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Abstract—Extended Kalman Filter (EKF) is probably the most
widely used estimation algorithm for nonlinear systems. However,
not only it has difficulties arising from linearization but also many
times it becomes numerically unstable because of computer round off
errors that occur in the process of its implementation. To overcome
linearization limitations, the unscented transformation (UT) was
developed as a method to propagate mean and covariance
information through nonlinear transformations. Kalman filter that
uses UT for calculation of the first two statistical moments is called
Unscented Kalman Filter (UKF). Square-root form of UKF (SR-
UKF) developed by Rudolph van der Merwe and Eric Wan to
achieve numerical stability and guarantee positive semi-definiteness
of the Kalman filter covariances. This paper develops another
implementation of SR-UKF for sequential update measurement
equation, and also derives a new UD covariance factorization filter
for the implementation of UKF. This filter is equivalent to UKF but
is computationally more efficient.

Keywords—Unscented Kalman filter, Square-root unscented
Kalman filter, UD covariance factorization, Target tracking.

1. INTRODUCTION

NE of the most fundamental tasks in filtering and

estimation is to calculate the statistics of a random
variable which has undergone a transformation. Kalman filter,
for example, uses two of such transformations. However when
a transformation is nonlinear, no general closed form solutions
exist [1], [2]. As is well known, the optimal solution to the
nonlinear filtering problem is infinite dimensional [3] and a
large number of suboptimal approaches have been proposed
[2], [4]. These methods can be broadly classified as numerical
Monte Carlo [5] methods or analytical approximations [6],
[7]. However, the application of these methods to high-
dimensioned systems is rarely practical, and it is a testament
to the conceptual simplicity of the EKF that makes it widely
utilized [8]. To handle this problem, many approximate
methods have been proposed [9-12].

EKF simply applies the Taylor series expansion to the
nonlinear system along with the observation equations, and
takes terms only to the first order while the probability density
function (PDF) is approximated by a Gaussian distribution. In
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practice however, EKF has shown several limitations and
easily exhibits divergent characteristics, [4], [10], and [14].

The development of the UT to approximate two of the first
statistical moments was pioneered by Julier and Uhlmann [8],
[13]. The UKF was developed based on UT with the
underlying assumption that approximating a Gaussian
distribution is easier than approximating a nonlinear
transformation [8],[15]. The UKF uses deterministic sampling
to approximate the state distribution as a Gaussian Random
Variable (GRV). The sigma points are chosen to capture the
true mean and covariance of state distribution and are
propagated through the nonlinear system. The posterior mean
and covariance are then calculated from the propagated sigma
points. The UKF determines the mean and covariance
accurately to the second order [13], while the EKF is only able
to obtain first order accuracy [13]. Therefore the UKF
provides better state estimates for nonlinear systems [15].
However UKF requires calculation the new set sigma points at
each sample time which requires taking a matrix square-root
of the state covariance matrix. While the square-root of
covariance matrix is an integral part of the UKF, it is still the
full covariance which is recursively updated. In the SR-UKF
implementation, square-root matrix of state covariance will be
propagated directly, avoiding the need to refactorize at each
time step [16]. SRUKF wuses QR factorization method,
Cholesky of the Rank 1 update and efficient least square
solution for linear systems [22], [23], [24].

In this study another implementation of SR-UKF like
Potter's filter for vector measurements is proposed. This filter
considers scalar measurement and sequentially updates the
covariance matrix and state estimation [17], [18].

Also a UD (unit upper triangular matrix) covariance
factorization is considered which makes our filter UD-UKEF.
This methodology produces comparable results to those of the
SR-UKF, However with a computationally more efficient
algorithm. Another advantage of our newly developed filter is
that contrary to SR-UKF that uses rank 1 Cholesky update for
square-root covariance matrix, no Cholesky updates is
required for UD-UKF at all.

II. UNSCENTED KALMAN FILTER

We seek the minimum-mean squared error (MMSE)
estimate of the state vector of the nonlinear discrete time
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system
X = F(X U W)
()
Yi = h(X,u) + v,
Where X, € R™is the state of the system at time step k,
U, € R™is the input vector, W, € R™ is the noise process
caused by disturbance and modeling errors, Y, € R is the

. n, . ..
observation vector and V|, € R is the additive measurement

noise. It is assumed that the noise vector W, ,V, are of zero

mean and
E(ViViT )=R,
Eww')=6,Q Vi, ] @
E(vw, )=0

The Kalman filter propagates the first two moments of the

distribution of X, recursively and has a distinctive

“predictive-corrector” structure. Let )A(k be the estimate of
X, using the observation information up to and including time
k. The covariance of this estimate is ka. The recursive

estimation for X, can be expressed in the following from [19],
[20], and [21]:
e =X+ Ko (Ve = Yi0) 3)
- T
P, =P, —K(PFy Ky 4)
Where )A(k_ is the optimal prediction of the state at time k

conditioned on all of the observed information up to and

including time k-1, and )A/; is the optimal prediction of the

observation at time k. PX; is the covariance of X, and PYk is

the covariance ofl, =Y, —V,, termed the innovation
process. The optimal parameters of this recursion are given by
% = E[f (XU W ] ®)

9 = E[h(x,u ) +v, ] 6)

Ki =Py Py =Elos =500 - 907 v - 900 - 907 D)
EKF calculates these quantities using linear functions, but
UKF calculates these quantities from a set of weighted

samples (sigma-points) that are deterministically calculated
using the mean and square-root decomposition of the

covariance matrix of X, ;,W,_, and V,. When propagated

through the nonlinear transformation, it captures the posterior
covariance (3" order accuracy is achieved if the prior random
variable has a symmetric distribution, such as the exponential
family of PDE) [13].

The pseudo-code for UKF is given in Table I. In UKF state

random variable (RV) is redefined as the concatenation of the
original state plus the noise variables in an augmented state

vector form X} =[XE WE VI]T The sigma points

selection scheme is applied to this new augmented state to
calculate the corresponding sigma-point

set, { i3 1=0,...,2L}, whereL=n, +n, +n,
and ;(f,i € ERZL“.nX,nW and N, are dimensions of state,
noise process and noise of the measurements respectively.
u u T )
Ve Z[(;(a) (}(W) (;(V) ]rls the augmented sigma
points that are of dimension Lx(2xL+1) . ¥ is scaling
parameter that determines the spread of the sigma-points
matrix around the prior mean. Q, ,R, are covariances of the

process and measurement noise processes respectively.

TABLEI
PSEUDO-CODE FOR UNSCENTED KALMAN FILTER

® Initialization

)A(():E[xo] > PXOZE[(XO_)A(o)(XO_)A(o)T]

ca _ al_|oT T o7
xO_E[xO]_[x0 W, VOT

P, 0 0
PP=| 0 Q O

0 0 R,
eFor k=1,...,00
eSett=k-1

® Calculate sigma-points:

a Sa oa a oa a
X = [Xt X+ ]Sx[ X - })SX‘]
® time update equations:

le(\t = f(ZtX:utvltW)
2L

Xy :ZWi Xkt
i=0

2L
- _ c X o— X S—\T
ka = ZWi (Zi,k\t = X )(Zi,k\t —X)
i=0
Measurement-update equations:

Yk|t :h(ltxﬂuk)"'ltv

2L
- _ m
Yk _Zwi Yi,k|t
i=0

1=l
2L -
_ c - -
Pyk = z W (Yi,k|t — Yk )(Yi,k|t - Yk)
i=0

2L

_ c/. X 5= —\T
Yk Zwi (Zi,k|t _Xk)(Yi,k|t ~ k)
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-1
Ky =P ~
k XkYk Yk
Xk =Xk + Ky (yk —yx)
_p— 14, T
ka —ka KkukKk
End for

Where {W'} is a set of scalar weights, W' =

L+4’
we =% +(1-a’+p)
L+
And
m C 1 H
W =w=—— i=1..2L,
2(L+4)

A=a*(L+x)—L and y=+/L+A. The constant
« determines the spread of the sigma points around the prior
mean. Typical range foraxisle—3<a <1. Kis a tertiary
scaling factor and is usually set equal to 0. [ is the secondary
scaling factor used to emphasize the weighting on the zero’s
sigma-point for the posterior covariance calculation. /3 can be
used to minimize certain higher-order error terms based on
known moments of the prior random variable (RV). For
Gaussian priors, [ = 2 is optimal.

This algorithm requires factorizing the square-root form

T
of Pka = S; (S;i ) at each iteration; however this filter

propagates the covariance of the states and is usually very
sensitive to round off errors causing numerically instability.

II. SQUARE-ROOT UKF

As in the original UKF, the filter is initialized by
calculating the matrix square-root of the state covariance once
via a Cholesky decomposition method. However the
propagated and updated Cholesky factor is then used in
subsequent iterations to directly form the sigma points. For
this reason in SR-UKF one should calculate and propagate the
Square-root form of the state covariance matrix. Therefore, for
generation of sigma-points, one should augment the square-
root from of sate and noise covariance matrices.

The pseudo-code for UKF is given in Table II [21-24].

TABLEII
PSEUDO-CODE FOR SR-UKF

S, 0 0
Si=| 0 Sq, 0
0 0 Sg,

eFor kK =1,...,00

o Sett=k-1
e Calculate sigma-points:

a ca oa a ca a
Xt :[Xt X +75x[ X —}/SXK]
® Time update equations:

Zli(\t = f(//{txﬂut,ztw)
2L
X = Zwimlix,k\t
i=0
I:Q;k ’S;k ]= qr{[\/ Wy (Zl):(ZL,k\t - XIZ)]}
S;k = Cholupdate{s;k a(ﬂ(ox,kn - XE),WS}
Yk\t = h(llfnaut)"‘ztv
2L
Y = ZWi Yi,k|t
i=0

® Measurement-update equations:

[QVk » Sy, ]: qr{l\/W_IC(Yl:ZL,k\t - YE)J}

S;, = cholupdate{S; , (Y, i — Vi )>Wo}
kayk = 2Wic (Zi),(k\t — % )(Yi,k\t - Yk )T

K, =(P,,, /SI)/s,

X =R + Ko (Y = ¥i)

U=K,S,

Sy, = cholupdate{S;k,U,—l}

X

® |nitialization

0 =E[xo] , SXOZ\/E[(XO_’A‘OXXO_’A‘O)T]

ee]-ki Wi vl

>

ra
X0

Now consider determination of S;k from sigma points.

From UKF,

2L
- —onT o o\T
ka = Sxk (Sxk) = ZWIC (Zi),(k\l - X )(ﬂ(i)fkn - %)
i=0 )]
_ T
=S, HHTSX = AAT
k k
Where @ is a part of orthonormal matrix, S;k e R™M™

0 e R™*Y  and Sx_k is the triangular part of QR

decomposition of A, and A is [Appendix 2] :

A= [\/W_g(l(ik\t = X) \/W_lc(ll);(zL,kn - )A(IZ)J )
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Equation (9) assumes Wg' > 0 which is not necessarily the
case, especially for small & (note that ch > 0is always

true). The correct way to handle Wg < 0is with a Cholesky

down date algorithm (appendix 1). Therefore UKF uses a QR
decomposition of compound matrix containing the weighted
propagated sigma-points for calculating Cholesky factor

of PX;. The subsequent Cholesky update (or down date) in

SR-UKF is necessary since the zero’s weightWS, may be
negative. The same two-step approach is applied to the
calculation of Cholesky factor SVk of the observation

prediction error covariance. The Kalman gain can be
calculated directly from the original UKF, but one can use two
nested inverse solution for Kalman gain that have simpler
algorithm [18]. For posterior measurement update of Cholesky

factor of the state covariance, Cholesky down dates of Sx_k are
sequentially applied. The down date vectors are the columns
of U= KKSVK , that is the square root of U =K, Py KJ.

This algorithm is more efficient compared with the original
UKEF and while guarantees the semi-positive form of the state
covariance matrix, has less computational load compared to
that of the original UKF.

IV. SEQUENTIAL SQUARE-ROOT UKF

In this proposed new filter, another approach similar to
Potter's filter [17] [18] with scalar measurement is taken for
the implementation of SR-UKF, but for multi-dimensional
measurement systems with sequential updates. This algorithm

does not need Cholesky update to achieve S, or the

Xk

inversion of two time N, XN, upper triangular matrix. To
start consider the Square-root matrices of R, and Q, which
are\/R_k and Qk , respectively. By multiplying the
measurement equation with inverse of Rk , a new

measurement equation results:

. = (R Thexu) +7,]=Axu) + 7, 10)

where \7k can be considered as another noise process:
EW)=V,=0and R, =E@3)=1,., (D
With the property of: E(V, (i)V, (j))=0 , Vi#j

Now consider a discrete system model with state, Z j

defined as follows:
z,=12;, (12)

Vi :ﬁj(zj,uk)+\7k,j (13)

Where \7k, j represents the j-th element of \7k and h j

represents the j-the row of h.
Further, suppose that Z, = X, then
Z; =X Forall j=1,..,n, (14)
And Vk’ jis j-th component of the new measurement

equation described in Eq. (10). Now consider the discrete time
Kalman filtering problem for the system given by Eq. (12,

13). Since R, is a diagonal matrix, then {Vk’j ,j=1 :,...,ny}
is a white-noise process with unit covariance. Further, since

X, and \7k are uncorrelated, then X, is uncorrelated to each
element of {Vk’j,j =1:,...,ny} and one can apply the

discrete-time Kalman filtering problem with one-dimensional
measurement and no process noise. Let the initial estimate for

Z,be:
Z, =X, (15)
Where )A(IZ is least mean square error (LMS) estimate of the
system state X, biased onY,,...,¥,_;. Then 20 is a linear
minimum variance (LMV) estimate of state Z, biased on the
measurements Y,,...,Y,_;, and has an error square root
covariance, denoted by Sz,o and given by:
S,0= SX’K (16)

Then, following Kalman filtering theory, we can
sequentially Apply a scalar measurement to system describe
by Eq. (12, 13) with initial conditions specified by Eq. (14,15)
for N (number of measurements) iterations. This way a LMV

estimate of state Z_based on VY,...,Y, |, Vk,l,..., Vk’ny

(denoted by Z,) or equivalently, X, biased on Y,,..., Y, (we
denoted d by X, ) is obtained. Further

X, =12, S, = Sz,ny 17)

Where Syk,m , is a matrix square root of the error covariance

matrix for 2n formed at the ny-th iteration of the scalar
y

measurement.
In this algorithm it is very important to update

S, jfromS, ;. Following UKF we have:

z,j-1

_ _T
Sz,iszT.,J =S54 ZT.H _Sz,i—leKQzT,jSzT,Jka,,sz,in,ika SzT,J—l (18)
= Sz,i—l(l ~bjaaj 8],

where:

bj=——" 3 =Sz,j—1Q;szT,i (1)
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Note that b i is a scalar and a i is a vector of dimension N, .

If we calculate the Cholesky factor for the term in the
parenthesis of Eq. (18), we get:

(' —bjaja})z (' —c;bja;a; X' —c;bja;a; )T (20)
Where C; is[17],[18] :

1
cC = @1)

" 14y/1-baa,

The pseudo-code for sequential SR-UKF is given in Table III.

TABLE IIT
PSEUDO-CODE FOR SSR-UKF

® |nitialization
X, = E[Xo] > Sxo = \/El(xo = X)X, _)A(o)TJ

ca __ al_|eT Yy Al
xO_E[xO]_[x0 W, VO]T

Q
0 0 1
eFor k=1,...,00
eSett=k—1

® Calculate sigma-points:

a ca  ga a ca a
Xt :[Xt X +]5x[ X _]Sx‘]

® Time update equations:

le(\t = f(ltx,uta)(tw)
2L
Xy :Zwimlix,k\t

[Q;k > ‘:xk ]= qr{[\/w_lc(lléL,k\l - X;)]}

S, =cho|update{S;K,(;(g,k“ =X, ),W; }

X

Vi z\/R_kyk

® Measurement-update equations:
Set 2, = %,S,,=S;,
For j=1,..,n,

YNk\t,j Zhj(zk\taut)"‘ﬂ(tv
.
Yii :Zwi Yikt.

i=0
[ka,,- S, ]: qr{[\/w_f(ﬂﬂqk‘tqj — Vi )]}

Sy = cholupdate{SWj Yokt = 7[,,— ), W, }

Y

_ T T
PVk_,- _SykvaykszYkaijksj

_n-AT T
a; =Q, Qy, ;5.

1
b, =——

Vk_]
O S
" 1+y1-baa,
Kj=b;Sy, ;2

2y =2, +Ki(¥; = Yey)

.

S5.i —Svk,j—l(l —c;bja;a, )
End for

Xk = Z\n ’Sxk = Sz,n

y y

V. UD COVARIANCE FACTORIZATION OF UKF WITH
SEQUENTIAL UPDATE MEASUREMENT EQUATIONS

The UD covariance factorization of the unscented Kalman
filter (UD-UKF) is an error covariance factorization filter of

the system state X, . based on the measurementsY,,...,Y,,

which is mathematically equivalent to the UKF. Although
UD-UKEF provides performance comparable to that of the SR-
UKF and the original UKF, It is computationally more
efficient algorithm. Any symmetric semi-definite matrix can
be written in the form of UD factorization [25], [26]. Suppose
that:

P, =U,DU; (22)

_ T
P, =UiaDU g 23)
Qi =Uoi DQ,k—lug,k—l 24
R, =Ug,Dg U ;,k (25)

where U is an upper triangular matrix with 1’s on the diagonal
(a unit upper triangular matrix) and D is diagonal matrix with
positive elements. In this filter we want to update and

propagate U, and /D, (Square-root matrix of D, ) for

covariance error matrix. Equations (22) and (23) can be
written as:

T T
P, =U Dy DU, =5, S, (26)
_ Y =, T T
P, =U Dy yDU, =55, 27
If we propagate and update X, ,U, and D, , we can drive
the sigma points from X, , and Sxk—l =U, ,+/D,,. By

substitution of these sigma-points in the nonlinear

transformation (1), we get ;(lf‘t , that is a matrix of dimension

n,x(2L+1). Calculation of X, is straightforward and for
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covariance of prediction we have:

P =l - el - %)

(28)
Where W° is a diagonal matrix ofW°, and
)2; e R™C"is a matrix with columns )A(; . Substituting

Eq. (27) in Eq. (28) and factorizing results in: (ka‘t - )’6) we
have:

_ L~y T o cpge~_T T

P, =U,DU =R, QW"Q, R (29)

where R;k is a triangular matrix and Q;k is an orthonormal

matrix (Appendix 1). For any triangular matrix we can have
(Appendix 3):
R, =U;D; (30)
Here U, is triangular with ones on the diagonal, and
DkN has square roots of the diagonal elements of R, .
k
Substituting equation (30) in (29) yields:
«=UUo . Do=D¢ (31

where, U.,D, are UD factors of the

T T T
. ~M— cA-— - ~
matrix D, Q. W™Q, R, D, .
If we suppose that measurement is scalar, we can have for
the posterior covariance:

P, =P, —K.P,'K{ (32)
Substituting from equation (29) and (30) gives:

DU = Upppepwe(uipiar )| (33)
- UEDEQEWC(\?HL i- y;’j)Pg,_l(\?k‘t’ i- y;’jj(UEDEQI:WC)T
From Eq. (33) we have:

U, =U,U,.D, =D, (34)
Where Uk 5 5k are factors of matrix Gk’ j that is:

(35)

o _|prorwelvivier]

kj= oo -V~ - e\l
~URDRQEW (Yk“)j —yk’j)Pyl(Yk‘l‘j —yk,j)(DkaW )

Like SR-UKF for sequential updates, we can have

uncorrelated measurements and for this reason we can change
the measurement equation to:

yk :(UR,k)_lh(Xkauk)+vk = ﬁ(xk,uk)+\7k

Where E[Vk ]= Dg ., it is a diagonal matrix.

(36)

TABLE IV
PSEUDO-CODE FOR UD-UKF

D 0 0
S, 0 0 Xo
Uj=| 0 Sq, 0 |yDj=| 0 Doo 0 |, S§=U§yD}
0 0 Upg
: 0 0 Dp o

eFor k=1,...,00

oSett=k—1
® Calculate sigma-points:

a _ |oa ca a ca a
Xt _lXt X +7S><, % _7SxtJ
® Time update equations:

Zli(\t = f(ltxautaltw)
oL

Xy :zwi Xkt
i=0

[U;,D;,Q;]=QR_UD{zGt—>2;}
[U;,D;]=UDU{D; Q;W°Q; D; "}
U, =U;U;,D, =D;

Vk :UR,kyk

® Measurement-update equations:

Set 2, = %;,U,, =U,,D,, =D;

For = L...,n,
5 = v
Yiej =i (ZyU) + 1
2
~- m
yk] = W Yi,k\t,j

® Initialization
R0=Elso] . [Uy, D, )=UDULEl(xo ~£0)0x0 ~50)" |

gg=5[xg]=[ﬁg W VE]T

VI. EXAMPLE APPLICATION

In this section we consider the problem of tracking a
vehicle that enters the atmosphere at high altitude with a very
high speed. The position of the body is to be tracked by radar
which accurately measures range and bearing. This type of
problem has been identified by some authors [13] as being
practically stressful for filters and trackers because of the
strong nonlinearities exhibited by the forces which act on the
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vehicle. There are three types of forces which act on a reentry
vehicle. The most dominant one being the aerodynamic drag,
which is a function of the vehicle speed and has substantial
nonlinear variation with altitude. The second type is gravity
which accelerates the vehicle towards the center of earth.
Finally, there exists a random type buffeting force. The
combined effect of these forces generates the trajectory shown
in Fig. 1. Initially the trajectory is almost ballistic but as
density of the atmosphere increases, drag effects become
important and the vehicle rapidly decelerates until its motion
is almost vertical. The tracking problem is made more difficult
by the fact that the drag properties of the vehicle might be
only crudely known.

In summery we can formulate this problem in state space
form [9], [13]:

X, =X,

X, =X,

X, = DX, +GX, +w, (28)
X, = Dx, +Gx, +w,

U|><.
[
=

3

Where X, and X, represent position in two dimension. X,
and X, represent velocity in two dimensions, and X is a

parameter of aerodynamic properties. D Is the drag-related
force term, G is the Gravity-related force term and W is

process noise. Defining R = 1/X12 + X22 as distance from the

center of the Earth and V = 4/ X32 + Xj as the absolute vehicle

speed, then the drag and gravitational terms will be:
R,—R
D=-fexp —[ =Rl , G=ﬁ3 (29)
H, r

B=5 eXp(XS) (30)

for this example the  parameter values  are
km’
B, =-0.59783,H, =13.406,Gm, = 3.9860 x 10 e

and R, =6374 km, which are reflective of typical

environmental and vehicle characteristics. The

parameterization of the ballistic coefficient, ﬂk , reflects the
uncertainty in vehicle characteristics. /3, is the ballistic

coefficient of a typical vehicle and it is scaled bye eXp(X5 )to

ensure that its value is always positive. This is vital for filter
stability.

350~ =+ — — & — — —

300 b — ¢ — —

250 e - = —

X2 (km)

200 |- L - — L1

[T

150 — b+ ————————— g~ — — = — —

100

4

|

|
-

|

|

|

|

a

|

|

4

|

|

4

|

|

1

50

| | | | | |
0 ! ! ! ! ! ! !

6360 6380 6400 6420 6440 6460 6480 6500 6520
x1 (km)

Fig. 1 Nominal trajectory

The motion of the vehicle is measured by radar that is

located at(X,, Y, ) . The radar is able to measure range, I and
bearing, & at a frequency of 20 Hz, where
(=600 =% F + (600 -y, F +v(0)
(k) = tan‘l(—(xz ()=, )J +v, (k)
(&(k)__xr)

V,(K),V, (K) Are zero-mean uncorrelated noise processes

with variances of 1mand 17 mrd, respectively [35].The high
update rate and extreme accuracy of the sensor means that a
large quantity of extremely high quality data is available for
the filter. The bearing uncertainty is sufficiently small that the
EKF is able to predict the sensor readings accurately with very
little bias.

The true initial conditions for the vehicle are

[6500.4 0% o 0 o
349.14

10°° 0

x(0)=]-1.8093 | , P(0)= 0% o

—6.7967 0 0 0
10.6932 |

In other words, the vehicle’s ballistic coefficient is twice
the nominal coefficient.
The vehicle is buffeted by random accelerations,

2.4064x107° 0 0
Q= 0 2.4064%x10° 0
0 0 0

The initial conditions assumed by the filter are:

6500.4 o0 o o
349.14 0 ¢ o o
x(0]0)=|-1.8093 | , P(0)=
0 10° 0
~6.7967
0 o0 0 o0 1

The filter uses the nominal initial conditions and, in order to
offset the uncertainty, the variance on this initial estimate is
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taken as one.

Here we consider the three square root forms of UKEF,
namely the Square-Root Unscented Kalman filter (SR-UKF),
Sequential update of Square-Root Unscented Kalman filter
(SSR-UKF) and UD Unscented Kalman filter (UD-UKF)
respectively. These filters have the same initial conditions.
Three filters were implemented in discrete time and
observations were taken at a frequency 20Hz . For discrete

estimation of X,, a simple Euler method with At =Lsec is
20

utilized. Here estimation of X(5)is hard, for this reason the

three above mentioned algorithms are compared for 100 time
execution of the Monte Carlo simulation. Fig. 2 shows the

mean square estimation of X(5) with time. For all filters we
have:

k=0, =055, =2

mean error of x(5)

T
| | | | e SR-UKF
| | | | SSR-UKF
— b —H - — = -+ — — o UD-UKF H
| | | | | T T
| | | | | | |
| | | | | | |
e S
| | | | | | |
| | | | | | |
| | | | | | |
—_ | | | | | | |
©C 1 -K---1--- L el e e i e e
= I I I I I I
| | | | | |
| | | | | |
T l 1 I L 1 —
| | | | | |
| | | | | |
| | | | | |
| | | | | |
***** s Bl ity St Rl m e |
| | | | | |
| | | | | |
| | | | | |
1 1 1 1 1 1
80 100 120 140 160 180 200

Fig. 2 Mean error of x(5) in time

This figure shows that the UD-UKF is far superior once
compared with the other filters. Note that, & = 0.55was
used for simulation because we need to have a positive value

for Wg .

Table V shows the mean square error for the three filters
used:

TABLE V
MEAN SQUARE ERROR FOR THREE VERSIONS UKF

Mean X1 X2 X3 X4 X4
square
error for
100
Monte
Carlo
simulation

SR- 29.57 32754 0.0018 0.097 0.1965

UKF
SSR- 0.0453 0.1667 0.0011 0.015 0.2961

UKF

UD- 0.0043 0.1017 5e5 0.001 0.1697
UKF

VII. CONCLUSION

In this paper we have presented and developed new
additions to the UKF. In real applications, the original UKF
may fail due to loss of positive-definiteness property of the
state covariance matrix. In this condition not only the filter
will be unstable, but also the Cholesky factorization algorithm
would not work. Van Der Merwe [22] has developed a square
root formulation of UKF (SR-UKF) which propagates the
mean and square root form of the covariance matrix, rather
than the covariance matrix itself. His filter has good numerical
properties compared with those of the original UKF.
However, SR-UKF uses Cholesky downdate algorithm
sequentially for the calculation of the posterior square root
matrix which reduces the accuracy of the filter. In our newly
developed sequential update of SR-UKEF filter (SSR-UKF), a
sequential updating on all of the measurements equations is
performed that relieves the need for downdate calculations for
a given posterior square root matrix. SSR-UKF uses
cholupdate algorithm in time update as well as measurement

update equations, while Wg is negative. In addition UD-UKF

eliminates the need for cholupdate or downdate and uses UD
factorization scheme. Simulation results in this paper show
that UD-UKF has higher accuracy compared with SR-UKF
and SSR-UKF.

APPENDIX 1: CHOLESKY UPDATE/DOWNDATE [27]

Consider A=RR" where R =chol(A) the original
Cholesky factorization of A, returns the upper triangular
Cholesky factor of A. In order to calculate the Cholesky

factor of R"=chol (A+w,xx"), where

T
(A+w,xx")=RR", one can use rank 1 update of
Cholesky factor of R . This is denoted by:

R’ = cholupdate(R, x, w,)

for downdate of R, we have R’ = cholupdate(R, X,—W,) -

APPENDIX 2: ORTHOGONAL-TRIANGULAR DECOMPOSITION
[27]

The QR function performs the orthogonal-triangular
decomposition of a matrix. This factorization is useful for
both square and rectangular matrices. It expresses the matrix
as the product of a real orthonormal or complex unitary matrix
and an upper triangular matrix.

Consider Xin a rectangular form with X € R™ ,L>n.

One can factorize this matrix in the form of:

X=[S O]Q' and S€R™ and Q e€R"™, where
Q' is an orthonormal matrix . One can write:
P=xx"=[S 0QQ"[s of
=3QQ’'s’
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Here Q € R™"is a part of Q', and every row of Q is a

unit vector which is orthogonal to others.

APPENDIX 3: ORTHOGONAL-TRIANGULAR DECOMPOSITION OF
A VECTOR

Suppose the I is a vector andI' € R™. We can factorize
this vector as:

r'=S,Q,
Here S, = ”I’” is a scalarand Q, € R, 0, :ﬁrT.
r

It is easy to factorize a vector.

APPENDIX 4: PSEUDO-CODE FOR QR_UD

This pseudo-code uses QR factorization to factorize a
matrix X € R™",L>n;

x =UDQ
[U.D,Q]=QR_UD{x}

Here U € R™ is an upper triangular matrix with ones on
the diagonal, D € R™ is a diagonal positive matrix and
Qe R™ is a part of orthogonal matrix. For this
factorization, QR method is utilized. We have: X = RQ.

Here R € R™is an upper triangular matrix, which has
non-zero diagonal elements. Also we can write: R =UD .

REFERENCES

[1] S.J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte. A new approach
for filtering nonlinear systems. In Proc. of the 1995 American Control
Conference, pages 1628-1632, Seattle, Washington, June 1995.

[2] P. S. Maybeck, Stochastic Models, Estimation, and Control, P. S.
Maybeck, Ed. New York: Academic, 1982, vol. 1 and 2.

[3] H.J. Kushner, “Dynamical equatins for optimum no-linear filtering”, J.
Differential Equations, vol. 3,pp. 179-190, 1967.

[4] A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic
Press, New York, 1970.

[5] N.J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel approach to
Nonlinear/Non-Gaussian ~ Bayesian ~ State  Estimation", In IEE
Proceedings on Radar and Signal Processing, volume 140, no. 2, pp.
107-113,1993.

[6] H. J. Kushner, “Approximations to optimal nonlinear filters”, IEEE
Trans. Automat. Contr., vol. AC-12, pp. 546-556, Oct. 1967.

[7] F.E.Daum, “New exact nonlinear filters”, in Bayesian Analysis of Time
Series and Dynamic Models, J. C. Spall, Ed. New York: Marcel Dekker,
1988, pp.199-226.

[8] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte," A new Approach for
the Nonlinear Transformation of Means and Covariance in linear
Filters", IEEE Transactions on Automatic Control, Vol. 5, No. 3, pp.
477-482, March 2000.

[9] S.J. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter
to Nonlinear Systems,” in Proc. of eroSense: The 11th Int. Symp. On
Aerospace/Defense Sensing, Simulation and Controls, 1997.

[10] S. J. Julier and J. K. Uhlmann. “A general method for approximating
nonlinear transformations of probability distributions. Technical report,
Robotics Research Group, Department of Engineering Science,
University of Oxford, 1994. (Internet
publication:http://www.robots.ox.ac.uk/ fi siju/index.html).

(1]

[12]

[13]
[14]

[15]

[1e]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Rudolph van der Merwe and Eric A. Wan, “Efficient Derivative-Free
Kalman Filters for Online Learning”, ESANN'2001 proceedings -
European Symposium on Artificial Neural Networks Bruges (Belgium),
25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 205-210.
Kazufumi Ito and Kaiqi Xiong, “Gaussian Filters for Nonlinear Filtering
Problems,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp.
910-927, may 2000.

S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proc. IEEE, vol. 92, no. 3, pp. 401-422, Mar. 2004.

S. Haykin, “Adaptive filter Theory”, Prentice Hall, Inc, fourth edition,
2002.

E. A. Wan and R. v. d. Merwe, “The unscented Kalman filter,” In
Kalman Filtering and Neural Networks, S. Haykin, Ed. New York:
Wiley, 2001, ch. 7, pp. 221-280.

R. v. d. Merwe, “Sigma-point Kalman filters for probabilistic inference
in dynamic state-space models,” electrical and computer engineering
Ph.D. dissertation, Oregon Health Sciences Univ., Portland, OR, 2004.
G. Minkler, J. Minkler, “Theory and Application of Kalman Filtering”,
Magellan Book Company, 1993.

Grewal, M.S., Andrews, A.P., "Kalman Filtering Theory and Practice
using Matlab," John Wiley & Sons, INC., 2001.

R. van der Merwe, E. Wan, and S. J. Julier. Sigma-Point Kalman Filters
for Nonlinear Estimation and Sensor-Fusion: Publications to Integrated
Navigation. In Proceedings of the AIAA Guidance, Navigation &
Control Conference, Providence, RI, Aug 2004.

R. van der Merwe. Sigma-Point Kalman Filters for Probabilistic
Inference in Dynamic State-Space Models. PhD thesis, OGI School of
Science & Engineering at Oregon Health & Science University,
Portland, OR, April 2004.

Rudolph van der Merwe and Eric A. Wan, "Sigma-Point Kalman Filters
for Integrated Navigation", in Proceedings of the 60th Annual Meeting
of The Institute of Navigation (ION), Dayton, OH, Jun, 2004.

R. van der Merwe and E. A. Wan, "The Square-Root Unscented Kalman
Filter for State and Parameter- Estimation", in International Conference
on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah, Vol.
6, May, 2001, pp. 3461-3464.

R. van der Merwe and E. A. Wan, "Efficient Derivative-Free Kalman
Filters for Online Learning", in European Symposium on Artificial
Neural Networks (ESANN), Bruges, Belgium, Apr, 2001.

Eric A. Wan and Rudolph van der Merwe and Alex T. Nelson, "Dual
Estimation and the Unscented Transformation", in Advances in Neural
Information Processing Systems 12, pp. 666-672, MIT Press, Eds. S.A.
Solla and T. K. Leen and K.-R. Muller, Nov, 2000.

G. J. Bierman, “Factorization METHODS FOR Discrete Sequential
Estimation", Academic, New York, 1977.

C.L. Thornton, “Triangular Covariance Factorizations for Kalman
Filtering", PHD. thesis, University of California at Los Angeles, School
of Engineering, 1976.

http://www.mathworld.com

566



