
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3158

Abstract— Measuring the complexity of software has been an
insoluble problem in software engineering. Complexity measures can
be used to predict critical information about testability, reliability,
and maintainability of software systems from automatic analysis of
the source code. During the past few years, many complexity
measures have been invented based on the emerging Cognitive
Informatics discipline. These software complexity measures,
including cognitive functional size, lend themselves to the approach
of the total cognitive weights of basic control structures such as loops
and branches. This paper shows that the current existing calculation
method can generate different results that are algebraically
equivalence. However, analysis of the combinatorial meanings of this
calculation method shows significant flaw of the measure, which also
explains why it does not satisfy Weyuker's properties. Based on the
findings, improvement directions, such as measures fusion, and
cumulative variable counting scheme are suggested to enhance the
effectiveness of cognitive complexity measures.

Keywords—Cognitive Complexity Measure, Cognitive Weight
of Basic Control Structure, Counting Rules, Cumulative Variable
Counting Scheme.

I. INTRODUCTION

easuring the complexity of software has been an
insoluble problem in software engineering. Many

software complexity measures have been proposed and
evolved for ages. The basis of all these measures lies on the
discipline of counting, as the initial step of most measures is
usually “counting some elements of the software”.
Combinatorics is a branch of pure mathematics concerning the
study of counting. It is frequently used in computer sciences
to obtain estimates of the number of elements of certain sets.
As all complexity measures involve counting, they should be
explainable with combinatorics proof.

Cognitive Informatics [13], [14], [15] is an area of studying
the internal information processing mechanisms of the brain
and the processes involved in perception and cognition.
During the past few years, many researchers have been
integrating Cognitive Informatics to derive software
complexity metrics so called cognitive complexity measures
[1], [2], [3]. The approach has been considered as one of the

B. Auprasert is with the Department of Computer Engineering,
Chulalongkorn University, Bangkok 10330, Thailand (corresponding author
to provide e-mail: 51703650@student.netserv.chula.ac.th).

Y. Limpiyakorn is with the Department of Computer Engineering,
Chulalongkorn University, Bangkok 10330, Thailand (e-mail:
Yachai.L@chula.ac.th).

promising solutions to measure the complexity of software.
Complexity measures can be used to predict critical
information about testability, reliability, and maintainability of
software systems from automatic analysis of the source code.
Recently, one of the emerging research areas has focused on
cognitive complexity metrics to reflect the software
complexity. The key part of determining the cognitive
complexity relies on the total cognitive of basic control
structures (BCS’s) e.g. sequence, if-else, switch-case, while-
loop, for-loop, etc. The calculation of the total cognitive
weights of the basic control structures of software seems to
resemble the counting rules in Combinatorics, i.e. the rule of
sum, and the rule of product. This research, thus, construes the
calculation of total cognitive weights as combinatorial
meanings.

In Combinatorics, when the two approaches to counting
something are combinatorial equivalence, they should be
explainable by the double counting (two-way counting) proof
technique [7], [8], [9]. This research attempts are to find a new
algebraically equivalence way to calculate the total cognitive
weights of the BCS’s, and to analyze the combinatorial
meanings of the two ways in order to reveal some major
problems inherent in the existing cognitive complexity
measures. and make suggestions for future improvement.

The contents in this paper are organized as follows: section
2 briefly explains the counting rules in Combinatorics. The
calculation of a cognitive complexity measure is then
described in section 3, followed by proposing the alternative
calculation of the total cognitive weights in section 4, and
analyzing the corresponding combinatorial meanings in
section 5. Suggestions for future improvement are provided in
section 6. Section 7 finally concludes the work in this paper.

.

II. COUNTING RULES IN COMBINATORICS

In Combinatorics, there are two basic counting rules: the
rule of sum, and the rule of product. Counting rules are the
foundation of any matters involving counting.1

The rule of product [10] states that “the number of ways to
do a procedure that consists of two subtasks is the product of
the number of ways to do the first task and the number of
ways to do the second task after the first has been completed”.

This research is funded by Software Industry Promotion Agency (SIPA)
that has collaborated with Chulalongkorn University for the Software Quality
Research and Development Project.

Underlying Cognitive Complexity Measure
Computation with Combinatorial Rules

Benjapol Auprasert, and Yachai Limpiyakorn

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3159

This rule indicates that “multiplication” is used when the
two sets we are counting, are dependent on each other.
Applying this rule to counting the cognitive complexity
implies that the total cognitive complexity of two blocks of
software code should be calculated from the product of the
amount of the cognitive complexity of each block if and only
if the understanding of a particular block of code requires the
preceding comprehension of the other block.

The rule of sum [10] states that “the number of ways to do a
task in one of the two ways is the sum of the number of ways
to do these tasks if they cannot be done simultaneously”.

This rule reflects a fact about set theory. It states that
“addition” is used when the two sets we are counting, are
disjoint. Applying this rule to counting the cognitive
complexity implies that the total cognitive complexity of two
blocks of software code should be computed from the sum of
the amount of the cognitive complexity of each block if and
only if to comprehend each block does not require the
understanding of the other block at all.

III. TOTAL COGNITIVE WEIGHTS OF BASIC CONTROL
STRUCTURES

In 2003, Wang and Shao [1] proposed cognitive functional
size (CFS) as a software complexity measure based on Wc -
the total cognitive weights of Basic Control Structures
(BCS’s) of software. Wc is defined as the total sum of
cognitive weights of its q linear blocks composed in
individual BCS’s. Since each block may consist of ‘m’ layers
of nesting BCS’s, and each layer with ‘n’ linear BCS’s,

 q m n
Wc = [Wc(j,k,i)] (1)
 j=1 k=1 i=1

where weights Wc (j,k,i) of BCS’s were initially proposed
as in TABLE I.

TABLE I. COGNITIVE WEIGHTS (WC) OF BCS’S

Category BCS Wi

Sequence Sequence (SEQ) 1

Branch If–Then-Else (ITE) 2

Case (CASE) 3

Iteration For-do (Ri) 3

Repeat-until (R1) 3

While-do (R0) 3

Embedded
Component

Function Call (FC) 2

Recursion (REC) 3

Concurrency Parallel (PAR) 4

Interrupt (INT) 4

Wc has been a remarkable breakthrough in software
engineering that inspires tremendous new ideas for measuring
the software because it is independent from implementation
technologies, easy to calculate, and based on a lot of sound
Cognitive Informatics principles. Many cognitive complexity
measures have been proposed based on Wc , for example :

Wang’s CFS [1] is defined as

CFS = (Ni + No) * Wc (2)

Kushwaha and Misra’s CICM [3] is defined as

CICM = WICS * Wc (3)

where WICS is the weighted information count of the
software derived from:

 LOCS
WICS = {#(identifiers and operators in the kth. line) / (LOCS-k)} (4)
 k=1

Wang’s modified Cc(S) [2] is defines as

Cc(S) = f (data objects) * Wc (5)

where f (data objects) is the function that counts the number
of global and local data objects such as inputs, outputs, data
structures, and internal variables.

IV. ALGEBRAICALLY EQUIVALENCE TOTAL COGNITIVE
WEIGHTS

Based on the calculation of the total cognitive weights of
BCS’s described in section 2, the Distributive Property in
Algebra, i.e. “a (b + c) = ab + ac”, can be used to re-arrange
the terms into an alternative way to calculate the Wc .

Program A{

 Statement1;

 If (condition1){...} else {...};

 While (condition2){

 For {…};

 Statement2;
 Statement3;

 While (condition3){
 If (condition4) {...}
 }

 }

}

Fig. 1. BCS’s structure of sample program

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3160

From the sample program’s structure presented in Fig. 1,
Wc from Wang’s proposed method can be calculated as below:

Wc = Wsequence + Wif + [Wwhile* {Wfor + Wsequence + (Wwhile *
Wif)}] (6)

Fig. 2. The structure of BCS’s of program in Fig. 1.

Applying the distributive property to the term [Wwhile*
{Wfor + Wsequence + (Wwhile * Wif)}] in Equation (6), an
alternative way to calculate Wc results in:

Wc = Wsequence + Wif + Wwhile* Wfor + Wwhile* Wsequence +
Wwhile* Wwhile * Wif (7)

In general, from Wang’s proposed calculation method in
Equation (1), the cognitive weights are summed up from the
inner structures out, layer by layer, recursively. Whereas in
our alternative way, Wc can be computed by finding the basic
control structures within which do not contain any basic
control structures, multiplying their weights by the weights of
all their outer BCS’s, then summing them altogether. This
implies that algebraically, the program structure shown in Fig.
3 has the same total cognitive weights as that of the program
structure in Fig. 2.

Fig. 3. Another structure with Wc algebraically equivalent to that of
structure in Fig. 2

V. COMBINATORIAL MEANING ANALYSIS OF TOTAL
COGNITIVE WEIGHTS COMPUTATION

Since the Wc of the structures in Fig. 2 and Fig. 3 are
proved equivalence algebraically in section 4, the count of
total cognitive weights should be explainable by the double

counting technique in Combinatorics.
Fig. 4 shows the program of which the BCS’s align with the

structure depicted in Fig. 3. The BSC’s structure of program
in Fig. 4 is also equivalent to that of program in Fig. 1 as
being derived from the calculation of the total cognitive
weights. It is obvious that the program structures in Fig. 2 and
Fig. 3 should not be equivalent in the cognitive complexity
perspective, otherwise, the effort used to comprehend the
programs in Fig. 1 and Fig. 4 are indifferent.

Program{

 Statement1;

 If (condition1){...} else {...};

 While (condition2){
 For {…}
 }

 While (condition3){
 Statement2;
 Statement3;
 }

 While (condition4){
 While(condition5){
 If (condition6) {...}
 }
 }

}

Fig. 4. BCS’s structure of program derived from alternative total
cognitive weights computation equivalent to that of Fig. 1.

To inspect if any mistakes exist in the calculation, we
examined the combinatorial meanings underlying the
calculation method. The weight of each BCS, as shown in
TABLE I, is defined as “relative effort spent on
comprehending the function and semantics of a BCS against
that of the sequential BCS” [2], while the total cognitive
weights is defined as “the extent of relative difficulty or effort
spent in comprehending the software” [2].

When something can generate more possible different
combinations, they need more effort for comprehension. To
quantify the abstraction of counting the total cognitive
weights, in this paper the “effort used to comprehend each
BCS” is considered as the number of ways that BCS can
generate some factors that make it difficult to comprehend.
The cognitive weight of a BCS is measured as the number of
ways that BCS can generate some factors that make it difficult
to comprehend relative to the sequential BCS, of which the
cognitive weight is ‘1’. The value of total cognitive weights of
the software is measured as the number of relative ways that
software can generate the combination of factors that make the
function and semantics difficult to comprehend.

Based on these definitions, the rule of sum and the rule of
product in Combinatorics are applied to counting the total
cognitive weights. The use of ‘multiplication’ with the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3161

weights of nested BCS’s implies that to understand the whole
nested BCS’s structure, it is required to fully understand the
whole contents in the inner BCS’s first, then understand the
outer ones surrounding it, layer by layer from inside out. This
seems reasonable compared to the use of ‘addition’ with linear
BCS’s structures, which implies that the cognition of these
BCS’s are completely disjoint. In other words, BCS’s in linear
structure and the contents they contain within can be
understood separately and simultaneously.

In fact, it is observed that even the linear BCS blocks are
not necessarily understandable without others. Hence, they
cannot be understood simultaneously. The counter example is
shown in Fig. 5 when there are some variables in the previous
blocks that have effect on the following blocks.

f (int a){

 int fac =1;

 while (a>0){
 fac = fac * a;
 a = a-1;
 }

 if (a>20000) return true;
 else return false;

}

Fig. 5. Counter example of linear BCS’s against simultaneously
comprehensible

It can be seen from Fig. 5 that the “while” block and “if”
block are posed linearly. However, it is clearly that the intents
of the two blocks cannot be understood simultaneously. The
descending “if” block cannot be understood without the
comprehension of the variable existing in the preceding
“while” block. The variable a seems to transfer the complexity
of one block to another and it disproves the assumption that
the complexity of the blocks in linear structure are disjoint.

The finding reveals the major weakness of the total
cognitive weights of software that it does not consider the
possible data flow from one BCS’s block to another. This
incident could carry the complexity from one block to another,
making them incomprehensible simultaneously as evident by
the use of “addition” with the weights of BCS’s in linear
structures. Moreover, the existing method to compute Wc

assigns the same complexity to each BCS’s of the same kind.
For example, the “while” blocks are always considered as
equally difficult to understand no matter how many different
numbers of variables contained within as long as they do not
contain any BCS’s. For these reasons, we can find no
reasonable double counting proof to show the equivalence of
the two calculation methods in section 4, because they are not
really equivalent. The algebraically equivalence only
happened by chance because the definition of Wc is based on
the assumption that the complexity inside one block cannot be
transferred to another block in linear structure.

A. Weyuker’s properties and cognitive complexity measure

Weyuker’s properties [4] consist of nine properties of
syntactic software complexity measures widely used as
criteria for evaluating software measures. However, many
classical complexity measures, such as LOC, McCabe
Cyclomatic number, Halstead’s effort, fail to satisfy some of
these properties as shown in TABLE II [6].

TABLE II. EVALUATION OF COMPLEXITY MEASURES AGAINST WEYUKER’S
PROPERTIES

As proved in [5], [6] and shown in TABLE II, the
Cognitive Functional Size (CFS) [1], [2] brilliantly satisfies
eight of these properties, that is:

Let P and Q be a program body.
Property 1. (P) (Q) (|P|)
Property 2. Let c be a non negative number, then there are

only finitely many programs of complexity c.
Property 3. There are distinct program P and Q such that |P|

= |Q|
Property 4. (P) (Q) (P Q & |P|

Property 5. (P) (Q) (|P| |P;Q| & |Q| |P;Q|)
Property 7. There are some program bodies P and Q such

that Q is formed by permuting the order of statements of P,
and |P|

Property 8. If P is renaming of Q, then |P| = |Q|
Property 9. (P) (Q) ((|P| + |Q|) < |P;Q|)

However, CFS fails to satisfy Property 6, which states that:
Property 6a. (P)(Q)(R)((|P|=|Q|) & (|P;R| |Q;R|))

Property 6b. (P)(Q)(R)((|P|=|Q|) & (|R;P| |R;Q|))
The combinatorial analysis in the previous section clearly

explains the reason why it fails to satisfy this property. This is
because the calculation of the total cognitive weights implies
that the complexity of blocks in linear structure can be
assessed separately and simultaneously.

It is found that the measures, which satisfy this property,
must take into account of the possibility of the complexity
flowing between blocks of BCS’s. That is, suppose program
blocks P and R be in linear structure, when there are some

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3162

identifiers in R that depend on the processing in P, the
complexity in understanding P; R should be regarded more
than the sum of complexity of P and R individually (|P;R| >
|P|+|R|). However, when P and R are completely independent,
the complexity in understanding P; R should be the same as
the complexity in understanding them simultaneously (|P;R| =
|P|+|R|).

VI. SUGGESTIONS FOR FUTURE IMPROVEMENT

According to the analysis in section 5, this section proposes
some improvements on the cognitive complexity measures to
enable satisfying all nine Weyuker’s properties.

A. Complexity Measures Fusion

From TABLE II, the two measures, i.e. Halstead’s effort
measure, and data flow complexity measure manage to satisfy
Property 6, while CFS lacks. Therefore, integrating the
principles of these measures into the calculation of Wc would
result in the measure satisfying all nine properties. Here, the
data flow complexity [11] seems to fit for improving CFS,
since the method’s concept is to measure the possibility for
control to transfer from one program block to another by
counting “the number of variable definitions which reach the
block” as the complexity of that block. This is precisely what
CFS fails to cover as being analyzed in the previous sections.

1) Oviedo’s data flow complexity measure

Oveido’s [11] is a software complexity measure based on
the data flow characteristics of the program, defined as per
below:

“A program can be uniquely decomposed into a set of
disjoint blocks of ordered statements having the property that
whenever the first statement of the block is executed, the other
statements are executed in the given order. Furthermore, the
first statement of the block is the only statement which can be
executed directly after the execution of a statement in another
block. Intuitively, a block is a chunk of code which is always
executed as a unit.”

A program flow graph is a directed graph in which each
node corresponds to a block of the program and the edges
correspond to the program branches. If the nodes ni and nj of
the flow graph correspond to the program blocks ni and nj
then there is an edge (ni , nj) from node ni to node nj if it is
possible for control to transfer directly from block ni to block
nj in the program.

A variable definition takes place in a PROGRAM statement
or in an assignment statement. A variable reference takes
place when the variable is used in an expression (i.e., in an
assignment statement or predicate) or an OUTPUT statement.

A locally available variable definition for a program block
is a definition of the variable in the block. A locally exposed
variable reference in a block is a reference to a variable which
is not preceded in the block by a definition of that variable.

A variable definition in block ni is said to reach block nk if
the definition is locally available in block ni and there is a
path from ni to nk (i.e., nk is a successor of ni) along which
the variable is not locally available in any block on the path,
i.e. the variable is not redefined along that path. A variable
definition in a block overrides all other definitions of this
variable that might otherwise reach the block.

Data flow complexity of block i is defined as “the sum of
the numbers of available definition of variables whose
references are locally exposed in block i” [4], [11].

Measuring the data flow complexity of each BCS block
along with the cognitive weight of that BCS would help
eliminate the sense that the measure does not consider the
complexity of each block as disjoint.

2) Halstead’s Software Metrics

Halstead [12] proposed a set of software metrics for
measuring the algorithmic complexity by counting operators
and operands from software codes. Let

n1 = number of distinct operators,
n2 = number of distinct operands,
N1 = total number of operator occurrences, and
N2 = total number of operand occurrences.

Based on the above notations, the definition of Halstead’s
measures can be summarized as displayed in TABLE III

TABLE 3. DEFINITIONS OF DERIVED MEASURES OF HALSTEAD’S SOFTWARE
METRICS [1], [12]

Measure Symbo

l

Formula

Program length N N = N1 + N2

Program vocabulary n n = n1 + n2

Volume V V = N*(log2 n)

Estimated abstraction
level

L L= (2 n 2) /
 (n1*N2)

Difficulty D D= 1 / L

Effort E E = V * D

Time T T = E / 18

Remaining bugs B B = E2/3 / 3000

Using Halstead’s metrics to measure the operators and
operands inside each BCS along with the cognitive weight of
that BCS would help eliminate the sense that the measure
considers all BCS’s of the same kind as having the same
cognitive complexity no matter what they contain inside.

B. Cumulative Variables Counting Scheme

Another possible resolution for the issue of complexity that
may flow between BCS’s blocks when calculating Wc is to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3163

count the number of variables in the BCS along with the
weight of BCS itself. Moreover, since the difficulty in
comprehending the variables increases as they appear more
and more in the program, we then not only count the number
of times they appear in that BCS, but also cumulate the
number of times they appear in the program up until that BCS
block. In other words, when a variable appears later in the
program, the value stored inside it is dependent on its
preceding occurrences in the program, hence it cumulates the
complexity of its preceding occurrences.

Based on this cumulative variables counting scheme, we
can quantify the complexity of each BCS’s block in linear
structure separately and simultaneously, as the possibility of
the transfer of complexity between blocks is already weighted
by the counting scheme.

VII. CONCLUSION

As counting occurrences is one of the basis operations of
measurement, the counting rules in Combinatorics are used in
this work to reveal the flaws in the calculation of the total
cognitive weights of basic control structures (BCS’s), which is
used in many current cognitive complexity measures of
software. The mentioned calculation approach assumes that
when two BCS’s are located in linear structure, they can then
be comprehended independently and simultaneously. This
assumption causes the complexity of the programs that have
different control structures and should not be always
equivalent to become equivalent algebraically according to the
means the total cognitive weights are calculated. This is also
the reason why one of the well-known cognitive complexity
measures, the Cognitive Functional Size, still misses one of
the nine Weyuker’s properties. It defeats some other
complexity measures by satisfying eight of the Weyuker’s
properties, though.

It is obvious that the BCS blocks are not independent from
each other, even though they are posed in linear structure.
This is because the variables can carry the complexity from
one block to another. Therefore, the complexity when try to
understand the linear BCS’s chunks cannot be evaluated
separately and simultaneously as implied by the calculation of
the total cognitive weights. Suggestions for the improvement
would be to include the data flow complexity in the
calculation, and the propose of cumulative variables counting
scheme as the attempts to fortify the cognitive complexity
measures to satisfy all nine Weyuker’s criteria, and more
precisely and rigorously reflect the effort spent to comprehend
the software.

REFERENCES

[1] Yingxu Wang and Jingqiu Shao, "Measurement of the Cognitive
Functional Complexity of Software", Proceedings of the 2nd IEEE
International Conference on Cognitive Informatics, p.67, August 18-20,
2003

[2] Yingxu Wang, "Cognitive Complexity of Software and its
Measurement," Cognitive Informatics, 2006. ICCI 2006. 5th IEEE
International Conference on , vol.1, no., pp.226-235, 17-19 July 2006

[3] Dharmender Singh Kushwaha , A. K. Misra, "A modified cognitive
information complexity measure of software", ACM SIGSOFT Software
Engineering Notes, v.31 n.1, January 2006

[4] E. J. Weyuker, “Evaluating Software Complexity Measures, IEEE
Transactions on Software Engineering”, v.14 n.9, p.1357-1365,
September 1988

[5] Sanjay Misra , A. K. Misra, “Evaluation and comparison of cognitive
complexity measure”, ACM SIGSOFT Software Engineering Notes,
v.32 n.2, March 2007

[6] Misra, S. and Misra, A.K "Evaluating cognitive complexity measure
with Weyuker properties", Cognitive Informatics, 2004. Proceedings of
the Third IEEE International Conference on, 16-17 Aug. 2004

[7] AT Benjamin, JJ Quinn, Proofs that Really Count: The Art of
Combinatorial Proof, Washington, DC: Mathe-matical Association of
America, 2003.

[8] Aigner, Martin; Ziegler, Günter. Proofs from THE BOOK. Berlin; New
York: Springer, 2003.

[9] M. H. A. Newman, “On Theories with a Combinatorial Definition of
"Equivalence"”, The Annals of Mathematics, Second Series, Vol. 43,
No. 2 (Apr., 1942), pp. 223-243

[10] Joe Sacada, “The Basic of Counting”, Lecture Notes: CIS 2910: Discrete
Structures in Computer Science II, University of Guelph

[11] E. I. Oviedo, "Control flow, data flow, and program complexity,"
Proceedings of COMPSAC, pp.146-152., 1980

[12] Maurice H. Halstead, Elements of Software Science (Operating and
programming systems series), Elsevier Science Inc., New York, 1977.

[13] Wang, Y., “On Cognitive Informatics” , Brain and Mind: A
Transdisciplinary Journal of Neuroscience and Neurophilosophy, 4(2),
pp.151-167, 2003.

[14] Yingxu Wang. "On the Cognitive Informatics Foundations of Software
Engineering", Proceedings of the Third IEEE International Conference
on Cognitive Informatics 2004

[15] Yingxu Wang , "On the informatics laws of software", Cognitive
Informatics, 2002. Proceedings. First IEEE International Conference on,
2002.

