
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

615

Abstract—Extensive use of the Internet coupled with the
marvelous growth in e-commerce and m-commerce has created a
huge demand for information security. The Secure Socket Layer
(SSL) protocol is the most widely used security protocol in the
Internet which meets this demand. It provides protection against
eaves droppings, tampering and forgery. The cryptographic
algorithms RC4 and HMAC have been in use for achieving security
services like confidentiality and authentication in the SSL. But recent
attacks against RC4 and HMAC have raised questions in the
confidence on these algorithms. Hence two novel cryptographic
algorithms MAJE4 and MACJER-320 have been proposed as
substitutes for them. The focus of this work is to demonstrate the
performance of these new algorithms and suggest them as dependable
alternatives to satisfy the need of security services in SSL. The
performance evaluation has been done by using practical
implementation method.

Keywords—Confidentiality, HMAC, Integrity, MACJER-320,
MAJE4, RC4, Secure Socket Layer

I. INTRODUCTION

ITH the growth of the Internet and digital
transmission, many applications need to transmit data to

remote applications and computers securely. The four main
stated security issues are confidentiality, authentication,
integrity and non-repudiation. Confidentiality means, only
authorized users can access the information while
unauthorized users are to be denied access. Authentication has
to guarantee that the user accessing the information is truly the
intended person and not a pretender. Integrity has to ensure
that the received information is same as the transmitted
information without being modified by others during
transmission. Non-repudiation guarantees that senders and
receivers have undeniably transmitted or received information,
respectively. These four mentioned issues are interdependent
and must therefore be addressed simultaneously in the design
of security systems. SSL protocol has been universally
accepted in the World Wide Web for authenticated and
encrypted communication between clients and servers.

 Sheena Mathew and K. Poulose Jacob are with the Department of
Computer Science, Cochin University of Science and Technology, Kochi,
Kerala, India. e-mail: sheenamathew@cusat.ac.in,
kpj@cusat.ac.in

The SSL protocol was originally developed by Netsape, its
version 1.0 was never publicly released; version 2.0 was
released in 1994 but contained a number of security flaws
which ultimately led to the design of version 3.0 which was
released in 1996[1]. At present, SSL is widely deployed in
many intranets as well as over the public Internet and has
become the de facto standard for transport layer security.
Recently, the Internet Engineering Task Force (IETF) has
started an effort to standardize SSL as an IETF standard under
the name of Transport Layer Security (TLS) protocol [2]. The
few real world, practical applications of SSL & TLS are [3]
client server systems, financial systems, information systems
to create remote access and administration applications, travel
industry to create online reservation systems and secure
information transfer, etc. Visa, MasterCard, American Express
and many leading financial institutions have endorsed SSL for
commerce over the Internet. Some early implementations of
SSL used 40-bit symmetric keys because of US government
restrictions on the export of cryptographic technology. The 40-
bit key size limitation has mostly gone away and modern
implementations use 128-bit (or longer) keys for symmetric
key ciphers.

One of the reasons that SSL has outgrown other transport
and application layer security protocols such as SSH, SET,
and SMIME in terms of deployment is that it is application
protocol independent [4]. Conceptually, any application that
runs over TCP can also run over SSL. There are many
examples of applications such as TELNET and FTP running
transparently over SSL. However, SSL is most widely used as
the secure transport layer below HTTP. A large number of e-
commerce sites dealing with private and sensitive information
use SSL as the secure transport layer. This number is expected
to grow, as more and more businesses and users embrace
electronic commerce. As security becomes an integral feature
of Internet applications and the use of SSL rises, its impact on
the performance of the servers as well as the clients is going to
be increasingly important. Browsers like Netscape Navigator
and Internet Explorer can access SSL enabled web pages by
using URLs that start with ‘https’ instead of ‘http’.

The main objectives for SSL are:
1. Authenticating the client and server to each other.
2. Ensuring data integrity

Use of Novel Algorithms MAJE4 and
MACJER-320 for Achieving Confidentiality
and Message Authentication in SSL & TLS

Sheena Mathew, K. Poulose Jacob

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

616

3. Securing data privacy.

II. MOTIVATION

In applications using SSL, the confidentiality of information
is ensured using strong encryption algorithms. For very fast
encryption and decryption of data for transmission after an
SSL connection has been established, RC4 is the preferred
algorithm. Similarly HMAC-SHA-1 has been recommended
for message authentication in several network security
protocols. The key reasons behind this are the free availability,
the flexibility of chaining the hash function and the reasonable
speed, among others. Even though RC4 and HMAC-SHA-1
are the most widely used ciphers of secure web applications,
the strength of RC4 [5] and SHA-1 [6] has been called into
question as a result of recent findings. Hence it is required to
have proven and new methods to meet the future
requirements. The analysis of novel cryptographic algorithms
MAJE4 [7] and MACJER-320 and its performance in
comparison with the popular RC4 and HMAC-SHA1 have
been done in this context and the novel algorithms MAJE4
and MACJER-320 have been proposed as alternatives.

III. DESCRIPTION OF EXISTING ALGORITHMS

This section presents an overview of the cryptographic
algorithms RC4 and HMAC-SHA-1 used in SSL.

A. RC4
 RC4 is a variable key-size stream cipher developed in 1987

by Ron Rivest for RSA Data Security, Inc. The RC4 stream
cipher has two phases, the key set-up and the keystream
generation. Both phases must be performed for every new key.
The algorithm is based on the use of a random permutation. A
variable length key K, of size 1 to 256 bytes is used to
initialize a 256-byte state vector S, with elements S0, S1, …..,
S255.

Initially the entries of S are set to the values 0 to 255 in
ascending order. A temporary vector T, is also created. For a
key of length keylen bytes, the first keylen elements of T are
copied from K, and then K is repeated as many times as
necessary to fill out T. Next, we use T to produce the initial
permutation of S. The pseudo-code for the key setup is as
follows:
for i = 0 to 255
 Si = i
 Ti = K[i mod keylen]
endfor
 k=0
for i = 0 to 255
 k = (k + Si + Ti) mod 256
 Swap(Si, Sk)
endfor

Once S is initialized, the input key is no longer used. The
next phase is key stream generation which is described by the
pseudo-code as:
i = 0
k = 0
while(true)

i = (i + 1) mod 256
k = (k + Si) mod 256
Swap(Si, Sk)
t = (Si + Sk) mod 256
key = St
endloop

For encryption, the value key is XORed with the next byte
of plaintext. For decryption, the value key is XORed with the
next byte of cipher text.

B. HMAC
The different variables used in the HMAC algorithm are

shown in Table I.
TABLE I

BASIC NOTATIONS IN HMAC

MD - Message digest/ hash function
M - Input message
B - Number of bits in each block
K - Shared symmetric key
K1 - Transformed key K1
Ipad - String 00110110 repeated b/8 times
Opad - String 01011010 repeated b/8 times
H - Hash code

The step-by-step approach of the HMAC message
authentication code is given in Table II.

TABLE II
 HMAC ALGORITHM

Step 1: Make the length of K equal to B.
Append enough zeros to the left end of K to create a B bit
key K1.

Step 2: XOR K1 with Ipad to produce the B bit block S.
Step 3: Append M to S. That is the original message is simply

appended to the end of S.
Step 4: Apply the Message digest algorithm/ Hash function to the

output of Step 3 to produce hash code H.
Step 5: XOR K1 with Opad to produce the B bit block S1.
Step 6: Append the hash code H produced in Step 4 to S1.
Step 7: Apply the message digest algorithm/ Hash function to the

output of Step 6 to produce the final MAC.

C. SHA-1

The Secure Hash Algorithm (SHA) [8] was developed by
National Institute of Standards and Technology (NIST) along
with NSA.

IV. DESCRIPTION OF NEW ALGORITHMS

This section presents the novel MAJE4 stream cipher
algorithm and MACJER-320 algorithm along with JERIM-
320 hash function [9] for achieving confidentiality as well as
message authentication.

A. MAJE4

a. Main features of MAJE4
1. The encryption sequence can have a large period.
2. The key stream can approximate the properties of a true

random stream.
3. MAJE4 is suitable for hardware or software and it uses

only primitive computational operations commonly found
in microprocessors.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

617

4. It is simple and fast. It uses simple algorithm, which is
easy to implement and eases the task of determining the
strength of the algorithm.

5. Low memory requirement makes it suitable for handheld
type devices with restricted memory.

6. Mixed operators are used for the design of MAJE4. The
use of more than one arithmetic and / or Boolean operator
complicates cryptanalysis. Primitive operators like + and
^ are used since these operators do not commute and
hence cryptanalysis becomes more difficult.

7. It should have a flexible security choice with the key sizes
of 128 or 256 bits.

b. Key setup of MAJE4
One can choose either 128 or 256 bit key for the algorithm

given in Table III.
128-bit key: The four 32 bit words, ie. key[0], key[1], key[2]

and key[3] are considered for storing the key.
256-bit key: The key is stored in eight 32 bit words key[0],

key[1], key[2], key[3], key[4], key[5], key[6] and key[7].
TABLE III

 ALGORITHM OF MAJE4

Step 1: Assign the key length kl either as 128-bit or 256-bit.
Step 2: if kl = 128 then
 kln = 2, div = 4
 else
 kln = 3, div = 8
Step 3: if kl = 128 then consider two lsb’s of key[0] and find its decimal

equivalent and store in the variable 'in'.
 else
 if kl = 256 then consider three lsb's of Key[0] and find its

decimal equivalent and store in the variable ‘in’.
Step 4: ran = key[0] ^ key[in]
Step 5: if kl = 128 then consider two lsb’s of ran and find its decimal

equivalent and store in the variable 'in1'.
Step 6: if kl = 256 then consider three lsb’s of ran and find its decimal

equivalent and store in the variable 'in1'.
Step 7: check the 16th bit in ran,
 if it is 1 then

newran = (key[in1] + key[in1+1mod div]) ^ (key[in1+2 mod div] +
key[in1+3 mod div])

 else
 newran = (key[in1] ^ key[in1+1mod div]) + (key[in1+2 mod div] ^ key[in1+3

mod div])
Step 8: The output 32-bit word is newran, which can be used to XOR

with the corresponding word in the plain text.
Step 9: Advance all the keys as
 key[i] = key[i] * key[i] + key[i] >> 20
Step 10: go to step3

B. MACJER-320
The variables used in the MACJER-320 construction are

given in Table IV.
TABLE IV

 VARIABLES USED IN MACJER-320

K - Shared symmetric key.
M - Input message.
B - Number of bits in each block.
MDA - Message digest algorithm or Hash Function (JERIM-
320)
H - Hash code
SH - Circular shifted hash code H
SK - Circular shifted key K

The step-by-step approach of MACJER-320 is given in
Table V.

TABLE V
 MACJER-320 ALGORITHM

Step 1: Make length of K equal to B.
Here the initial key K is 320-bit long and the block length
B is 512-bit. To make the length of K equal to the block
length add as many 0 bits as required to the left of K.
Hence add 192, 0 bits to the left of key K.

Step 2: Prefix and suffix the key along with the message.
Divide the key in to two equal parts (256 bits each), and
then prefix the message using 256 lsb bits of the key and
suffix the message using 256 msb bits of the key.

Step 3: Apply the message digest algorithm / hash function
 Now, JERIM-320 is applied to the output of step 2 (i.e. to
the combination of the 256 lsb bits of the key, the
message, the 256 msb bits of the key) to produce the 320-
bit hash code H.

Step 4: Circular shift hash code H and the initial key K
 Circular shift H by 13 bits and key K by 17 bits to the left
to produce the shifted hash SH and the shifted key SK.

Step 5: XOR K with SH to produce KSH
 Now XOR K with SH to produce a variable called as
KSH.

Step 6: Add H with SK to produce HSK
Now add H with SK to produce a variable called as HSK

Step 7: XOR KSH with HSK to produce MAC
 XOR KSH with HSK to produce the final 320-bit message

authentication code.

C. JERIM-320

a. Structure of JERIM-320
Fig.1. Shows the outline of the compression function of

JERIM-320. It consists of four parallel branches B1, B2, B3
and B4.

Fig. 1 Outline of the Compression Functions of JERIM-320

The initial chaining variable CVi is given as input to the
compression functions. CVi consists of 10 registers
A,B,C,D,E,F,G,H,I and J.

Each successive 512-bit message block M is divided into
sixteen 32 bit sub blocks M0, M1, …, M15 given as i(M) as
input to all four branches and a computation is done to update
CVi to CVi+1 as

CVi+1=CVi^ ((B1output ^ B2output) + (B3output ^
B4output)). Finally the message is transformed into the 320-
bit hash value.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

618

b. Single Step Operations
Five rounds are used in JERIM-320 for each 512-bit

message block. The sixteen 32-bit sub blocks of the 512-bit
block in each round are processed in four parallel branches.
The inputs to each single step operations are the sixteen sub
blocks, the chaining variables A1, B1,…J1, A2, B2, …J2, A3,
B3,….J3, A4, B4,…..J4 of each branch and the constants K[t].
Order of message words, shift values, Boolean functions and
constants in each branch and each round are different. There
are 16 single step iterations in each round and in all the four
branches as shown in Fig. 2. The output of each iteration is
copied again into the chaining variables A1, B1,…J1; A2, B2,
…J2; A3, B3,….J3; A4, B4,…..J4 and so on.

Fig. 2 A Single Step Operation of JERIM-320

V. SECURITY ANALYSIS

Sections A and B describe an analysis of the stream ciphers
RC4 and MAJE4. The security analysis of HMAC is
explained in section C. Sections D and E describe an analysis
of the properties of Message Authentication Code and Hash
Function, which help MACJER-320 to achieve a significantly
higher level of security than the popularly used ones.

A. RC4
 Some of the published attacks on RC4 are as follows:

1. The first known weaknesses in RC4 were reported in
1995 by Ross [10] and Wagner [11]. They described
several classes of keys that have specific weaknesses
including predictable output or output that leaks key
information. Later a related key attack was observed for
long keys (2048 bits) [12].

2. Since the output of RC4 stream cipher is used to encrypt
the plain text by bitwise XOR, any observable bias in the
output can be used as the basis for an attack. A correlation
was detected by Golic [13] between bytes at time t and

t+2. Many stronger correlations were later reported by
Fluhrer and McGrew [14].

3. Attacks to guess the internal state and then check for
consistency with known output have been studied
independently by several researchers and the results were
published [15]-[17].

4. The most significant attacks on RC4 have been based on
exploiting the simplicity of the initialization algorithm to
discover an observable bias in the first few bytes of the
output sequence. A bias in the second output byte also has
been reported [18]. The value zero occurs with twice the
expected probability for a random sequence. A bias in the
first byte was also reported [19].

5. S. Fluhrer, I. Martin and A. Shamir published a report [5]
that describes several weaknesses in the key scheduling
algorithm of RC4 and proposes attacks for exploiting
those weaknesses.

6. Klein [20] showed an improved way of attacking RC4
using related keys that does not need the ‘resolved
condition’ on the IVs and gets by with a significantly
reduced number of frames.

7. Subhamoy Maitra and Goutam Paul gave an independent
analysis [21] of Klein’s attack with results similar to our
multiple key bytes extension.

8. Vaudenay and Vuagnoux presented a similar attack at
SAC2007 [22], which additionally makes use of the fact
that the RC4 key is stretched to 256 bytes by repeating it.
The same trick was reported by Ohigashi, Ozasa,
Fujikawa, Kuwadako and Morii [23], who developed an
improved version of the attack.

9. The implication of these findings is that a buffer
overflow attack or a similar attack can be used to learn a
single state of the generator, which can then be used to
predict all random values, such as SSL keys [24]. This
type of attack is more severe and more efficient than other
known attacks.

These problems with RC4 have raised fears on the security
of protocols like the SSL which are using RC4 for providing
confidentiality.

B. MAJE4
The MAJE4 is a 128-bit or 256-bit key algorithm and the

randomness property of the stream cipher is analyzed by using
the five statistical tests like frequency test, serial test, poker
test, runs test and autocorrelation test [24]. All the five
statistical tests are passed by this generator for all the random
streams produced. Hence MAJE4 algorithm can be used very
well for encrypting the message of any length.

C. HAMC-SHA-1
1. In HMAC the XOR with Ipad results in flipping one-half of
the bits of K. Similarly the XOR with Opad result in flipping
the other-half of the bits of K, but a different set of bits. In
effect, by passing S and S1 through the compression function
of the hash algorithm, we have pseudo randomly generated
two keys from K, which add security to HMAC.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

619

2. The recent attacks on Wang et al and Biham et al. have
undermined the confidence in the popular hash functions such
as MD5 or SHA-1.
3. As outlined in the paper “keying hash functions for message
authentication”, HMACs can be vulnerable to birthday,
collision and other attacks [25].
4. Other publications “On the security of HMAC and NMAC
based on HAVAL, MD4, MD5, SHA-0 and SHA-1” [26] and
“Note on Distinguishing, Forgery and Second Preimage
Attacks on HMAC-SHA-1 and a Method to Reduce the Key
Entrophy of NMAC” [27] have shown how to use the
differential distinguishers to devise a forger attack on HMAC.
5. The strongest attack known against HMAC is based on the
frequency of collisions for the hash function. With this,
HMACs have become more insecure [28].
6. The attack Xiaoyun Wang, Yiqun Lisa Yin and Hongbo Yu
recently announced on SHA-1 indicates that the algorithm
isn’t quite as strong as it was thought to be, as it takes only 269

steps to find a collision instead of the expected 280 steps.

D. MACJER-320
1. The security of the message authentication mechanism
presented here depends mainly on the cryptographic properties
of the hash function JERIM-320 as mentioned in section E
2. The length in bits of a message authentication code is
directly related to the number of trials that an intruder has to
perform before a message is accepted. For a MAC value of
bit-length m, the intruder has to perform on average 2m-1

random on-line MAC verifications before his strategy
succeeds. Thus in MACJER-320, an intruder requires 2320-1

trials.
 3. The message is enveloped with a secret prefix and a secret
suffix before the hash code is computed. This hybrid method
is stronger than either the prefix or the suffix variant [29] and
provides protection against message substitution attacks when
used in conjunction with a strong hash function JERIM-320.
Also the splitting of the key into two parts strengthens the key
by increasing confusion at the cipher text level [30].
4. Another important property of this hybrid method is its
resistance to birthday attacks [31]. Consideration of these
attacks is important since they strongly improve on exhaustive
search attacks. Since these attacks require knowledge of the
MAC value (for a given key) on about 2n/2 messages (where n
is the length of the hash output) for values of n 320 the
attack becomes totally infeasible.
5. When combining functions and operations together,
orthogonal operations like exclusive or and addition are used
to create confusion and diffusion in the MAC.
6. The shifting of the hash code and key was done to increase
confusion thus strengthening the output.
7. XORing has the effect of randomizing the input almost
completely and overcoming any regularity that appear in the
output.

E. JERIM-320

1. The main difficulty in cryptanalyzing JERIM-320 comes
from the fact that the same message blocks are given as input
to each of the four streams in a permuted fashion. The attacker
who tries to break JERIM-320 should aim simultaneously at
four ways where the message difference passes, which would
make the attacks more difficult.
2. By using one message block twice at each single step, it has
been made difficult to construct a differential characteristic
with high probability.
3. To avoid an attack that depends on brute-force methods, the
output from the hash function has been made sufficiently long.
4. While combining the outputs from the four branches,
orthogonal operations (+ and ^) are used to create confusion
and diffusion which adds to the security.
5. There is a strong avalanche effect; hence a change in a
single message bit affects all the registers after five rounds.
6. All shortcut attacks on MD5 target one of the intermediate
blocks. Increasing the intermediate value to 320 bits helps to
prevent these attacks.
7. The single step operation ensures that changing a small
number of bits in the message affects many bits during the
various passes. Together with the strong avalanche, helps
JERIM-320 to resist attacks similar to Dobbertin’s differential
attack [32] on MD4.

It is in this situation that MAJE4 and MACJER-320 have
been proposed along with a strong hash function JERIM-320
for achieving better security services.

VI. PERFORMANCE EVALUATION

The performance evaluation is done by comparing RC4
with MAJE4 and MACJER-320 with HMAC-SHA1 as given
in section A and section B. The evaluations were done using
Pentium IV processor, Linux operating system and C
compiler.

A. MAJE4 & RC4
From the timing analysis it can be noted that when we
compare RC4 and MAJE4, MAJE4 is almost 1.2 times faster
as shown in Table VI. On comparing the memory required for
executable files of RC4 and MAJE4, MAJE4 was found
consuming lesser space compared to RC4. The memory size
required for optimised code for RC4 is 8077 bytes and for
MAJE4 is 5435 bytes.

TABLE VI
 TIMING ANALYSIS & MEMORY REQUIREMENT

PRNGs MAJE4 RC4

Key length 128-bit 128-bit

No. of random numbers
generated 1,15,39,399 3,95,99,988

No. of random bits per
each random number 32 8

Total no. of bits produced
(speed Mbps) 352.15 302.12

Memory requirement
(Bytes) 5435 8077

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

620

B. MACJER-320 & HMAC-SHA-1
The total number of operations, memory requirements and

the speed performance of MACJER-320 using JERIM-320
hash function and HMAC using SHA-1 hash function, were
compared. MACJER-320 produces a MAC of 320 bits where
as HMAC-SHA-1 produces a MAC of 160 bits only. Hence
MACJER-320 can definitely provide added security than
HMAC-SHA1.

As shown in Table VII the total number of operations used
in MACJER-320 is 3.7 times than that in HMAC-SHA1. The
hash function JERIM-320 in MACJER-320 makes use of four
parallel lines of message processing and hence the variables
and computations required in JERIM-320 will be more
compared to the hash function SHA-1 in HMAC. The multiple
operations on the message blocks in MACJER-320 will result
in much higher security with a negligible compromise in the
speed of operation.

TABLE VII
 COMPARISON BETWEEN MACJER-320 AND HMAC IN TERMS OF

THE NUMBER OF OPERATIONS

Operation MACJER-320
using JERIM-320

HMAC using
SHA-1

Addition 46 24

Bitwise operation(^,V, ,¬) 193 39

Shift operation 41 13

Total number of operations 280 76

As shown in Table VIII the memory requirement for
MACJER-320 is more than that of HMAC-SHA1 and the
speed of MACJER-320 is less than that of HMAC-SHA1.
These are because of the increased number of Boolean
functions, the need for other operations like add, shift as well
as the greater number of lines of message processing used in
JERIM-320 than in SHA-1. Even though the speed of
MACJER-320 is less than that of HMAC-SHA-1, it is very
much within the acceptable limits and hence the advantages
due to increase in the security overcomes the reduction in
speed.

TABLE VIII
 PERFORMANCE COMPARISONS BETWEEN MACJER-320 AND

HMAC

Algorithm Speed
(Mbps)

Memory requirement
(Bytes)

MACJER-320IM using
JERIM-320 13.15 12530

HMAC using SHA-1 57.58 8074

VII. CONCLUSION

 The SSL designers have chosen to use the then available
algorithms RC4 as fast stream cipher and HMAC as hash-
based construction for its security services. But few recent
findings show that the confidence level in these algorithms is

coming down. It is clear that a transition to a newer encryption
and message authentication algorithms will be required in the
near future, since the information handled is very sensitive. It
is in this situation that more secure algorithms MAJE4 and
MACJER-320 are suggested which can definitely become
good substitutes.

REFERENCES

[1] Transport layer Security, Wikipedia,
http://en.wikipedia.org/wiki/Secure_Sockets_Layer

[2] C.Allen and T.Dierks, The TLS Protocol Version 1.0. Internet Draft,
Internet Engineering Task Force, November 1997,
http://tools.ietf.org/html/rfc2246

[3] Security Protocols Overview An RSA Data Security Brief,
www.comms.scitech.susx.ac.uk/fft/crypto/security-protocols.pdf

[4] George Apostolopoulos, Vinod peris, Prashant Pradhan, Debanjan Sahi,
“Securing Electronic Commerce: Reducing the SSL Overhead”, IEEE
Network, 14(4) : pp. 8-16, July 2000.

[5] S. Fluhrer, I. Mantin, A. Shamir, “ Weakness in the key scheduling
Algorithm of RC4”, Proceedings in the selected Areas in Cryptography
2001, SAC’01, LNCS vol.2259, pp. 1-24, Springer-Verlag, 2001.

[6] Xiaoyun Wang and Hongbo Yu, “How to break MD5 and other hash
functions”, Advances in Cryptology – EUROCRYPT, LNCS 3494,
Springer-Verlag , pp.19-35, 2005.

[7] Sheena Mathew, K.Paulose Jacob, “A New Fast Stream Cipher:
MAJE4”, Proceedings of IEEE, INDICON 2005, pp60-63, 2005.

[8] National Institute of Standards and Technology (NIST) (2002), FIPS-
180-2: Secure Hash Standard, at
http://csrc.nist.gov/publications/fips/fips 180-2/fips 180-2.pdf.

[9] Sheena Mathew, K. Poulose Jacob, “JERIM-320: A New 320-bit Hash
Function with Higher Security”, International Journal of Computers,
Systems and Signals, to be published.

[10] A.Roos, “A Class of weak keys in the RC4 stream cipher”, sci.crypt,
1995.

[11] D.Wagner, “ My RC4 weak keys”, sci.crypt, September 1995.
[12] A.I.Grosul and D.S.Wallach, “A Related Key Cryptanalysis of RC4”,

Manuscript from Department of Computer Science, Rice University, 6
June 2000.

[13] J.Dj.Golic, “Linear statistical Weakness of alleged RC4 keystream
generator”, Advances in Cryptology – Eurocrypt 97, LNCS vol. 1233,
pp.226-238, Springer-Verlag, 1997.

[14] S.R.Fluhrer and D.A.McGrew, “Statistical Analysis of the Alleged RC4
Keystream Generator”, Proceedings of Fast Software Encryption 2000,
LNCS vol. 1978, pp.19-30, Springer-Verlag, 2001.

[15] S.Mister and S.E.Tavares, “Cryptanalysis of RC4-like Ciphers”,
Proceedings of SAC’98, LNCS vol. 1556, pp.131-143, Springer-
V0000erlag, 1999.

[16] L.Knudsen, W.Meier, B.Preneel, V.Rijmen and S.Verdoolaege,
“Analysis methods for (alleged) RC4”, Advances in Cryptology –
AsiaCrypt 98, LNCS vol.1514, pp.327-341, Springer -Verlag, 1998.

[17] J.Dj.Golic, “Iterative Probabilistic Cryptanalysis of RC4 Keystream
Generator”, Proceedings of ACISP 2000, LNCS vol.1841, pp. 220-233,
Springer – Verlag, 2000.

[18] I.Mantin and A. Shamir, “ A Practical Attack on Broadcast RC4”,
Proceedings of Fast Software Encryption, 2001, LNCS, vol.xx, pp.152-
164, Springer-Verlag, 2002.

[19] I.Mironov, “(Not so) Random Shuffles of RC4”, Advances in
Cryptology –CRYPTO-2002, LNCS vol.2442, pp. 304-319, Springer
Verlag, 2002.

[20] Andreas Klein, “Attacks on the RC4 stream cipher”, Designs, Codes
and Cryptography, 2007

[21] Subhamoy Maitra and Goutam Paul, “Many keystream bytes of RC4
leak secret key information”, Cryptology ePrint Archieve, Report
2007/261, 2007, http://eprint.iacr.org/.

[22] Serge Vaudenay and Martin Vuagnoux, Passive-only key recovery
attacks on RC4. In Selected Areas in Cryptography 2007, Lecturer Notes
in Computer Science, Springer 2007

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

621

[23] Toshihiro Ohigashi, Hidenori Kuwakado, and Masakatu Morii, “A Key
recovery attack on WEP with less packets”, Technical Report of IEICE,
ISEC Nov., 2007

[24] D.E.Knuth, The Art of Computer Programming, Vol.2, Seminumerical
Algorithms, Third Edition, Addison – Wesley, 1997.

[25] Mihir Bellare, Ran Canetti, Hugo Krawczyk (1996), “Keying Hash
Functions for Message Authentication”, Advances in Cryptology-
CRYPTO, LNCS 1109, Springer- Verlag, pp 1-15.

[26] Jongsung Kim, Alex Biryukov, Bart Preneel, Seokhie Hong (2006), “On
the Security of HMAC and NMAC Based on HAVAL, MD4, MD5,
SHA-0 and SHA-1”, Proceedings of SCN, LNCS 4116, Springer-
Verlag, pp 242-256.

[27] Christian Rechberger and Vincent Rijmen, “Note on Distinguishing,
Forgery, and Second Preimage Attacks on HMAC-SHA-1 and a Method
to Reduce the Key Entropy of NMAC”, 2006, URL:
http://citeseer.ist.psu.edu/cache/papers/cs2/338/http:zSzzSzeprint.iacr.or
gzSz2006zSz290.pdf/note-on-distinguishing-forgery.pdf

[28] Mihir Bellare, Ran Canetti, Hugo Krawczyk (1996), “Message
Authentication using Hash Functions the HMAC Construction,
CryptoBytes, Vol 2, No.1, RSA Laboratories pp 1-5.

[29] Gene Tsudik (1992), “Message Authentication with One-Way Hash
Functions”, Proceedings of IEEE-INFOCOM, pp 2055-2059.

[30] Thomas Calabrese (2006), “Information Security Intelligence
Cryptographic Principles and Applications”, Thomson Delmar Learning,
India.

[31] Wagner D., “A Generalized Birthday Problem”, Proceedings of Crypto
'02, LNCS vol. 2442, Springer-Verlag, 2002.

[32] H. Dobbertin (1996) “Cryptanalysis of MD4”, Fast Software
Encryption, LNCS 1039, Springer-Verlag, 53-69.

Sheena Mathew, Reader in Cochin University of Science and Technology
(CUSAT), Kochi, Kerala, India has 15 years of teaching experience in
Computer Science. She had her graduation from Madurai Kamaraj University
and post graduation from the Indian Institute of Science, Bangalore. She is
presently a research scholar; her areas of interest being Cryptography and
Network Security. She has 8 publications in various international journals and
conferences to her credit.

Dr. K. Poulose Jacob, a National Merit Scholar all through, got his degree in
Electrical Engineering in 1976 from University of Kerala, followed by his
M.Tech. in Digital Electronics and Ph. D. in Computer Engineering from
CUSAT, Kochi. He has been teaching at CUSAT since 1980 and currently
occupies the position of Professor and Head of the Department of Computer
Science. He has served as a Member of the Standing Committee of the UGC
on Computer Education and Development. He is on the editorial board of two
international journals and has more than 60 papers in various international
journals and conferences to his credit. His research interests are in Information
Systems Engineering, Intelligent Architectures and Networks.

