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Abstract—This paper presents the generalized p-values for testing
the Behrens-Fisher problem when a ratio of variance is known. We
also derive a closed form expression of the upper bound of the
proposed generalized p-value.
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I. INTRODUCTION

CHECHTMAN and Sherman [1] described a situation
with a known ratio of variances arises in practice when
two instruments reports (averaged) response of the same
object based on a difference number of replicates. If the two
instruments have the same precision for a single measurement,
then the ratio of the variance of the responses is known and
it is simply the ratio of the number of replicates going into
each response. They proposed a t-test statistic, which has
an exact t-distribution with n + m — 2 degrees of freedom
compared to the Satterthwaite’s t-test statistic [2]. They found
that their proposed test has more power than the existing
Satterthwaite’s test. However, they did not investigate the
coverage probability and the expected length of the confi-
dence interval for the difference of two normal population
means when the ratio of variances is known. Niwitpong and
Niwitpong [3] derived analytic expressions to find the coverage
probabilities and expected lengths of two confidence intervals,
the Schechtman-Sherman confidence interval and the Welch-
Satterthwaite (WS) confidence interval [4], in comparison
with each other. In this paper, following Weerahandi [5],
we propose the generalized p-value to test the hypothesis
0:60 <6y vs H : 0 > 6, where 0 is the parameter of
interest, and, 6 = 1 — o and fq is fixed and with know a
ratio of variances.

II. GENERALIZED P-VALUES FOR THE BEHRENS-FISHER
PROBLEM

Let Xi,...X,, and Y3,...,Y,, be random samples from
two independent normal distributions with means ., i, and
standard deviations o, and o, , respectively.
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Let § = pu; — pyy be the parameter of interest. The problem is
to test the hypothesis Hy : 6 < 6 against the alternative hy-
pothesis H, : 6 > 6, for some ﬁxed 0. The sufficient statistic
of this problem is (X,Y, S 2) (Tsu1 and Weerahandi [6])
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are independent of one another. Tsui and Weerahandi[6]
proposed the generalized p-value for the above hypothesis as
follow:

Suppose a random quantity T*(X,K;v,y,um7uy,ai7aj)
can be expressed as

T*(X,Y, 2, y, e, py, 02, 00) = T(X, Y, 2, y, i, py, 02,
where
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and T(m,y,x,y,uz,uy,ag,%) = z — g — 0. It is
straightforward to see that T(X,Y,,y, [y, fiy, 02, 02) is

y
free from nuisance parameters o2 and 05 and has the same

distribution Zy/ < 52 y* where Z ~ N(0,1).
T (X,Y,z,v, ,uz,uy,a cri) is deﬁned to be a generalized
test variable and T'(X,Y, x,y, fiz, fty, O ) is defined to be
a generalized pivot statistic and 77 (X, Y Ty Yy Py flyyy T2 03)
is required to satisfy the following conditions:

C1. For a fixed x and y, the probability distribution of
T*(X,Y, 2y, iz, 1y, 02, 05) is free of the unknown
parameters.

C2. The observed value of T*(X,Y, x,y, fis, fty, 02,0),
namely T*(x7y,$,y,/tm7uy,az,ai) is simply 6.

C3. For fixed ,y and (5 = (02,02),

T(X,Y, 2,9y, o, by, O 5) is stochastically monotone

in 6.

The generalized pivot statistic T'(X,Y, x,y, fiz, fty, 02, 05)
is also required to satisfy the following conditions:

05)—0

1436



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:9, 2013

C4. For a fixed x and y, the probability distribution of
T(X,Y,x,y, fia, iy, 02, 05) is free of the unknown
parameters 6 and § = (03, 02).
C5. The observed valued of T'(X,Y, x,y, iz, iy, 02, 05),
namely
T(x,y, 2.y, fix, Jty, 02, 05) is simply equal to 6.
A 100(1 — /2)% generalized lower conﬁdence limit for 6
is then given by T'(X,Y, 2, y, fte; by, 03, 02)1—a the
100(1 — a)th percentiles of T'(x,y, 2, y, fix, fiy, 0, 05).-
Further, given the observed value z, let £; and ¢5 be such
values that
Pty < T(X,Y,2,y, fia, 1y, 02,02) < t2]0) = 1 — o for
chosen significant level o € (0, 1) than the confidence interval
for parameter 6 defined by
{0 :t1 <T(X,Y,2,y, i, 1y, 02, y <tp}isal00(1—a)%
generalized confidence interval for 6.
For the one-sided hypothesis given above they defined a
data-based extreme region C, , of the form

Coy(0,07,00) ={(X,Y): T(X,Y,z Yl iy, 20

- T(l’7 Y, T, Y, tg, ,u/y’ Uza Uy) 2 0.
For the one-sided Behrens-Fisher problem, the generalized p-
value is

p* = Pr(T(X,Y,z,y, uz,uyﬁ ;)
- T(‘T Y, Y, ulmu‘yvo—a7 y)|0 = 00)

III. MAIN RESULTS FOR BEHRENS-FISHER PROBLEM WITH

ONE VARIANCE UNKNOWN

Following Schechtman and 2Sherman [1], we suppose a ratio

of variances is known i.e. % = ¢, where ¢ is a constant.
According to Tsui and Weerahandi [6], one of the potential
pivotal quantity can be defined as
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For the one-side Behrens-Fisher problem as stated,

0 : 0 < 0y against H, : 0 > 6, , we can assume 0y = 0
without loss of generality, and the generalized p-value for the
one-sided Behrens-Fisher problem is p(g) which is

Pr (Q(X Y, %yaum,uﬂ%? y) > Qobs = O)

where ®(.) is a cdf of the standard normal distribution and
Ey (.) is an expectation operator with respect to V.

To find the upper bound of p(gq), we need Theorems 1-2
based on Tang and Tsui [7] as follows:

Theorem 1. Define

mm:¢@ %ﬂ for we(0,1).

Then for fixed z < 0, h(v) is a convex function of v.

Proof: Letting

we have f(v) = ®(h(v)). Let ¢ be the probability density
function of standard normal distribution.
Then

f'w) = (")) = (@) (v))
= ¢/ (h(v)) (' (v))* + e(h(v))h" (v)

For Z < 0, h(v) < 0. Hence ¢'(h(v)) > 0. Obviously,
¢(h(v)) > 0. Moreover,

vo= () ()]
SO

2 (3)

4(u )

Hence h(v) > 0, and h(v) is convex in v. [ |

E

SF o

>0
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Theorem 2. Let

(n—1)m
=P |® — <
9(a) (Z Cp_1a(m+nc) — "I
where z, Cy,_1 independent random variables such that
2~ N(0,1), Cp_1 ~ X2_,. Then g(a) is a convex function
in a.
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Er(.) is an expectation operator with respect to 7 and
U(.)p—1 is a cdf of ¢ distribution with (n — 1) degree of
freedom, denote

hi(a) =/ “E0 @1 (r) and g1(a) = Vo1 (hu(a))

Let 1,1 be the probability density function of ¢ distribution
with n — 1 degees of freedom. we have

g1 (a) = (g1(a))’
= (Yn-1(h1(a))hi(a))
=, 1 (h1(a)) (W) (a))® + ¥n_1(h1(a))R] (a).

1(71(a)) = 0.

()]

=g () () e

m

For r < 0.5, hi(a) <0, and consequently, 1!, _
Morever,

1

h«@)—[;(““”+“®)2@%r

ml

~

Hence g{(a) > 0. That is g1(a) is convex in a. As a result,
g(a) = Er(g1(a)) is convex in a. [ |

Theorem 3. For the one-sided Behrens Fisher problem |,
when a ratio of variances is known with Hy : 1 — po < 6y
and any 0 < r < 0.5. The generalized p-value , p(q) in (2),
has the following property under Hy:

m + nc

Py(p(q) <7) < Woa(k@7H(r)) k=

m

Where U,,_1(.) is a cdf of t distribution with n— 1 degrees of
Sfreedom,®(.) is cdf of the standard normal distribution, and
& Linverse function of ®(.).

Proof: Denote

2
g — —
A=_ 2 St ORI
- 52 g2 = n—1 — 2
n 4 Im g‘% a'gn O-II,‘
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From (2)
plq) = Ev @((y_x) <% (m;n(;))—éﬂ
—Ev:<I> -2 \/2 1
L \YEE VR )y
— By _q> (Z( & 1AV(Z+”C)>>}

For any r < 0.5 and p(¢) < 7, we must have. Hence by
theorem 1

f(v) = Ev [q> (Z <\/%)ﬂ is convex in V.

By Jensens Inequality,

plg) = Ev(f(V) = F(E(V))) = f(n—1)

mw—¢<z< Cﬁf&;fzd>>:pu@

Now observe that under pq — us =0, z ~ N(0,1),
Cm-1 ~ X2_jand z,C,,_; are independent of one another.
For 0 <r < 0.5.

Py({g:plg) <r} < Py{pi(q) <1} =g(4)

. where g(a) is a defined in theorem 2. Next by theorem 2 for
0<r<0.5,g(A4), is convex in A.

where k = |/ 7tne ]

IV. CONCLUSION

In this paper, we derive an expression of the upper bound of
the generalized p-value for the Behrens-Fisher problem with
a know ratio of variances used the method described by Tang
and Tsui [7]. This upper bound can be easily computed by
R program with command: pnorm(k*gnorm(r)), when r is a
fixed real value between O to 0.5.
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