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Abstract—In this paper, a asymptotically periodic predator-prey
model with Modified Leslie-Gower and Holling-Type II schemes
is investigated. Some sufficient conditions for the uniformly strong
persistence of the system are established. Our result is an important
complementarity to the earlier results.
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I. INTRODUCTION

IT is well known that the dynamical behavior of predator-prey systems is a form of very common biological inter

action in the natural word. This topic has attracted a lot of

attention and many good results have already been reported.

For example, Chen and Chen [1] studied the linear stability of

trivial periodic solution and semi-trivial periodic solutions of

a periodic predator-prey system with distributed time delays

and impulsive effect. Mukherjee [2] made a discussion on the

uniform persistence in a generalized prey-predator system with

parasitic infection. Chen [3] gave a theoretical study on the

almost periodic solution of the non-autonomous two-species

competitive model with stage structure. Sen et al. [4] analyzed

the bifurcation behavior of a ratio-dependent prey-predator

model with the Allee effect. Agiza et al. [5] investigated the

chaotic phenomena of a discrete prey-predator model with

Holling type II. Aggelis et al. [6] considered the coexistence of

both prey and predator populations of a prey-predator model.

Nindjin and Aziz-Alaoui [7] focused on the persistence and

global stability in a delayed Leslie-Gower type three species

food chain. Ko and Ryu[8] discussed the coexistence states

of a nonlinear Lotka-Volterra type predator-prey model with

cross-diffusion. Fazly and Hesaaraki [9] dealt with periodic

solutions of a predator-prey system with monotone functional

responses. One can see [10-52] etc. For more related stud

ies. However, the research work on asymptotically periodic

predator-prey model is very few at present.

The so-called asymptotically periodic function is the func

tion ā(t) which can be expressed by the form ā(t) = a(t) +
ã(t) , where a(t) is a periodic function and ã(t) satisfies
limt→+∞ ã(t) = 0.
In 2003, Aziz-Alaoui and Okiye [53] investigated the stab

ility and bifurcation of the following predator-prey model with

C. Xu is with the Guizhou Key Laboratory of Economics System Simul
ation, School of Mathematics and Statistics, Guizhou University of Finance
and Economics, Guiyang 550004, PR China e-mail: xcj403@126.com.
P. Li is with the School of Mathematics and Statistics, Henan Uni

versity of Science and Technology, Luoyang 471023, PR China e-mail:
lpllpllpl@163.com.

time delay ⎧⎨
⎩

dx
dt

= x(t)
[
a − bx(t) − cy

x(t)+k1

]
,

dy
dt

= y(t)
[
d −

ey(t)
x(t)+k2

]
,

(1)

with initial conditions x(0) ≥ 0, y(0) ≥ 0, where x(t) denotes
the densities of prey, at time t; y(t) denotes the densities of the
predator at time t; a, b, c, e, k1, k2 are all positive constants.

In details, one can see [53].

We must point out that all biological and environment

parameters in model (1) are constants in time. However, any

biological or environmental parameters are naturally subject

to fluctuation in time. Thus the effect of a periodically vary

ing environment is important for evolutionary theory as the

selective forces on systems in a fluctuating environment differ

from those in a stable environment. Therefore, the assumptions

of periodicity of the parameters are a way of incorporating

the periodicity the environment( such as seasonal effects of

weather, food supplies, mating habits and so on). Stimulated

by above discussion and considering the asymptotically peri

odic function, in this paper, we will modify system (1) as the

form ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx
dt

= x(t)
[
a(t) + ã(t) − (b(t) + b̃(t))x(t)

−
(c(t)+c̃(t))y

x(t)+k1(t)+k̃1(t)

]
,

dy
dt

= y(t)
[
d(t) + d̃(t) − (e(t)+ẽ(t))y(t)

x(t)+k2(t)+k̃2(t)

]
,

(2)

with initial conditions x(0) ≥ 0, y(0) ≥ 0.
The principle object of this article is to investigate the

uniformly strong persistence of system (2). Only very few

papers which deal with this topic, see [10,54].

In this paper, we always assume that system (2) satisfies

(H) a(t), b(t), c(t), d(t), k1(t), k2(t) are continuous, non-
negative periodic functions; ã(t), b̃(t), c̃(t), d̃(t), k̃1(t), k̃2(t)
are continuous, nonnegative asymptotically items of asymp

totically periodic functions.

II. UNIFORMLY STRONG PERSISTENCE

In this section, we shall present some result about the

uniformly strong persistence of system (2). For convenience

and simplicity in the following discussion, we introduce the

notations, definitions and Lemmas. Let

0 < f l = lim
t→+∞

inf f(t) ≤ lim
t→+∞

sup f(t) = fu < +∞.
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In view of the definitions of lower limit and upper limit, it

follows that for any ε > 0, there exists T > 0 such that

f l
− ε ≤ f(t) ≤ fu + ε, for t ≥ T. (3)

Definition 1. The system (2) is said to be strong persistence,
if every solution x(t) of system (2) satisfies

0 < lim
t→+∞

inf x(t) ≤ lim
t→+∞

sup x(t) ≤ δ < +∞.

Lemma 1. Both the positive and nonnegative cones of R2

are invariant with respect to system (2).

It follows from Lemma 1 that any solution of system (2) with

a nonnegative initial condition remains nonnegative.

Lemma 2.[10] If a > 0, b > 0 and ẋ(t) ≥ (≤)x(t)(b −

axα(t)), where α is a positive constant, when t ≥ 0 and
x(0) > 0, we have

x(t) ≥ (≤)

(
b

a

) 1

α

[
1 +

(
bx−α(0)

a
− 1

)
e−bαt

]
−

1

α

.

In the following, we will ready to state our result.

Theorem 1. Let θ2 be defined by (9). Assume that the
condition (H) and alkl

1 > cuθ2 hold, then system (2) is
uniformly strong persistence.

Proof It follows from (3) that for any ε > 0, there exists
T1 > 0 such that for t ≥ T1,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

al − ε ≤ a(t) ≤ au + ε,−ε < ã(t) < ε,

bl − ε ≤ b(t) ≤ bu + ε,−ε < b̃(t) < ε,

cl − ε ≤ c(t) ≤ cu + ε,−ε < c̃(t) < ε,

dl − ε ≤ d(t) ≤ au
2 + ε,−ε < d̃(t) < ε,

kl
1 − ε ≤ k1(t) ≤ ku

1 + ε,−ε < k̃1(t) < ε,

kl
2 − ε ≤ k2(t) ≤ ku

2 + ε,−ε < k̃2(t) < ε.

(4)

Substituting (4) into the first equation of system (2), we have

dx

dt
= x(t)

[
a(t) + ã(t) − (b(t) + b̃(t))x(t)

−
(c(t) + c̃(t))y

x(t) + k1(t) + k̃1(t)

]

≤ x(t)
[
a(t) + ã(t) − (b(t) + b̃(t))x(t)

]
≤ x(t)

[
(au + 2ε) − (bl

− 2ε)x(t)
]
. (5)

By Lemma 2, we get

lim
t→+∞

sup x(t) ≤
au

bl
:= θ1. (6)

Then for any ε > 0, there exists T2 > T1 > 0 such that

x(t) ≤ θ1 + ε, t ≥ T2. (7)

Similarly, from (3) and the second equation of system (2), we

obtain that for any ε > 0, there exists T3 > T2 > 0 such that

ẏ(t) = y(t)

[
d(t) + d̃(t) −

(e(t) + ẽ(t))y(t)

x(t) + k2(t) + k̃2(t)

]

≤ y(t)

[
(du

− 2ε) −
(el − 2ε)y(t)

θ1 + ε + ku
2 + 2ε

]
. (8)

In view of Lemma 2, we derive

lim
t→+∞

sup y(t) ≤
du(θ1 + ku

2 )

el
:= θ2. (9)

Then for any ε > 0, there exists T4 > T3 > 0 such that

y(t) ≤ θ2 + ε, t ≥ T4. (10)

By (7), (10) and the first equation of system (2), we obtain

that for any ε > 0, there exists T5 > T4 > 0 such that

dx

dt
= x(t)

[
a(t) + ã(t) − (b(t) + b̃(t))x(t)

−
(c(t) + c̃(t))y

x(t) + k1(t) + k̃1(t)

]

≥ x(t)
[
(al

− 2ε) − (bu + 2ε)x(t)

−
(cu + 2ε)(θ2 + ε)

kl
1 − 2ε

]
. (11)

Using Lemma 2 again, we have

lim
t→+∞

inf x(t) ≥
alkl

1 − cuθ2

kl
1b

u
:= δ1. (12)

Thus for any ε > 0, there exists T6 > T5 > 0 such that

x(t) ≥ δ1 − ε. (13)

According (7), (10) and the second equation of system (2), we

obtain that for any ε > 0, there exists T7 > T6 > 0 such that

ẏ(t) = y(t)

[
d(t) + d̃(t) −

(e(t) + ẽ(t))y(t)

x(t) + k2(t) + k̃2(t)

]

≥ y(t)

[
dl + 2ε −

eu + 2ε

kl
2 − 2ε

y(t)

]
. (14)

Using Lemma 2 again, we have

lim
t→+∞

inf y(t) ≥
dl
1e

u

kl
2

:= δ2. (15)

Thus we complete the proof of Theorem 1.

III. CONCLUSIONS

In this paper, we have investigated a asymptotically pe

riodic predator-prey model with modified Leslie-gower and

Holling-type II schemes. A set of sufficient conditions for the

uniformly strong persistence of the system are derived. It is

shown that under some suitable conditions, the asymptotically

periodic predator-prey model with modified Leslie-Gower and

Holling-type II schemes is uniformly strong persistence. Our

results obtained in this paper complement the earlier results.
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