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 
Abstract—The main purpose of this study is static analysis of 

two three-degree of freedom parallel mechanisms: 3-RCC and 3-
RRS. Geometry of these mechanisms is expressed and static 
equilibrium equations are derived for the whole chains. For these 
mechanisms due to the equal number of equations and unknowns, the 
solution is as same as 3-RCC mechanism. A mathematical software is 
used to solve the equations. In order to prove the results obtained 
from solving the equations of mechanisms, the CAD model of these 
robots has been simulated and their static is analysed in ADAMS 
software. Due to symmetrical geometry of the mechanisms, the force 
and external torque acting on the end-effecter have been considered 
asymmetric to prove the generality of the solution method. Finally, 
the results of both softwares, for both mechanisms are extracted and 
compared as graphs. The good achieved comparison between the 
results indicates the accuracy of the analysis. 

 
Keywords—Robotic, Static analysis, 3-RCC, 3-RRS 

I. INTRODUCTION 

PARALLEL robot has some chains which are parallel 
together. They are from base to end-effector and they 

move the end-effector to a certain point [1]. They have many 
advantages in comparison to serial mechanisms. MacCallion 
and Pham [2] have suggested using parallel devices. Then, 
after a systematic review of the different kinematic 
possibilities for parallel manipulators, a few architectures [3] 
of fully parallel devices emerged as the most promising 
designs [4]. These mechanisms usually have short, simple and 
rigid chains which make them more stable than serial 
mechanisms against unwanted movements. One advantage of 
the parallel manipulators is that in these mechanisms the 
actuators are mounted on the ground which makes them much 
lighter. This reduction makes the arms lighter with faster 
movements. This also makes a great decrease in total moment 
of inertia which is very important for mobile and haptic 
robots. 

 All these features result in mechanisms with a wide range 
of motion ability. As their speed of action is often constrained 
by their stiffness rather than sheer power, they can be fast-
acting, in comparison to serial ones. Most robot applications 
require this stiffness. Using high-quality rotary joints provide 
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them this ability and permit movements in one axis but make 
rigidity against movements outside this. 

Parallel mechanisms workspace is one of their important 
drawbacks in comparison to serial manipulators. These 
manipulators have the limitation emanated from geometrical 
and mechanical limits of the design as like as serial 
manipulators. But the important thing is that they are also 
limited by the existence of singularities, which are positions 
where, for some trajectories of the movement, the variation of 
the lengths of the legs is infinitely smaller than the variation of 
the position.  

The singular points in the workspace of a parallel 
manipulator [5] are composed of continuous and differentiable 
sub manifolds in the workspace of the mechanism. While 
moving along a specified path, if the manipulator comes close 
to a singular point, the leg actuator forces increase extremely. 
If the manipulator is controlled quasistatically [6], before 
achieving the singularity, the actuator forces always attain 
their limits [7]. 

Another drawback of parallel manipulators is their 
nonlinear behaviour: Location of end-effector has an 
important effect on the order which is required to get a 
movement of that. This nonlinearity is difficult and it is the 
cause that parallel manipulators are not yet used in high 
precision machining, despite their advantages. Most of studies 
in this context are on synthesis of parallel robots. Some 
systematic methods were presented to synthesis these 
mechanisms, Such as screw theory [8], group of rigid body 
displacements theory [9], and virtual chain approach [10]. 
With these methods parallel robots with desired motions of the 
end-effector can be designed. According to end-effector 
motion pattern, 3-DOF parallel robots are divided to four 
types; three transitions DOF, three rotations DOF, two 
transitions and one rotation DOF and two rotation and one 
transition DOF [11]. 3-RCC and 3-RRS have both three 
rotations DOF. Statics is a branch of mechanics which is 
concerned with the analysis of loads (force and torque, or 
moment) on physical systems in static equilibrium, a state 
where the relative positions of subsystems do not vary over 
time, or where components and structures are at a constant 
velocity. In static equilibrium, the system is either at rest, or 
its center of mass moves at a constant velocity. By Newton's 
first law, this situation implies that the net force and net torque 
(also known as moment of force) on every part of the system 
is zero. From this constraint, such quantities as stress or 
pressure can be derived. The net force equalling zero is known 
as the first condition for equilibrium, and the net torque 

Two Spherical Three Degrees of Freedom Parallel 
Robots 3-RCC and 3-RRS Static Analysis  

Alireza Abbasi Moshaii, Mehdi Tale Masouleh, Esmail Zarezadeh, Kamran Farajzadeh 

A



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:6, 2015

1093

 

 

equalling zero is known as the second condition for 
equilibrium. 

Pham and Chen proposed a 2-DOF flexure parallel 
mechanism and studied its kinematic and static analysis [12]. 
Lu et al. explored static analyzing of a parallel 3-DOFs robot 
by two methods [13]. Tale Masouleh et al. explored the direct 
kinematic of parallel robot 5-RPUR. They also suggested two 
ways to solve the direct kinematic problem in parallel robots 
[14]. Masouleh et al. also proposed two ways to solve forward 
kinematic of parallel robot based on study parameters [15]. 
According to previous researches on the static of parallel 
robots and because of these little researches on 3-DOF over 
constraint robots, static analysis of these robots are limited.  

In this paper geometric structure of 3-RCC and 3-RRS 
robots are described and their static equilibrium has been 
presented. To solve these equations due to their equal 
unknowns and equations, exact answers could be found. Also 
the cad model of these robots is simulated in ADAMS 
software and the results are compared with the results 
extracted from MATLAB software and these comparisons are 
brought in some diagrams.  
 

Fig. 1 CAD Model of 3-RCC [16] 

II. GEOMETRY OF THE ROBOTS 

In this section, the geometry of each robots and type of 
joints used in them are described. It is noteworthy throughout 
this paper, revolute, spherical, and cylindrical joints are shown 
by R, S, and C respectively. Also, a line is drawn under the 
active joints, which distinguishes them from the passive joints. 

A. 3-RCC 

This robot was introduced with One degree of rotational 
freedom and two of movement pattern. Fig. 1 depicts the 3-
RCC robot. A revolute joint with the axis of rotation z, 
organizes input and active joint in each chain. The joint axes 
of the second and third revolute joints in each kinematic chain 
are intersecting and perpendicular to each other and also are 
perpendicular to the axis of rotation of active joints. The 
rotation axis of joints connected to the end-effector and joints 
connected to the base are intersecting and perpendicular to 
each other. 

B. 3-RRS 

The 3-RRS robot is represented in Fig. 2. A revolute joint 
with the axes of rotation z, organizes input and active joint in 

each chain. The third joint in each chain is a spherical joint 
which rotates about three perpendicular axes. As the 3-RCC 
robot, the axis of rotation of joints connected to the end-
effector and joints connected to the base are intersecting and 
perpendicular to each other. 

III. STATIC ANALYSIS OF ROBOTS 

In this section the static equilibrium equations for each 
chain of robots are extracted. 

A. 3-RCC 

This robot consists of the end-effector, the base and three 
arms. There are one revolute and two cylindrical joints in each 
arm. Each rotational joint has a rotational degree of freedom 
along its axis of rotation. There is no moment on the joints in 
this direction. But they have two moments in two other 
directions which are perpendicular to the axis of rotation and 
they have some forces along all of three directions. So there 
are five unknowns for each of the rotational joints. Each 
cylindrical joint has four unknowns (two moments and two 
forces). Also one moment on each motor is unknown in the 
static analysis. Consequently there are 3*(5+4+4) + 3 =42 
unknowns in this mechanism. There are 6 static equilibrium 
equations in each arm. The end-effector has 6 equilibrium 
equations. In sum-up this robot has 6+ (3*12) =42 equations. 

General form of static equilibrium equations are: 
 

(1) 0 f  

(2) 0m  

 
In which f and m illustrate force and moment respectively. 

The external force (f) has exerted on the end-effector which is 
downward and perpendicular to it. Also external moment (m) 
has exerted about the same direction. This direction is the 
same that the end-effector weight is exerted to it. In equations 
pe denotes summation of the decomposition of the external 
force and the end-effector weight in each of the three 
directions x, y and z. The distance between the origin (O) to 
the location of the first, second and third joint in each arm and 
along their rotation axis are represented by r1, r2 and r3 
respectively. The decomposition of the weight of the proximal 
and distal links in each arm and in mentioned directions are 
shown by p1 and p2. The distance between mass center of 
proximal links to the location of the first joint is shown by lij 
in which i illustrates the number of arm and j shows the 
direction. For example l1x is the distance between mass center 
of the first arms proximal joint to the location of the first joint 
of this arm along the x axis. Similarly distance between the 
mass center of distal link to the location of the second joint in 
each arm is shown by sij. The moment on the motors installed 
on active joints are shown by mxt2, myt1 and mzt3. Fijk 
demonstrates force in joint k and arm j in i direction. In the 
same way, mijk illustrates moment in joint k and arm j about i 
direction. 
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Fig. 2 CAD Model of 3-RRS [15] 
 

TABLE I 
DIMENSIONS FROM CAD MODEL OF 3-RCC 

Symbol Dimension (mm) Symbol Dimension (mm) 

r1 0.195 l3y 0.07483 

r2 0.162 l3z -0.09129 

r3 0.082 s1x -0.08686 

p1 0.1646 s1y 0 

p2 0.1565 s1z -0.0533 

l1x 0.07483 s2x 0 

l1y -0.09129 s2y -0.0533 

l1z 0 s2z -0.08686 

l2x -0.09129 s3x -0.0533 

l2y 0 s3y -0.08686 

l2z 0.07483 s3z 0 

l3x 0 fx 2*cos(t) 

fy 4*sin(t) fz 6*sin(t) 

ax 3*sin(t) ay 5*sin(t) 

az 7*cos(t)   
 

 

(3) 
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Equilibrium equations for end-effector and the first arm are: 
 

(5) 

13 23 0   x x exf f p  

13 33 0   y y eyf f p  

23 33 0   z z ezf f p  

 (6) 
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11 12 1 2 1 2 1
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(10) 

13 13 3 1 1 1 1
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12 13 2 1 1 1 1

0
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Similarly equations for the links of the first, second, and 

third arms are: 
 

(11) 
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(12) 
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Dimensions have been obtained from the CAD model are 

written in Table I. 
 

Fig. 3 Diagram of Torque – Time in 3-RCC 
 
Set of equations can be written as: 
 

 (19)     A x b  

 
Matrix [A] is a 42*42 matrix named coefficient matrix, [X] 

is a 42*1 matrix expresses unknown matrix and [B] is the 
constants matrix and it is 42*1. Number of equations and 
unknowns are equal, so there is exact solution for it.  

This set of equations was solved in MATLAB software and 
the results are extracted for the force of active joints along 
their rotation axis. The cad models of these mechanisms have 
been simulated in ADAMS software and analyzed statically. 

B. 3-RRS 

This robot has an end-effector, a fixed base and three arms. 
Each arm has two revolute joints and one spherical joint. As 
you see in the static analysis of a 3-RCC robot, there are 5 
unknowns in each revolute joint. Each spherical joint has three 
forces which are perpendicular to each other but it has no 
moment, so it can rotate about each axis and this set of 
equations has (5+3+5)*3=39 unknowns. As mentioned before 
each motor has a moment unknown, therefore it has 42 
unknowns. Each link has six static equilibrium equations, thus 
each arm has 12. The end-effector has six static equilibrium 
equations, consequently this robot has (12*3) +6=42 
equations. The equations for end-effector are similar to 3-RCC 
end-effector. Static equilibrium equations for the first, second 
and third arm of this robot are: 
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TABLE II  

 DIMENSIONS FROM CAD MODEL OF 3-RRS 

Symbol Dimension (mm) Symbol Dimension (mm) 

r1 0.195 l3y 0.07483 

r2 0.162 l3z -0.09129 

r3 0.082 s1x -0.08686 

p1 0.1646 s1y 0 

p2 0.1565 s1z -0.0533 

l1x 0.07483 s2x 0 

l1y -0.09129 s2y -0.0533 

l1z 0 s2z -0.08686 

l2x -0.09129 s3x -0.0533 

l2y 0 s3y -0.08686 

l2z 0.07483 s3z 0 

l3x 0 fx -2*cos(t) 

fy -4*cos(t) + 3*sin(t) fz sin(t) - cos(t) 

ax 3*sin(t) + cos(t) ay -5*sin(t) + cos(t) 

az -sin(t) + 2*cos(t)   
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Dimensions obtained from CAD model are written in Table 

II. To solve these equations, there are: 
 

(31) 
 

     42 42 42 1 42 1  A x b 

  

 (32)      -1
x A b  

 
This set of equations has been solved similar to 3-RCC in 

MATLAB and ADAMS software. 
 

 

Fig. 4 Diagram of Torque – Time in 3-RRS 

IV. CONCLUSION 

Results obtained from ADAMS software are compared with 
the results taken from MATLAB software in the diagrams. 
These diagrams are brought in Fig. 3 and 4. As you can see, 
these results have an acceptable error which is because of 
errors in dimensions and other software errors. These 
diagrams show the correctness of the analysis. It can be 
concluded that static analyzing of these robots could make a 
better feel to use them in the robotic uses. That is because of 
the fact that static analyzing is the first step of studies on 
robots and determining that which robot is good for each 
place. So, it is an important start for using them in a lot of 
places. 
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