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Abstract—In this paper, we consider an iteration process for
approximating common fixed points of two asymptotically quasi-
nonexpansive mappings and we prove some strong and weak con-
vergence theorems for such mappings in uniformly convex Banach
spaces.
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I. INTRODUCTION

THROUGHOUT this paper, N will denote the set of all
positive integers. Let C be a nonempty subset of a real

Banach space E. Let T : C → C be a mapping, then we
denote the set of all fixed points of T by F (T ). The set of
common fixed points of two mappings S and T will be denoted
by F = F (S) ∩ F (T ). A mapping T : C → C is said to be

(i) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C;
(ii) quasi-nonexpansive if ‖Tx−p‖ ≤ ‖x−p‖ for all x ∈ C

and p ∈ F (T );
(iii) asymptotically nonexpansive if there exists a sequence

kn ≥ 1, limn→∞ kn = 1 and

‖Tnx − Tny‖ ≤ kn‖x − y‖
for all x, y ∈ C and n ∈ N. Note that {kn} is a nonincreasing
bounded sequence, see [8].

(iv) asymptotically quasi-nonexpansive if there exists a
sequence kn ≥ 1, limn→∞ kn = 1 and

‖Tnx − p‖ ≤ kn‖x − p‖
for all x ∈ C, p ∈ F (T ) and n ∈ N;

(v) uniformly L-Lipschitzian if there exists a constant L > 0
such that

‖Tnx − Tny‖ ≤ L‖x − y‖
for all x, y ∈ C and n ∈ N.

From the above definitions, it is clear that each of a
nonexpansive, a quasi-nonexpansive, an asymptotically non-
expansive is an asymptotically quasi-nonexpansive mapping.
However, the converse of each of above statements may be not
true. For the fact that an asymptotically quasi-nonexpansive
mapping is not an asymptotically quasi-nonexpansive map-
ping; see, for example, [17].
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In 1991, Schu [15] introduced the following Mann-type
iterative process:{

x1 = x ∈ C,

xn+1 = (1 − αn)xn + αnTnxn, n ∈ N
(1)

where T : C → C is an asymptotically nonexpansive mapping
with a sequence {kn} such that

∑∞
n=1 (kn − 1) < ∞ and

{αn} is a sequence in (0, 1) satisfying the condition δ ≤ αn ≤
1 − δ for all n ∈ N and for some δ > 0. He concluded that
the sequence {xn} converges weakly to a fixed point of T .

Since 1972, weak and strong convergence problems of iter-
ative sequences (with errors) for asymptotically nonexpansive
type mappings in a Hilbert space or a Banach space have been
studied by many authors (see, for example, [5], [12], [13],
[15]).

In 2007, Agarwal et al. [1] introduced the following iteration
process: ⎧⎪⎨

⎪⎩
x1 = x ∈ C,

xn+1 = (1 − αn)Tnxn + αnTnyn,

yn = (1 − βn) xn + βnTnxn, n ∈ N

(2)

where {αn} and {βn} are in (0, 1). They showed that this
process converges at a rate same as that of Picard iteration
and faster than Mann for contractions.

The above process deals with one mapping only. The case
of two mappings in iterative processes has also remained
under study since Das and Debata [6] gave and studied
a two mappings process. Also see, for example, [11] and
[19]. The problem of approximating common fixed points of
finitely many mappings plays an important role in applied
mathematics, especially in the theory of evolution equations
and the minimization problems; see [2], [3], [4], [18], for
example.

Ishikawa-type iteration process⎧⎪⎨
⎪⎩

x1 = x ∈ C,

xn+1 = (1 − αn)xn + αnSnyn,

yn = (1 − βn) xn + βnTnxn, n ∈ N

(3)

for two mappings has aslo been studied by many authors
including [6], [11], [19].

Recently, Khan et al. [9] modified the iteration process (2)
to the case of two mappings as follows.⎧⎪⎨

⎪⎩
x1 = x ∈ C,

xn+1 = (1 − αn)Tnxn + αnSnyn,

yn = (1 − βn) xn + βnTnxn, n ∈ N

(4)
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where {αn} and {βn} are in (0, 1).
Remarks. (i) Note that (4) reduces to (2) when S = T .

Similarly, the process (4) reduces to (1) when T = I .
(ii) The process (2) does not reduce to (1) but (4) does.

Thus (4) not only covers the results proved by (2) but also
by (1) which are not covered by (2).

(iii) The process (4) is independent of (3): neither of them
reduces to the other. Following the method of Agarwal et al.
[1], it can be shown that (4) converges faster than (3) for
contractions. For details, see [10].

In this paper, we prove some weak and strong convergence
theorems for two asymptotically quasi-nonexpansive map-
pings using (4).

II. PRELIMINARIES

For the sake of convenience, we restate the following
concepts and results.

Let E be Banach space with its dimension greater than or
equal to 2. The modulus of E is the function δE (ε) : (0, 2] →
[0, 1] defined by

δE (ε) = inf
{

1 − ∥∥ 1
2 (x + y)

∥∥ : ‖x‖ = 1,
‖y‖ = 1, ε = ‖x − y‖

}
.

A Banach space E is uniformly convex if and only if
δE (ε) > 0 for all ε ∈ (0, 2].

We recall the following. Let S = {x ∈ E : ‖x‖ = 1} and
let E∗ be the dual of E, that is, the space of all continuous
linear functionals f on E. The space E has :

(i) Gâteaux differentiable norm if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x and y in S;
(ii) Fréchet differentiable norm (see e.g. [16]) if for each x

in S, the above limit exists and is attained uniformly for y in
S and in this case, it is also well-known that

〈h, J(x)〉 +
1
2
‖x‖2 ≤ 1

2
‖x + h‖2

≤ 〈h, J(x)〉 +
1
2
‖x‖2 + b(‖h‖)(5)

for all x, h in E, where J is the Fréchet derivative of the
functional 1

2 ‖.‖2 at x ∈ X, 〈., .〉 is the pairing between E
and E∗, and b is an increasing function defined on [0,∞)
such that limt↓0

b(t)
t = 0;

(iii) Opial condition [14] if for any sequence {xn} in
E, xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y �= x. Examples of Banach spaces
satisfying Opial condition are Hilbert spaces and all spaces
lp(1 < p < ∞). On the other hand, Lp[0, 2π] with 1 < p �= 2
fail to satisfy Opial condition.

A mapping T : C → C is said to be demiclosed at zero,
if for any sequence {xn} in C, the conditions xn converges
weakly to x ∈ C and Txn converges strongly to 0 imply
Tx = 0.

Two mappings S, T : C → C , where C is a subset of a
normed space E, are said to satisfy the Condition (A′) [7]
if there exists a nondecreasing function f : [0,∞) → [0,∞)
with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that either
‖x − Sx‖ ≥ f(d(x, F )) or ‖x − Tx‖ ≥ f(d(x, F )) for all
x ∈ C where d(x, F ) = inf{‖x − p‖ : p ∈ F}.

We need the following useful known lemmas for the devel-
opment of our results.

Lemma 1. [20] If {rn}, {tn} and {sn} are sequences of
nonnegative real numbers such that rn+1 ≤ (1 + tn) rn +
sn,

∑∞
n=1 tn < ∞ and

∑∞
n=1 sn < ∞, then lim

n→∞ rn exists.
Lemma 2. [15] Suppose that E is a uniformly convex

Banach space and 0 < p ≤ tn ≤ q < 1 for all
n ∈ N. Let {xn} and {yn} be two sequences of E such
that lim supn→∞ ‖xn‖ ≤ r, lim supn→∞ ‖yn‖ ≤ r and
limn→∞ ‖tnxn + (1 − tn)yn‖ = r hold for some r ≥ 0. Then
limn→∞ ‖xn − yn‖ = 0.

III. MAIN RESULTS

In this section, we prove some strong and weak convergence
theorems of the iteration process (4) under some suitable
conditions. Before proving our main results, we would like
to remark as follows. Let T, S : C → C be two asymptot-
ically quasi-nonexpansive mappings such that ‖Tnx − p‖ ≤
k1n ‖x − p‖ and ‖Snx − p‖ ≤ k2n ‖x − p‖. Throughout this
paper, we assume that kn = maxn∈N {k1n, k2n} and F �= ∅
where F = F (T ) ∩ F (S) is the set of common fixed points
of the mappings T and S. We need the following lemma in
order to prove our main theorems.

Lemma 3. Let C be a nonempty closed convex subset of
a real Banach space E. Let T and S be two asymptotically
quasi-nonexpansive self mappings of C with

∑∞
n=1(kn−1) <

∞ and
∑∞

n=1 cn < ∞. Let {xn} be defined by (4) and F �= ∅.
Then limn→∞ ‖xn − q‖ exists for all q ∈ F .

Proof. Let q ∈ F. Then

‖xn+1 − q‖ = ‖(1 − αn)Tnxn + αnSnyn − q‖
≤ (1 − αn) ‖Tnxn − q‖ + αn ‖Snyn − q‖
≤ (1 − αn) (kn ‖xn − q‖) + αn (kn ‖yn − q‖)

≤ kn

⎡
⎣ (1 − αn) ‖xn − q‖

+αn (1 − βn) ‖xn − q‖
+αnβn ‖Tnxn − q‖

⎤
⎦

≤ kn

⎡
⎣ (1 − αn) ‖xn − q‖

+αn (1 − βn) ‖xn − q‖
+αnβn (kn ‖xn − q‖)

⎤
⎦

≤ kn

[(
1 − αn + αn (1 − βn)

+knαnβn

)
‖xn − q‖

]
= kn[1 + (kn − 1)αnβn] ‖xn − q‖
≤ kn[1 + kn − 1] ‖xn − q‖
=

[
1 +

(
k2

n − 1
)] ‖xn − q‖

Since {kn} (and hence {kn + 1} ) is a nonincreasing bounded
sequence,

∑∞
n=1(kn − 1) < ∞ implies that

∑∞
n=1(k

2
n − 1) <

∞. It now follows from Lemma 1 that lim
n→∞ ‖xn − q‖ exists

for all q ∈ F .
Theorem 1. Let C be a nonempty closed convex subset

of a uniformly convex Banach space E. Let T and S be two
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uniformly L1 and L2-Lipschitzian and asymptotically quasi-
nonexpansive self mappings of C with

∑∞
n=1(kn − 1) < ∞

and L = max {L1, L2}. Let {xn} be defined by (4) and F �=
∅. Thenlimn→∞ ‖xn − Txn‖ = limn→∞ ‖xn − Sxn‖ = 0.

Proof. By Lemma 3, lim
n→∞ ‖xn − q‖ exists. Assume that

lim
n→∞ ‖xn − q‖ = c. If c = 0, the conclusion is obvious.
Suppose c > 0.

Now

‖yn − q‖ = ‖(1 − βn)xn + βnTnxn − q‖
≤ (1 − βn) ‖xn − q‖ + βn (kn ‖xn − q‖)
≤ (1 − βn) ‖xn − q‖ + βn (kn ‖xn − q‖)
≤ (1 + βn(kn − 1)) ‖xn − q‖

implies that
lim sup

n→∞
‖yn − q‖ ≤ c. (6)

Since T is an asymptotically quasi-nonexpansive mappings,
we have

‖Tnxn − q‖ ≤ kn‖xn − q‖
for all n = 1, 2, . . .. Taking lim sup on both sides, we obtain

lim sup
n→∞

‖Tnxn − q‖ ≤ c. (7)

In a similar way, we have

‖Snyn − q‖ ≤ kn‖yn − q‖.
By using (6), we obtain

lim sup
n→∞

‖Snyn − q‖ ≤ c.

Also, it follows from c = lim
n→∞ ‖xn+1 − q‖ =

lim
n→∞ ‖ (1 − αn) (Tnxn − q) + αn (Snyn − q) ‖ and Lemma
2 that

lim
n→∞ ‖Tnxn − Snyn‖ = 0. (8)

Now

‖xn+1 − q‖ = ‖ (1 − αn) Tnxn + αnSnyn − q‖
= ‖(Tnxn − q) + αn (Snyn − Tnxn)‖
≤ ‖Tnxn − q‖ + αn ‖Tnxn − Snyn‖

yields that
c ≤ lim inf

n→∞ ‖Tnxn − q‖

so that (7) gives limn→∞ ‖Tnxn − q‖ = c.
On the other hand,

‖Tnxn − q‖ ≤ ‖Tnxn − Snyn‖ + ‖Snyn − q‖
≤ ‖Tnxn − Snyn‖ + kn‖yn − q‖,

so we have
c ≤ lim inf

n→∞ ‖yn − q‖. (9)

By using (6) and (9), we obtain

lim
n→∞ ‖yn − q‖ = c. (10)

Thus c = lim
n→∞ ‖yn − q‖ = lim

n→∞ ‖ (1 − βn) (xn − q) +
βn (Tnxn − q) ‖ gives by Lemma 2 that

lim
n→∞ ‖Tnxn − xn‖ = 0. (11)

Now

‖yn − xn‖ = βn ‖Tnxn − xn‖ .

Hence by (11),

lim
n→∞ ‖yn − xn‖ = 0. (12)

Also note that

‖xn+1 − xn‖ = ‖(1 − αn) Tnxn + αnSnyn − xn‖
≤ ‖Tnxn − xn‖ + αn ‖Tnxn − Snyn‖
→ 0 as n → ∞, (13)

so that

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖ + ‖yn − xn‖ (14)
→ 0 as n → ∞.

Furthermore, from

‖xn+1 − Snyn‖ ≤ ‖xn+1 − xn‖ + ‖xn − Tnxn‖
+ ‖Tnxn − Snyn‖

we find that

lim
n→∞ ‖xn+1 − Snyn‖ = 0. (15)

Then

‖xn+1 − Txn+1‖ ≤ ∥∥xn+1 − Tn+1xn+1

∥∥
+

∥∥Tn+1xn+1 − Tn+1xn

∥∥
+

∥∥Tn+1xn − Txn+1

∥∥
≤ ∥∥xn+1 − Tn+1xn+1

∥∥
+L ‖xn+1 − xn‖
+L ‖Tnxn − xn+1‖

=
∥∥xn+1 − Tn+1xn+1

∥∥
+L ‖xn+1 − xn‖
+Lαn ‖Tnxn − Snyn‖

yields

lim
n→∞ ‖xn − Txn‖ = 0. (16)

Now

‖xn − Snxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Snyn‖
+ ‖Snyn − Snxn‖

≤ ‖xn − xn+1‖ + ‖xn+1 − Snyn‖
+L ‖yn − xn‖

→ 0 as n → ∞.
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Thus

‖xn+1 − Sxn+1‖ ≤ ∥∥xn+1 − Sn+1xn+1

∥∥
+

∥∥Sn+1xn+1 − Sxn+1

∥∥
≤ ∥∥xn+1 − Sn+1xn+1

∥∥
+L ‖Snxn+1 − xn+1‖

≤ ∥∥xn+1 − Sn+1xn+1

∥∥
+L

( ‖Snxn+1 − Snyn‖
+ ‖Snyn − xn+1‖

)
≤ ∥∥xn+1 − Sn+1xn+1

∥∥
+L2 ‖xn+1 − yn‖
+L ‖Snyn − xn+1‖

implies
lim

n→∞ ‖xn − Sxn‖ = 0.

Lemma 4. Assume that the conditions of Theorem 1 are
satisfied. Then, for any p1, p2 ∈ F, lim

n→∞ 〈xn, J(p1 − p2)〉
exists; in particular, 〈p − q, J(p1 − p2)〉 = 0 for all p, q ∈
ωw(xn).

Proof. Suppose that x = p1 − p2 with p1 �= p2 and h =
t(xn − p1) in the inequality (5). Then, we get

t 〈xn − p1, J(p1 − p2)〉 +
1
2
‖p1 − p2‖2

≤ 1
2
‖txn + (1 − t)p1 − p2‖2

≤ t 〈xn − p1, J(p1 − p2)〉 +
1
2
‖p1 − p2‖2 +

+b(t ‖xn − p1‖).
Since supn≥1 ‖xn − p1‖ ≤ M ′ for some M ′ > 0, we have

t lim sup
n→∞

〈xn − p1, J(p1 − p2)〉 +
1
2
‖p1 − p2‖2

≤ 1
2

lim
n→∞ ‖txn + (1 − t)p1 − p2‖2

≤ t lim inf
n→∞ 〈xn − p1, J(p1 − p2)〉

+
1
2
‖p1 − p2‖2 + b(tM ′).

That is,

lim sup
n→∞

〈xn − p1, J(p1 − p2)〉

≤ lim inf
n→∞ 〈xn − p1, J(p1 − p2)〉 +

b(tM ′)
tM ′ M ′.

If t → 0, then lim
n→∞ 〈xn − p1, J(p1 − p2)〉 exists for all

p1, p2 ∈ F ; in particular, we have 〈p − q, J(p1 − p2)〉 = 0
for all p, q ∈ ωw(xn).

We now give our weak convergence theorem. In the sequel,
I : X → X denotes the identity mapping.

Theorem 2. Let E be a uniformly convex Banach space
satisfying Opial condition and let C, T, S and {xn} be taken as
in Theorem 1. If the mappings I−T and I−S are demiclosed
at zero, then {xn} converges weakly to a common fixed point
of T and S.

Proof. Let q ∈ F , then according to Lemma 3 the sequence
{‖xn − q‖} is convergent and hence bounded. Since E is
uniformly convex, every bounded subset of E is weakly
compact. Thus there exists a subsequence {xnk

} ⊂ {xn} such
that {xnk

} converges weakly to q1 ∈ C. From Theorem 1, we
have

lim
n→∞ ‖xnk

− Txnk
‖ = 0, lim

n→∞ ‖xnk
− Sxnk

‖ = 0.

Since the mappings I − T and I − S are demiclosed at
zero, therefore Tq1 = q1 and Sq1 = q1, which means
q1 ∈ F . Finally, let us prove that {xn} converges weakly
to q1. Suppose on contrary that there exists a subsequence{
xnj

} ⊂ {xn} such that
{
xnj

}
converges weakly to q2 ∈ C

and q1 �= q2. Then by the same method as given above,
we can also prove that q2 ∈ F . From Lemma 3, the limits
limn→∞ ‖xn − q1‖ and limn→∞ ‖xn − q2‖ exist. By virtue
of the Opial condition of E, we obtain

lim
n→∞ ‖xn − q1‖ = lim

ni→∞ ‖xni
− q1‖

< lim
ni→∞ ‖xni

− q2‖
= lim

n→∞ ‖xn − q2‖
= lim

nj→∞ ‖xnj
− q2‖

< lim
nj→∞ ‖xnj

− q1‖
= lim

n→∞ ‖xn − q1‖

which is a contradiction so q1 = q2. Therefore, {xn} con-
verges weakly to a common fixed point of T and S.

Theorem 3. Let E be a uniformly convex Banach space
which has a Fréchet differentiable norm and let C, T, S and
{xn} be taken as in Theorem 1. If F �= ∅, then {xn} converges
weakly to a common fixed point of T and S.

Proof. By Lemma 4, 〈p − q, J(p1 − p2)〉 = 0 for all p, q ∈
ωw(xn). Therefore ‖q1 − q2‖2 = 〈q1 − q2, J(q1 − q2)〉 = 0
implies q1 = q2. Consequently, {xn} converges weakly to a
point of F and this completes the proof.

We have the following corollaries.
Corollary 1. Let E be a uniformly convex Banach space

satisfying Opial condition and let C and T be taken as in
Theorem 1. Suppose that F (T ) �= ∅. If the mapping I − T
is demiclosed at zero, then {xn} defined by (2) converges
weakly to a fixed point of T .

Corollary 2. Let E be a uniformly convex Banach space
which has a Fréchet differentiable norm and let C and T be
taken as in Theorem 1. If F (T ) �= ∅, then {xn} defined by
(2) converges weakly to a fixed point of T .

Corollary 3. Let E be a uniformly convex Banach space
satisfying Opial condition and let C and T be taken as in
Theorem 1. Suppose that F (T ) �= ∅. If the mapping I − T
is demiclosed at zero, then {xn} defined by (1) converges
weakly to a fixed point of T .

Corollary 4. Let E be a uniformly convex Banach space
which has a Fréchet differentiable norm and let C and T be
taken as in Theorem 1. If F (T ) �= ∅, then {xn} defined by
(1) converges weakly to a fixed point of T .
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Theorem 4. Let E be a real Banach space and let
C, T, S, F, {xn} be taken as in Theorem 1. Then {xn} con-
verges to a point of F if and only if lim infn→∞ d(xn, F ) = 0
where d(x, F ) = inf{‖x − p‖ : p ∈ F}.

Proof. Necessity is obvious. Conversely, suppose
that lim infn→∞ d(xn, F ) = 0. As proved in
Lemma 3, limn→∞ ‖xn − w‖ exists for all w ∈ F,
therefore limn→∞ d(xn, F ) exists. But by hypothesis,
lim infn→∞ d(xn, F ) = 0, therefore we have
limn→∞ d(xn, F ) = 0. Next, we show that {xn} is a
Cauchy sequence in C. Let ε > 0 be arbitrarily chosen. Since
limn→∞ d(xn, F ) = 0, there exists a positive integer n0 such
that

d(xn, F ) <
ε

4
, ∀n ≥ n0.

In particular, inf{‖xn0 − p‖ : p ∈ F} < ε
4 . Thus there must

exist p∗ ∈ F such that

‖xn0 − p∗‖ <
ε

2
.

Now, for all m, n ≥ n0, we have

‖xn+m − xn‖ ≤ ‖xn+m − p∗‖ + ‖xn − p∗‖
≤ 2 ‖xn0 − p∗‖
< 2

( ε

2

)
= ε.

Hence {xn} is a Cauchy sequence in a closed subset C of a
Banach space E and so it must converge to a point q in C.
Now, limn→∞ d(xn, F ) = 0 gives that d(q, F ) = 0. Since F
is closed, so we have q ∈ F.

Applying Theorem 4, we obtain strong convergence of the
process (4) under the Condition (A′) as follows.

Theorem 5. Let E be a real uniformly convex Banach space
and let C, T, S, F, {xn} be taken as in Theorem 1. Let T, S
satisfy the Condition (A′), then {xn} converges strongly to a
common fixed point of T and S .

Proof. We proved in Theorem 1 that

lim
n→∞ ‖xn − Txn‖ = lim

n→∞ ‖xn − Sxn‖ = 0. (17)

From the Condition (A′) and (17), either

lim
n→∞ f(d(xn, F )) ≤ lim

n→∞ ‖xn − Txn‖ = 0,

or
lim

n→∞ f(d(xn, F )) ≤ lim
n→∞ ‖xn − Sxn‖ = 0,

Hence
lim

n→∞ f(d(xn, F )) = 0.

Since f : [0,∞) → [0,∞) is a nondecreasing function
satisfying f(0) = 0, f(r) > 0 for all r ∈ (0,∞), therefore
we have

lim
n→∞ d(xn, F ) = 0.

Now all the conditions of Theorem 4 are satisfied, therefore
by its conclusion {xn} converges strongly to a point of F.

Remarks. (i) Results using the iterative processes (1) and
(2) can now be obtained as corollaries from Theorems 4 and
5.

(ii) The case of nonexpansive mappings using the iterative
processes (1) , (2) and (4) can now be deduced from our above
results.

(iii) Theorems of this paper can also be proved with error
terms.
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