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 Abstract—An unsupervised classification algorithm is derived 

by modeling observed data as a mixture of several mutually 
exclusive classes that are each described by linear combinations of 
independent non-Gaussian densities. The algorithm estimates the 
data density in each class by using parametric nonlinear functions 
that fit to the non-Gaussian structure of the data. This improves 
classification accuracy compared with standard Gaussian mixture 
models. When applied to textures, the algorithm can learn basis 
functions for images that capture the statistically significant structure 
intrinsic in the images. We apply this technique to the problem of 
unsupervised texture classification and segmentation.  
 

Keywords—Gaussian Mixture Model, Independent Component 
Analysis, Segmentation, Unsupervised Classification. 

I. INTRODUCTION 

ODELING the statistical relations in images is an important 
framework for image processing and synthesis algorithms [1]. 

In many applications, a fixed representation such as the Fourier 
transformation is assumed to model a large number of different 
images. Image processing techniques that use a more flexible model 
that is adapted to the structure of the underlying data can achieve 
better results. Adaptive techniques such as Principal Component 
Analysis (PCA) approximate the intrinsic structure of image data up 
to the second-order statistics. Independent Component Analysis 
(ICA) is a technique that exploits higher-order statistical structure in 
complex image data. This model has recently gained attention due to 
its applications to signal processing problems such as speech 
enhancement, telecommunications, medical signal processing and 
pattern classification. ICA finds a linear non orthogonal coordinate 
system in multivariate data determined by second and higher-order 
statistics. The goal of ICA is to linearly transform the data such that 
the transformed variables are as statistically independent from each 
other as possible [2]. ICA generalizes PCA and like PCA, has proven 
a useful tool for finding structure in data. 

  In this paper, we are interested in finding statistically significant 
structures in images. Images may be constructed by classes of image 
types or natural scene itself may have diverse structures or textures. 
We model the underlying image with a mixture model that can 
capture the different types of image textures with classes. Each class 
is learned in an unsupervised fashion and contains the statistical 
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intrinsic structure of its image texture. In a mixture model, the 
observed data can be categorized into several mutually exclusive 
classes [3]. When the data in each class are modeled as multivariate 
Gaussian, it is called a Gaussian mixture model. We generalize this 
by assuming that the data in each class are generated by a linear 
combination of independent, non-Gaussian sources, called as ICA 
mixture model. The algorithm for learning the parameters of the 
model uses gradient descent algorithm to maximize log likelihood 
function. We apply this learning algorithm to the problem of 
unsupervised classification and segmentation of textures.  

 A large number of approaches for texture classification and 
segmentation have been suggested. Commonly, two types of 
approaches are distinguished, adapted respectively to macro- and 
microtextures, namely, the structural and statistical approaches. As 
far as the latter is concerned, we can site probabilistic methods based 
on texture modelling, statistical methods which characterize an image 
in terms of numerical attributes or features and new tools like neural 
networks, wavelets, multiresolution and multiscale approaches, and 
fuzzy modelling. A few methods also come from signal processing 
and seem to be promising: bidimensional autoregressive modelling 
and, time-frequency and time-scale representations. Claude.I, 
smolarz. A [17] focus on stochastic approaches and, specifically, on 
texture modelling by bidimensional autoregressive models (2D-AR 
models). They describe the AR model and propose a method for 
choosing an adapted neighbourhood and evaluation. Then, the 
segmentation algorithm is presented with the classification criterion 
and the contextual information.  

Y-W Wang, Y.-F. Wang, Y.Xue, W.Gao [4] propose a new 
algorithm for remotely sensed image texture classification and 
segmentation .They have proposed the regularization technique to 
suppress the instability of LSE and propose a new stable method, 
which is based on the total variation, abbreviated TV, for reducing 
instability in texture analysis, and apply which to remotely sensed 
image texture classification and segmentation.  

Unser .M [5] describes a new approach to the characterization of 
texture properties at multiple scales using the wavelet transform. A 
texture is characterized by a set of channel variances estimated at the 
output of the corresponding filter bank. Finally, the DWF feature 
extraction technique is incorporated into a simple multicomponent 
texture segmentation algorithm. 

Charalampidis.D, Kasparis.T [6] introduce a rotational invariant 
feature set for texture segmentation and classification, based on an 
extension of fractal dimension (FD) features. The FD extracts 
roughness information from images considering all available scales 
at once. Scale features are combined with multiple-scale features for 
a more complete textural representation. Features are extracted in 
multiple directions using directional wavelets, and the feature vector 
is finally transformed to a rotational invariant feature vector that 
retains the texture directional information. An iterative K-means 
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scheme is used for segmentation, and a simplified form of a Bayesian 
classifier is used for classification.  

Extended self-similar (ESS) processes were introduced in order to 
provide a generalization of fractional Brownian motion. Kaplan 
L.M.[7] evaluate the effectiveness of multiscale Hurst parameters as 
features for texture classification and segmentation.  

Arof. H. [8] introduced a texture descriptor that utilises circular 
neighbourhoods and 1-D discrete Fourier transforms to obtain 
rotation-invariant features. For each individual circular   
neighbourhood centered at every pixel, a number of input sequences 
are formed by the intensities of pixels on concentric rings of various 
radii measured from the centre of each neighbourhood. Features 
extracted from these magnitudes were used in classification and 
segmentation.  

Tan T.N.[9]  proposed a model based on a widely adopted human 
visual model which hypothesizes that the human visual system 
(HVS) processes input pictorial signals through a set of parallel and 
quasi-independent mechanisms or channels. This model is referred to 
as the multichannel spatial filtering model (MSFM). The core of the 
MSFM presently applied is the recently formulated cortical channel 
model (CCM), which attempts to model the process of texture feature 
extraction in each individual channel in the MSFM.  

Lueng.M.[10]  developed computational image analysis model 
that resembles the functioning of the brain . The multiple-channel 
neural network model consists of three stages: multiple-channel 
representation, neural network classification and spatial context 
correction.  

Mengyang Liao, J.Qin, Y.Tan [11] used simultaneous 
autoregressive (SAR) model to describe texture. They also propose 
using the least-squares method to estimate six SAR parameters. 
Based on the SAR model and the parameter estimation method, they 
classify and segment images of various natural textures and human 
B-scan images. 

Patel. D, Stonham T.J.[12]  propose a new statistical measure, 
which is not based on a pre-defined formulation. Here, the local 
information in all directions around a pixel and its neighbourhood is 
represented in a `directional RANK-strength' vector. The proposed 
method leads to texture classification and segmentation methods.  

Jiang wen,You zhiseng, Li hui [13]  have implemented a texture-
based supervised segmentation method to segment a variety of 
metallographic images which are considered to contain different 
textured regions. Texture features are computed by using a set of 
even symmetric Gabor filters which have been successfully used 
earlier for a variety of texture classification and segmentation tasks.  

One of the most useful texture feature sets is based on second-
order co-occurrences of gray levels of pixel pairs. An extension of 
the co-occurrences to higher orders is prevented by the large size of 
the multidimensional arrays. Oja.E , Valkaelathi.K [14] quantize the 
higher-order co-occurrences by the self-organizing map, called the 
co-occurrence map, which allows a flexible two-dimensional 
representation of co-occurrence histograms of any order. 

Gambotto J, Gueguen .C [15]  proposed an inverse filtering 
approach to picture modelling and recognition .A multidimensional 
vector AR model is fitted to a reference region using a generalized 
Levinson procedure. The models of other regions are then used as 
inverse filters on the reference for classification. The approach is 

applied to natural pictures for recognition and segmentation using the 
textural features only. 

Texture classification and segmentation in digital images is 
commonly achieved using spatial grey level dependence matrices 
(SGLDMs), often referred to as co-occurrence matrices. The 
approach proposed by Arrowsmith M.J., Varley M.R., Picton P.D, 
Heys J.D [16] uses a hybrid neural network system, consisting of a 
self-organising map followed by a backpropagation network, to 
restrict the number of SGLDMs that need to be computed. The 
system is trained in two phases on images with known texture 
content. The trained system is able to provide information, in the 
form of pixel spacing and orientation, on the texture content of 
unseen images. This information may be used to select appropriate 
SGLDMs for further texture classification.  

II. ICA MIXTURE MODEL 

Let us assume data { }Ti xxxxX ,..,,...,, 21=  are drawn 
independently and generated by a mixture density model where i  be 
the total number of data vectors and each data vector ix  is an N-
dimensional data vector where N is the number of sensors. The 
likelihood of the data is given by the joint density 
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where ( )kθθ ,...,1=Θ  are the unknown parameters for each 

),( jji Cxp θ , called the component densities. jC denotes the class 

j and it is assumed that the number of classes, K are known in 
advance. We can estimate the number of classes with a Bayesian 
method using split and merge algorithm. Assume that the component 
densities are non-Gaussian and the data within each class are 
described by  

jjji bSAX +=                                                                         (3) 

where jA  is a MN × scalar matrix and jb is the bias vector for 

class j and the vector  jS  is called the source vector (i.e. coefficients 

for each basis function). The equation (3) shows the way of k ways 
for generating the data vector ix . Depending on the values 

for jA , jS  and jb  there are k ways for viewing ix . We assume 

mutually exclusive classes and maximum likelihood estimation 
results in one model that best fits the data. For simplicity, we 
consider the cases where number of sources (M) is equal to number 
of linear combinations (N). The aim of equality is due to a simpler 
calculation of the learning rules since an exact inverse exist for jA .  

Each class was generated from equation (3) using a different 

jA and jb . Class ‘o’ was generated by two uniformly distributed 

sources and class ‘+’ was generated by two Laplacian distributed 
sources as shown in the Figure (1).  
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Fig.1 Simple example for classifying an ICA mixture model 

 
The task is to classify the unlabelled data points and to determine 

the parameters for each class ( jA , jb ) and the probability of each 

class ),( jji Cxp θ for each data point. The iterative learning 

algorithm which performs the following algorithm in the sequence of 
steps. 

1. Compute the log-likelihood of the data for each class 

)log(det)(log),(log jjjji ASpCxp −=θ                       (4) 

where { }jjj bA ,=θ . 

2. Compute the probability for each class given the data vector tx  
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3. Adapt the basis functions  
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where I is the data index ranges form 1 to T. For the log-likelihood 
function estimation in equation (4) the term log p ( jS ) can be 

approximated as follows: 
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A. Unsupervised Classification Example 
To demonstrate the performance of the learning algorithm, we 
generated random data drawn from different classes and used the 
proposed method to learn the parameters and to classify the data. The 
figure 2 shows an example of four classes in a 2-D data space. Each 
class was generated using random choices for the class parameters. 
The parameters for the mixture model were inferred using equations 
(4)-(7). The implementation of ICA mixture model is given below. 

  
Fig.2 Example of classification of a mixture of non-Gaussian 
densities as linear combination of independent components  
 
 
Initialize model parameters  kθθ ,....,1 . 

Input the data vectors Txx ,......,1  
Repeat perform Main adaptation loop 
     Adapt class parameters 
  Adapt the class probability for each class 
     Adapt the number of classes 
Until the adaptation met convergence 
Assign each data vector ix to one of the classes 
Main adaptation loop: 
Initialize data index 1=i  
Repeat  
For each class, calculate jS , p( jS ) and )( θxp   

Calculate ),( θ
ij xCp  

     Adapt the mixing matrix jA  

     Adapt the bias vector jb  

     Adapt the probability density function parameters for the sources 
    End 
Until i=T. 
 
The classification was tested by processing each instance with the 
learned parameters jA  and jb . For these classes had several 

overlapping areas, the classification error on whole data set averaged 
over 20 trails was 12.5% ± 0.8%. using k-means clustering 
algorithm, the error was observed as 24.3%. 

III.LEARNING BASIS FUNCTIONS FOR TEXTURES 
Several methods have been proposed to learn image codes that 

utilize a set of linear basis functions. The generative texture model 
assumes a fixed set of basis functions and source coefficients that 
active the basis functions to generate a small region in the texture. By 
applying the ICA mixture model, we present the results that show a 
higher degree of flexibility in encoding the images. We have tested 
lot of textures including both periodic and random. For learning, the 
means of the data components were subtracted and the components 
were scaled to unit variance. This implies that there is no need to 
estimate the bias vectors in the case of our texture database. Two 
complete set of basis functions 21 , AA were randomly initialized. 
Then for each gradient in equation (6), a step size was computed as a 
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function of the amplitude of the basis vectors and the number of 
iterations. The algorithm is converged after T=30,000 iterations and 
learned several classes of basis functions. Figure 3 shows the natural 
texture of a scene. Figure 4 shows the learned basis functions 
corresponding to the input texture. Note that unlike the case in K-
means clustering or clustering with spherical Gaussians, the classes 
can be spatially overlapping. In the example, the classes had zero 
mean and the pattern vectors were only distinguished by their relative 
probabilities under the different classes.  

IV.UNSUPERVISED TEXTURE CLASSIFICATION & 
SEGMENTATION 

In the earlier section, we applied the ICA mixture model to learn 
two classes of basis functions. The same approach can be used to 
identify multiple classes in a single image. The learned classes are 
mutually exclusive and by dividing the whole texture image into 
small regions and classifying them we can identify a cluster of texels 
which encode a certain region or texture of image. Our example 
illustrates how the algorithm can learn the textures by unsupervised 
classification and therefore is able to segment the image into 
different classes. In contrast to the supervised techniques, our method 
works unsupervised and may be more flexible to a wider range of 
texture images. The classification result of the ICA mixture model 
for these classes using image patterns of size 5x5 pixel patches. The 
model classifies foreground as one class and background as another 
class. Due to high resolution, background within the texture class are 
automatically segmented. The learned basis functions for these 
classes reflect the different statistical structures for each class. In 
some cases, it misclassified the very dark region as background since 
this region does not contain enough texture information. To evade 
this problem, the model needs to average out the small individual 
misclassified patches by taking a maximum-vote over the region or 
averaging it over the classes. 

 
Fig.3 Sample texture of a natural scene 
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