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Abstract—Extended Kalman Filter (EKF) is probably the most 

widely used estimation algorithm for nonlinear systems. However, 
not only it has difficulties arising from linearization but also many 
times it becomes numerically unstable because of computer round off 
errors that occur in the process of its implementation. To overcome 
linearization limitations, the unscented transformation (UT) was 
developed as a method to propagate mean and covariance 
information through nonlinear transformations. Kalman filter that 
uses UT for calculation of the first two statistical moments is called 
Unscented Kalman Filter (UKF). Square-root form of UKF (SR-
UKF) developed by Rudolph van der Merwe and Eric Wan to 
achieve numerical stability and guarantee positive semi-definiteness 
of the Kalman filter covariances. This paper develops another 
implementation of SR-UKF for sequential update measurement 
equation, and also derives a new UD covariance factorization filter 
for the implementation of UKF. This filter is equivalent to UKF but 
is computationally more efficient. 
 

Keywords—Unscented Kalman filter, Square-root unscented 
Kalman filter, UD covariance factorization, Target tracking. 

I. INTRODUCTION 
NE of the most fundamental tasks in filtering and 
estimation is to calculate the statistics of a random 

variable which has undergone a transformation. Kalman filter, 
for example, uses two of such transformations. However when 
a transformation is nonlinear, no general closed form solutions 
exist [1], [2]. As is well known, the optimal solution to the 
nonlinear filtering problem is infinite dimensional [3] and a 
large number of suboptimal approaches have been proposed 
[2], [4]. These methods can be broadly classified as numerical 
Monte Carlo [5] methods or analytical approximations [6], 
[7]. However, the application of these methods to high-
dimensioned systems is rarely practical, and it is a testament 
to the conceptual simplicity of the EKF that makes it widely 
utilized [8]. To handle this problem, many approximate 
methods have been proposed [9-12]. 

EKF simply applies the Taylor series expansion to the 
nonlinear system along with the observation equations, and 
takes terms only to the first order while the probability density 
function (PDF) is approximated by a Gaussian distribution. In 
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practice however, EKF has shown several limitations and 
easily exhibits divergent characteristics, [4], [10], and [14]. 

The development of the UT to approximate two of the first 
statistical moments was pioneered by Julier and Uhlmann [8], 
[13]. The UKF was developed based on UT with the 
underlying assumption that approximating a Gaussian 
distribution is easier than approximating a nonlinear 
transformation [8],[15]. The UKF uses deterministic sampling 
to approximate the state distribution as a Gaussian Random 
Variable (GRV). The sigma points are chosen to capture the 
true mean and covariance of state distribution and are 
propagated through the nonlinear system. The posterior mean 
and covariance are then calculated from the propagated sigma 
points. The UKF determines the mean and covariance 
accurately to the second order [13], while the EKF is only able 
to obtain first order accuracy [13]. Therefore the UKF 
provides better state estimates for nonlinear systems [15]. 
However UKF requires calculation the new set sigma points at 
each sample time which requires taking a matrix square-root 
of the state covariance matrix. While the square-root of 
covariance matrix is an integral part of the UKF, it is still the 
full covariance which is recursively updated. In the SR-UKF 
implementation, square-root matrix of state covariance will be 
propagated directly, avoiding the need to refactorize at each 
time step [16]. SRUKF uses QR factorization method, 
Cholesky of the Rank 1 update and efficient least square 
solution for linear systems [22], [23], [24]. 

In this study another implementation of SR-UKF like 
Potter's filter for vector measurements is proposed. This filter 
considers scalar measurement and sequentially updates the 
covariance matrix and state estimation [17], [18].  

Also a UD (unit upper triangular matrix) covariance 
factorization is considered which makes our filter UD-UKF. 
This methodology produces comparable results to those of the 
SR-UKF, However with a computationally more efficient 
algorithm. Another advantage of our newly developed filter is 
that contrary to SR-UKF that uses rank 1 Cholesky update for 
square-root covariance matrix, no Cholesky updates is 
required for UD-UKF at all. 

II. UNSCENTED KALMAN FILTER 
We seek the minimum-mean squared error (MMSE) 

estimate of the state vector of the nonlinear discrete time 

UD Covariance Factorization for Unscented 
Kalman Filter using Sequential Measurements 

Update 
H. Ghanbarpour Asl, and S. H. Pourtakdoust 

O 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:10, 2007

559

 

 

system 

kkkk

kkkk

uxhy
wuxfx

ν+=
= −−−

),(
),,( 111                          (1)                                                                                      

Where xn
kx ℜ∈ is the state of the system at time step k, 

un
ku ℜ∈ is the input vector, wn

kw ℜ∈ is the noise process 

caused by disturbance and modeling errors, yn
ky ℜ∈ is the 

observation vector and yn
kv ℜ∈ is the additive measurement 

noise. It is assumed that the noise vector kkw ν,  are of zero 
mean and 
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The Kalman filter propagates the first two moments of the 
distribution of kx recursively and has a distinctive 

“predictive-corrector” structure. Let kx̂ be the estimate of 

kx using the observation information up to and including time 

k. The covariance of this estimate is
kxP . The recursive 

estimation for kx can be expressed in the following from [19], 
[20], and [21]: 

)(ˆˆ −− −+= kkkkk yyKxx                              (3)                                                                        
T
kykxx KPKPP

kkk
~−= −                                 (4)                                                                             

Where −
kx̂ is the optimal prediction of the state at time k 

conditioned on all of the observed information up to and 
including time k-1, and −

kŷ  is the optimal prediction of the 

observation at time k. −
kxP is the covariance of −

kx̂ and
kyP~ is 

the covariance of −−= kkk yyr ˆ , termed the innovation 
process. The optimal parameters of this recursion are given by 

[ ]111 ,,(ˆ −−−
− = kkkk wuxfEx                            (5)                                                                 
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EKF calculates these quantities using linear functions, but 
UKF calculates these quantities from a set of weighted 
samples (sigma-points) that are deterministically calculated 
using the mean and square-root decomposition of the 
covariance matrix of 11, −− kk wx  and kv . When propagated 
through the nonlinear transformation, it captures the posterior 
covariance (3rd order accuracy is achieved if the prior random 
variable has a symmetric distribution, such as the exponential 
family of PDE) [13]. 

The pseudo-code for UKF is given in Table I. In UKF state 

random variable (RV) is redefined as the concatenation of the 
original state plus the noise variables in an augmented state 

vector form [ ]TT
k

T
k

T
k

a
k vwxx = . The sigma points 

selection scheme is applied to this new augmented state to 
calculate the corresponding sigma-point 
set, }2,...,0;{ , Lia

ik =χ , where vwx nnnL ++=  

and 12
,

+ℜ∈ La
ikχ . wx nn ,  and vn  are dimensions of state, 

noise process and noise of the measurements respectively. 

( ) ( ) ( )[ ]TTvTwTaa χχχχ = is the augmented sigma 

points that are of dimension )12( +×× LL  . γ  is scaling 
parameter that determines the spread of the sigma-points 
matrix around the prior mean. kk RQ , are covariances of the 
process and measurement noise processes respectively. 

 
TABLE I 

PSEUDO-CODE FOR UNSCENTED KALMAN FILTER 
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Measurement-update equations:  
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End for 
 

 

Where }{ iw  is a set of scalar weights,
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LL −+= )(2 καλ  and λγ += L . The constant 
α determines the spread of the sigma points around the prior 
mean. Typical range forα is 131 ≤<− αe . κ is a tertiary 
scaling factor and is usually set equal to 0. β  is the secondary 
scaling factor used to emphasize the weighting on the zero’s 
sigma-point for the posterior covariance calculation. β can be 
used to minimize certain higher-order error terms based on 
known moments of the prior random variable (RV). For 
Gaussian priors, 2=β is optimal.  

This algorithm requires factorizing the square-root form 

of ( )Ta
k

a
k

a
k SSP =  at each iteration; however this filter 

propagates the covariance of the states and is usually very 
sensitive to round off errors causing numerically instability. 

III. SQUARE-ROOT UKF 
As in the original UKF, the filter is initialized by 

calculating the matrix square-root of the state covariance once 
via a Cholesky decomposition method. However the 
propagated and updated Cholesky factor is then used in 
subsequent iterations to directly form the sigma points. For 
this reason in SR-UKF one should calculate and propagate the 
Square-root form of the state covariance matrix. Therefore, for 
generation of sigma-points, one should augment the square-
root from of sate and noise covariance matrices.  

The pseudo-code for UKF is given in Table II [21-24]. 
 
 

TABLE II 
PSEUDO-CODE FOR SR-UKF 

 

• Initialization                          
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• For ∞= ,...,1k  
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•  Calculate sigma-points: 
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• Measurement-update equations:  
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Now consider determination of −

kxS from sigma points. 

From UKF, 
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Where θ  is a part of orthonormal matrix, xx

k

nn
x RS ×− ∈  , 

)12( +∈ LnxRθ  and −
kxS is the triangular part of QR 

decomposition of A , and A is [Appendix 2] : 
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Equation (9) assumes 00 ≥cw  which is not necessarily the 

case, especially for small α  (note that 01 ≥cw is always 

true). The correct way to handle 00 <cw is with a Cholesky 
down date algorithm (appendix 1). Therefore UKF uses a QR 
decomposition of compound matrix containing the weighted 
propagated sigma-points for calculating Cholesky factor 
of −

kxP . The subsequent Cholesky update (or down date) in 

SR-UKF is necessary since the zero’s weight cw0 , may be 
negative. The same two-step approach is applied to the 
calculation of Cholesky factor 

kyS ~ of the observation 

prediction error covariance. The Kalman gain can be 
calculated directly from the original UKF, but one can use two 
nested inverse solution for Kalman gain that have simpler 
algorithm [18]. For posterior measurement update of Cholesky 
factor of the state covariance, Cholesky down dates of −

kxS are 

sequentially applied. The down date vectors are the columns 
of 

kyk SKU ~= , that is the square root of  T
kyk KPKU

k
~= . 

This algorithm is more efficient compared with the original 
UKF and while guarantees the semi-positive form of the state 
covariance matrix, has less computational load compared to 
that of the original UKF. 

IV. SEQUENTIAL SQUARE-ROOT UKF    
In this proposed new filter, another approach similar to 

Potter's filter [17] [18] with scalar measurement is taken for 
the implementation of SR-UKF, but for multi-dimensional 
measurement systems with sequential updates. This algorithm 
does not need Cholesky update to achieve 

kxS  or the 

inversion of two time yy nn ×  upper triangular matrix. To 

start consider the Square-root matrices of kR and kQ which 

are kR and kQ , respectively. By multiplying the 

measurement equation with inverse of kR , a new 

measurement equation results: 
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where kv~  can be considered as another noise process: 
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With the property of: jijvivE kk ≠∀= ,0))(~)(~(  

 Now consider a discrete system model with state, jz  

defined as follows: 

1−= jj zz                                         (12)                                                                                     

( ) jkkjjjk vuzhy ,,
~,~~ +=                              (13)                                                                      

Where jkv ,
~ represents the j-th element of kv~ and jh~  

represents the j-the row of h .  
Further, suppose that kxz =0 then 

kj xz = For all ynj ,...,1=                          (14)                   

And jky ,
~ is j-th component of the new measurement 

equation described in Eq. (10). Now consider the discrete time 
Kalman filtering problem for the system given by Eq. (12, 

13). Since kR~ is a diagonal matrix, then { }yjk njv :,...,1,~
, =  

is a white-noise process with unit covariance. Further, since 

kx and kv~ are uncorrelated, then kx  is uncorrelated to each 

element of { }yjk njv :,...,1,~
, =  and one can apply the 

discrete-time Kalman filtering problem with one-dimensional 
measurement and no process noise. Let the initial estimate for 

0z be: 
−= kxz ˆˆ0                                         (15)                   

Where −
kx̂ is least mean square error (LMS) estimate of the 

system state kx biased on 11,..., −kyy . Then 0ẑ is a linear 

minimum variance (LMV) estimate of state 0z , biased on the 

measurements 11,..., −kyy  and has an error square root 

covariance, denoted by 0,zS and given by: 
−=
kxz SS 0,                                     (16)                   

Then, following Kalman filtering theory, we can 
sequentially Apply a scalar measurement to system describe 
by Eq. (12, 13) with initial conditions specified by Eq. (14,15) 
for yn (number of measurements) iterations. This way a LMV 

estimate of state mz based on 
ynkkk yyyy ,1,11

~,...,~,~,...,~
−  

(denoted by mẑ ) or equivalently, kx biased on kyy ,...,1 (we 

denoted d by kx̂ ) is obtained. Further  

yk nzxmk SSzx ,,ˆˆ ==                         (17)                   

Where myk
S ,~ , is a matrix square root of the error covariance 

matrix for 
ynẑ  formed at the yn -th iteration of the scalar 

measurement.  
In this algorithm it is very important to update 

jzS , from 1, −jzS . Following UKF we have: 
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Note that jb is a scalar and ja is a vector of dimension xn . 

If we calculate the Cholesky factor for the term in the 
parenthesis of Eq. (18), we get: 
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jjj aabcIaabcIaabI −−=−       (20)                                               

Where jc is [17], [18] : 
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The pseudo-code for sequential SR-UKF is given in Table III. 
 

TABLE III 
PSEUDO-CODE FOR SSR-UKF 
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• Measurement-update equations: 
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V. UD COVARIANCE FACTORIZATION OF UKF WITH 
SEQUENTIAL UPDATE MEASUREMENT EQUATIONS 

The UD covariance factorization of the unscented Kalman 
filter (UD-UKF) is an error covariance factorization filter of 
the system state kx . based on the measurements kyy ,...,1 , 
which is mathematically equivalent to the UKF. Although 
UD-UKF provides performance comparable to that of the SR-
UKF and the original UKF, It is computationally more 
efficient algorithm. Any symmetric semi-definite matrix can 
be written in the form of UD factorization [25], [26]. Suppose 
that: 

T
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where U is an upper triangular matrix with 1’s on the diagonal 
(a unit upper triangular matrix) and D is diagonal matrix with 
positive elements. In this filter we want to update and 

propagate kU  and KD  (Square-root matrix of kD ) for 
covariance error matrix. Equations (22) and (23) can be 
written as: 

T
xx

T
kkkkx kkk
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T

xx
T

kkkkx kkk
SSUDDUP −−−−−−− ==                (27) 

If we propagate and update kk Ux ,ˆ and kD , we can drive 

the sigma points from 1ˆ −kx  and 111 −−=
− kkx DUS

k
. By 

substitution of these sigma-points in the nonlinear 
transformation (1), we get x

tk|χ , that is a matrix of dimension 

)12( +× Lnx . Calculation of −
kx̂ is straightforward and for 
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covariance of prediction we have: 
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Where cW  is a diagonal matrix of cw , and 
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kxR is a triangular matrix and −

kxQ is an orthonormal 

matrix (Appendix 1). For any triangular matrix we can have 
(Appendix 3): 
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k
T

x
T

x
c

xk DRQWQD
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~~ −−− . 

If we suppose that measurement is scalar, we can have for 
the posterior covariance: 

T
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Substituting from equation (29) and (30) gives:  

( )
( )Tc

k
~
k

~
kj,kj,t|k

1
y~j,kj,t|k

c
k

~
k

~
k

T
k

~
k

~
k

c
k

~
k

~
k

T
kkk

WQDUY~PY~WQDU

QDUWQDUUDU

yy −−−−−

−−

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ −−

=     (33) 

From Eq. (33) we have: 

kkkkk DDUUU == ,~                             (34) 

Where kk DU , are factors of matrix jkG , that is: 
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    (35) 

Like SR-UKF for sequential updates, we can have 
uncorrelated measurements and for this reason we can change 
the measurement equation to: 

( ) kkkkkkkRk vuxhvuxhUy ~),(~~),(~ 1
, +=+= −         (36) 

Where [ ] kRk DvE ,
~ = , it is a diagonal matrix. 

 
TABLE IV 

PSEUDO-CODE FOR UD-UKF 
 

 
• Initialization  
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• For ∞= ,...,1k  
• Set 1−= kt  
• Calculate sigma-points: 
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• Time update equations:  
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• Measurement-update equations: 
Set −−− === kzkzk DDUUxz 0,0,0 ,,ˆˆ  
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End for  
   

yyy nzknzknk DDUUzx ,, ,,ˆˆ ===  

       
 

VI. EXAMPLE APPLICATION 
In this section we consider the problem of tracking a 

vehicle that enters the atmosphere at high altitude with a very 
high speed. The position of the body is to be tracked by radar 
which accurately measures range and bearing. This type of 
problem has been identified by some authors [13] as being 
practically stressful for filters and trackers because of the 
strong nonlinearities exhibited by the forces which act on the 
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vehicle. There are three types of forces which act on a reentry 
vehicle. The most dominant one being the aerodynamic drag, 
which is a function of the vehicle speed and has substantial 
nonlinear variation with altitude. The second type is gravity 
which accelerates the vehicle towards the center of earth. 
Finally, there exists a random type buffeting force. The 
combined effect of these forces generates the trajectory shown 
in Fig. 1. Initially the trajectory is almost ballistic but as 
density of the atmosphere increases, drag effects become 
important and the vehicle rapidly decelerates until its motion 
is almost vertical. The tracking problem is made more difficult 
by the fact that the drag properties of the vehicle might be 
only crudely known. 

In summery we can formulate this problem in state space 
form [9], [13]: 

35

2244

1133

42

31

wx
wGxDxx
wGxDxx

xx
xx

=
++=
++=

=
=

                        (28) 

Where 1x and 2x  represent position in two dimension. 3x  

and 4x  represent velocity in two dimensions, and 5x  is a 

parameter of aerodynamic properties. D  Is the drag-related 
force term, G is the Gravity-related force term and w  is 

process noise. Defining 2
2

2
1 xxR += as distance from the 

center of the Earth and 2
4

2
3 xxV += as the absolute vehicle 

speed, then the drag and gravitational terms will be: 
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( )50 exp xββ =                                      (30) 
for this example the parameter values are 

2

3
5

000 sec
109860.3,406.13,59783.0 kmGmH ×==−=β

and kmR 63740 = , which are reflective of typical 
environmental and vehicle characteristics. The 
parameterization of the ballistic coefficient, kβ , reflects the 

uncertainty in vehicle characteristics. 0β is the ballistic 

coefficient of a typical vehicle and it is scaled bye ( )5exp x to 
ensure that its value is always positive. This is vital for filter 
stability. 
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Fig. 1 Nominal trajectory 

 
The motion of the vehicle is measured by radar that is 

located at ),( rr yx . The radar is able to measure range, r and 

bearing, θ at a frequency of 20 Hz, where 
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)(),( 21 kvkv Are zero-mean uncorrelated noise processes 
with variances of m1 and mrd 17 , respectively [35].The high 
update rate and extreme accuracy of the sensor means that a 
large quantity of extremely high quality data is available for 
the filter. The bearing uncertainty is sufficiently small that the 
EKF is able to predict the sensor readings accurately with very 
little bias. 

The true initial conditions for the vehicle are 
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In other words, the vehicle’s ballistic coefficient is twice 

the nominal coefficient. 
The vehicle is buffeted by random accelerations, 
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The initial conditions assumed by the filter are: 
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The filter uses the nominal initial conditions and, in order to 

offset the uncertainty, the variance on this initial estimate is 
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taken as one. 
Here we consider the three square root forms of UKF, 

namely the Square-Root Unscented Kalman filter (SR-UKF), 
Sequential update of Square-Root Unscented Kalman filter 
(SSR-UKF) and UD Unscented Kalman filter (UD-UKF) 
respectively. These filters have the same initial conditions. 
Three filters were implemented in discrete time and 
observations were taken at a frequency Hz20 . For discrete 

estimation of 4x , a simple Euler method with sec
20
1

=Δt  is 

utilized. Here estimation of )5(x is hard, for this reason the 
three above mentioned algorithms are compared for 100 time 
execution of the Monte Carlo simulation. Fig. 2 shows the 
mean square estimation of )5(x with time. For all filters we 
have:  

2,55.0,0 === βακ
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Fig. 2 Mean error of x(5) in time 

 
This figure shows that the UD-UKF is far superior once 

compared with the other filters. Note that, 55.0=α was 
used for simulation because we need to have a positive value 
for cw0 . 

Table V shows the mean square error for the three filters 
used: 

 
TABLE V 

MEAN SQUARE ERROR FOR THREE VERSIONS UKF 
Mean 

square 
error for 

100 
Monte 
Carlo 

simulation 

X1 X2 X3 X4 X4 

SR-
UKF 

29.57 327.54 0.0018 0.097 0.1965 

SSR-
UKF 

0.0453 0.1667 0.0011 0.015 0.2961 

UD-
UKF 

0.0043 0.1017 5e-5 0.001 0.1697 

VII. CONCLUSION 
In this paper we have presented and developed new 

additions to the UKF. In real applications, the original UKF 
may fail due to loss of positive-definiteness property of the 
state covariance matrix. In this condition not only the filter 
will be unstable, but also the Cholesky factorization algorithm 
would not work. Van Der Merwe [22] has developed a square 
root formulation of UKF (SR-UKF) which propagates the 
mean and square root form of the covariance matrix, rather 
than the covariance matrix itself. His filter has good numerical 
properties compared with those of the original UKF. 
However, SR-UKF uses Cholesky downdate algorithm 
sequentially for the calculation of the posterior square root 
matrix which reduces the accuracy of the filter. In our newly 
developed sequential update of SR-UKF filter (SSR-UKF),  a 
sequential updating on all of the measurements equations is 
performed that relieves the need for downdate calculations for 
a given posterior square root matrix. SSR-UKF uses 
cholupdate algorithm in time update as well as measurement 
update equations, while cw0 is negative. In addition UD-UKF 
eliminates the need for cholupdate or downdate and uses UD 
factorization scheme. Simulation results in this paper show 
that UD-UKF has higher accuracy compared with SR-UKF 
and SSR-UKF. 

APPENDIX 1: CHOLESKY UPDATE/DOWNDATE [27] 

Consider TRRA =  where  chol(A)=R the original 
Cholesky factorization of A, returns the upper triangular 
Cholesky factor of A . In order to calculate the Cholesky 
factor of )( 0

' TxxwAcholR += , where 
TT RRxxwA ''

0 )( =+ , one can use rank 1 update of 

Cholesky factor of R . This is denoted by:  
),,( 0

' wxRcholupdateR =  

for downdate of R , we have ),,( 0
' wxRcholupdateR −= . 

APPENDIX 2: ORTHOGONAL-TRIANGULAR DECOMPOSITION 
[27] 

The QR function performs the orthogonal-triangular 
decomposition of a matrix. This factorization is useful for 
both square and rectangular matrices. It expresses the matrix 
as the product of a real orthonormal or complex unitary matrix 
and an upper triangular matrix. 

Consider x in a rectangular form with nLRx Ln ≥∈ × , . 
One can factorize this matrix in the form of: 

[ ] '0 QSx =  and nnRS ×∈  and LLRQ ×∈' , where 
'Q is an orthonormal matrix . One can write: 

[ ] [ ]
TT

TTT

SQSQ
SQQSxxP

=

== 00 ''
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Here LnRQ ×∈ is a part of 'Q , and every row of Q  is a 
unit vector which is orthogonal to others. 

APPENDIX 3:  ORTHOGONAL-TRIANGULAR DECOMPOSITION OF 
A VECTOR 

Suppose the r  is a vector and 1×∈ nRr . We can factorize 
this vector as: 

rr
T QSr =  

Here rSr = is a scalar and n
r RQ ×∈ 1 , T

r r
r

Q 1
= . 

It is easy to factorize a vector. 

APPENDIX 4: PSEUDO-CODE FOR QR_UD 
This pseudo-code uses QR factorization to factorize a 

matrix nLRx Ln ≥∈ × , ; 

UDQx =  

[ ] { }xUDQRQDU _,, =  

Here nnRU ×∈  is an upper triangular matrix with ones on 

the diagonal, nnRD ×∈  is a diagonal positive matrix and 
LnRQ ×∈  is a part of orthogonal matrix. For this 

factorization, QR method is utilized. We have: RQx = . 

Here nnRR ×∈ is an upper triangular matrix, which has 
non-zero diagonal elements. Also we can write: UDR = . 
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