 
pertaining to a variable was divided by the maximum value of 
that variable, so that values were between 0 and 1.0.   

III. RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN) 
RBFNN is supervised neural network architecture, whose 

design and working is different from that of a multilayer 
perceptron (MLP). The design of RBFNN can be viewed as a 
curve fitting problem in a high dimensional space. According 
to this, learning is equivalent to finding a surface in a 
multidimensional space that provides a best fit to the training 
data. Correspondingly generalization is equivalent to using 
this multi dimensional surface to interpolate the test data [16]. 
The main advantages claimed for the RBF model are its 
simplicity and the ease of implementation [17]. The structure 
of a RBF network is similar to that of an MLP, but has only 
one hidden layer. A typical RBFNN consists of an input layer, 
a hidden layer, which applies a nonlinear transformation from 
the input space to the hidden space and an output layer, which 
produces the network output. Each RBF unit in the hidden 
layer has two parameters; a center xj and a width σj. The RBF 
units have a Gaussian transfer function, which is given by (1). 
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where iξ is the input, j = 1, 2, 3, ……….c is the number of 
centres. This center is used to compare with the network input 
vector to produce a radially symmetrical response. The width 
controls the smoothness properties of the interpolating 
function. The response of the hidden layer are scaled by the 
connection weights of the output layer and then combined to 
produce the network output, by passing though a nonlinear 
transfer function, namely a sigmoidal function, as given in (2). 
 

)1(

1
∑+

=
− jkjwk

e
O

φ
                              (2) 

 
where wkj are the weights between output layer k and hidden 
layer j.  
 
 

TABLE I 
EXPERIMENTAL CONDITIONS 

Variable Values 

B 60, 80, 100 mm 
H 0.5B, 1.0B, 1.5B, 2.0B  
n 1,2,3,4 
S/B 0.10, 0.15, 0.20 

w% 10, 15, 20, 25, 30 
γd 13.7, 14.7, 14.75, 15.2, 15.78 kN/m2 
C 35, 45, 50, 55 kN/m2 
Ø 11.3, 21.3, 23.03, 24.25, 25.17º 
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A. Training Strategies   
The centers of the RBF units can be fixed using different 

learning strategies [16]. In this paper, centers of the RBF units 
have been selected randomly from the input data. The widths 
of the RBF units can be fixed using different methods – use of 
P-nearest neighbor heuristics [18] or can be evaluated       
using (3)  

 

m
d

j 2
max=σ                   (3) 

where dmax is the maximum Euclidean distance between 
chosen centres and m is the number of centres. It can also be 
fixed by trial and error method. In this paper, this method has 
been chosen, and the selection is based on the maximum 
prediction accuracy on test data.  The weights of the output 
layer have been optimized using LMS algorithm or its variants 
[16]. 

IV. RBFNN MODELING  
The RBFNN model used in the current work is shown in 

Fig. 1.  

 
Fig. 1 RBFNN Model for Bearing Pressure 

 
The centers of the RBF units have been selected randomly 

from the training data set, which consisted of 274 data. The 
simulation parameters required for training the RBF network 
were maintained constant at η =0.5 and α = 0.5. The network 
goal was fixed at 0.0001, which was the mean square error 
(MSE). MSE is defined as given in (4).  
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where kO is the network output and kς is the actual output.  
The number of RBF units or centres in the hidden layer was 
varied in steps of 10 from 120 to 200. Sample results for a few 
centres are given in Table II. 
 

 
 
 
 
 

TABLE II 
PERFORMANCE OF RBFNN MODEL WITH VARIATION OF CENTRES 

(FOR 0.14 WIDTHS) 

CENTRE 150 160 170 180 190 

Training data 
accuracy 

79.56 90.51 88.68 71.16 59.85 

Test data  
accuracy 

68 70 84 56 54 

Average  
MRE 

19.69 13.04 9.79 18.37 19.05 

  
Similarly the width of the RBF units was selected by trial 

and error and the criterion was maximum prediction accuracy 
on the test data. In this work, it was varied from 0.1 to 0.18 in 
steps of 0.02. The corresponding results are given in Table III.  

 
TABLE III 

PERFORMANCE OF RBFNN MODEL WITH VARIATION OF WIDTHS 
(FOR 170 CENTRES) 

CENTRE 0.10 0.12 0.14 0.16 0.18 

Training data 
accuracy 

83.57 87.22 88.68 20.0 13.1 

Test data  
accuracy 

66 80 84 32 16 

Average  
MRE 

14.50 10.77 9.79 33.96 46.69 

 
 

The focus of this work was to select the optimum number of 
centres and width value, such that the prediction accuracy on 
test data was maximum. It is clear from Table II & III that for 
170 centers and 0.14 width values, the prediction accuracy on 
the training and test data was maximum.   

The network performance was evaluated based on mean 
relative error (MRE). It is defined as given in (5): 
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where N is the number of data in the data set, kς  is the actual 

or experimental value, kO is the predicted value by the ANN 
model. Table IV gives the prediction accuracy based on MRE, 
average MRE and R2 value for training and test data. For 
determining the prediction accuracy, a maximum MRE of 15 
% was considered which is acceptable for these applications 
[19]. 
 

TABLE IV 
PERFORMANCE INDICES OF RBFNN MODEL  

Performance Index Training data Test data 

R2 0.96 0.91 
Prediction accuracy 88.7 84.0 
Average MRE 7.98 9.79 

 
 

 

NO.OF RBF UNITS
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The prediction accuracy on test data is 84 % and the 
corresponding value of R2 is 0.91, with an average MRE of 
9.79.  

Fig. 2 (a) and (b) shows the plot of experimental vs RBFNN 
model predicted bearing pressure for training and test data. 
There is less scatter in the data, with respect to the ideal 
behavior and it is acceptable, thereby establishing the 
effectiveness of RBFNN based prediction model for bearing 
pressure.  

 
Fig. 2 (a) Experimental vs RBFNN Model predicted Bearing Pressure 

(Training data) 
 

 
Fig. 2 (b) Experimental vs RBFNN Model predicted Bearing Pressure 

(Test data) 

V.  CONCLUSION 
RBFNN, a supervised ANN architecture is similar to MLP, 

with a different procedure to design the network architecture. 
Both are nonlinear, layered feed forward networks and are 
universal approximators. RBFNN has several advantages, 
which includes use of a single layer and use of a non-
monotonic Gaussian function, which has better local 
approximation capability. These generalize well, when there is 
sufficient data available for training. In this work, RBFNN 
was used to predict bearing pressure of strip footing on 
reinforced granular bed overlying weak soil. Eight parameters 
have been used to train the network. The centers of the RBF 
units and widths have been fixed by trial and error. This 
learning though is the simplest, requires several trials to fix the 
optimum number of RBF units and the width value, which is 

time consuming. The evolved RBFNN model has been able to 
predict bearing pressure with an accuracy of more than 84 %, 
thereby demonstrating the effectiveness of this model in this 
application, where MLP is very widely used. 
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