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Abstract—In this paper we are interested in Moufang-Klingenberg
planes M(A) defined over a local alternative ring A of dual numbers.
We introduce two new collineations of M(A).
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I. INTRODUCTION

The number of collineations of any projective plane is huge.
For example; the Fano plane has 168 collineations, the non-
Desarguesian projective Veblen-Wedderburn plane of order
9 (which is denoted by πN (9)) has 311,040 collineations
[8, p. 366]. It is easy to see that the composite of any
two collineations is a collineation, as the invers of any
collineation. Function composition is always associative; thus
the collineations of any projective or affine plane form a group.
For more detailed information about these groups, the reader
is referred to the books of [5], [8].

In this paper we deal with the class (which we will denote by
M(A)) of Moufang-Klingenberg (MK) planes coordinatized
by a local alternative ring A := A (ε) = A + Aε (an
alternative field A, ε /∈ A and ε2 = 0) introduced by Blunck
in [3]. We will introduce two collineations of M(A), different
from the collineations given in [4].

The paper is organized as follows. Section 2 includes some
basic definitions and results from the literature. In Section 3
we will give two transformations of M(A) and show that the
transformations are collineations M(A).

II. PRELIMINARIES

Let M = (P,L,∈,∼) consist of an incidence structure
(P,L,∈) (points, lines, incidence) and an equivalence relation
‘∼’ (neighbour relation) on P and on L, respectively. Then
M is called a projective Klingenberg plane (PK-plane), if it
satisfies the following axioms:

(PK1) If P,Q are non-neighbour points, then there is a
unique line PQ through P and Q.

(PK2) If g, h are non-neighbour lines, then there is a unique
point g ∩ h on both g and h.

(PK3) There is a projective plane M∗ = (P∗,L∗,∈) and
an incidence structure epimorphism Ψ : M → M∗, such that
the conditions

Ψ(P ) = Ψ(Q) ⇔ P ∼ Q, Ψ(g) = Ψ(h) ⇔ g ∼ h

hold for all P,Q ∈ P, g, h ∈ L.
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A point P ∈ P is called near a line g ∈ L iff there exists
a line h ∼ g such that P ∈ h.

An incidence structure automorphism preserving and re-
flecting the neighbour relation is called a collineation of M.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane
M that generalizes a Moufang plane, and for which M∗ is a
Moufang plane (for the exact definition see [1]).

An alternative ring (field) R is a not necessarily associative
ring (field) that satisfies the alternative laws

a (ab) = a2b, (ba) a = ba2, ∀a, b ∈ R.

An alternative ring R with identity element 1 is called local
if the set I of its non-unit elements is an ideal.

We are now ready to give consecutively two important
lemmas related to alternative rings.

Lemma 2.1: The subring generated by any two elements of
an alternative ring is associative (cf. [7, Theorem 3.1]).

Lemma 2.2: The identities

x (y (xz)) = (xyx) z
((yx) z)x = y (xzx)
(xy) (zx) = x (yz)x

which are known as Moufang identities are satisfied in every
alternative ring (cf. [6, p. 160]).

We summarize some basic concepts about the coordinatiza-
tion of MK-planes from [1].

Let R be a local alternative ring. Then M(R) = (P,L,∈
,∼) is the incidence structure with neighbour relation defined
as follows:

P = {(x, y, 1) : x, y ∈ R}
∪{(1, y, z) : y ∈ R, z ∈ I}
∪{(w, 1, z) : w, z ∈ I},

L = {[m, 1, p] : m, p ∈ R}
∪{[1, n, p] : p ∈ R, n ∈ I}
∪{[q, n, 1] : q, n ∈ I},

[m, 1, p] = {(x, xm+ p, 1) : x ∈ R}
∪ {(1, zp+m, z) : z ∈ I} ,

[1, n, p] = {(yn+ p, y, 1) : y ∈ R}
∪ {(zp+ n, 1, z) : z ∈ I} ,

[q, n, 1] = {(1, y, yn+ q) : y ∈ R}
∪ {(w, 1, wq + n) : w ∈ I}
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and

P = (x1, x2, x3) ∼ (y1, y2, y3) = Q⇔
xi − yi ∈ I (i = 1, 2, 3) ,∀P,Q ∈ P;
g = [x1, x2, x3] ∼ [y1, y2, y3] = h⇔
xi − yi ∈ I (i = 1, 2, 3) ,∀g, h ∈ L.

Now it is time to give the following theorem from [1].

Theorem 2.1: M(R) is an MK-plane, and each MK-plane
is isomorphic to some M(R).

Let A be an alternative field and ε 	∈ A. Consider A :=
A(ε) = A + Aε with componentwise addition and multipli-
cation as follows:

(a1 + a2ε) (b1 + b2ε) = a1b1 + (a1b2 + a2b1) ε,

where ai, bi ∈ A, i = 1, 2. Then A is a local alternative ring
with ideal I = Aε of non-units. The set of formal inverses of
the non-units of A is denoted as I−1. Calculations with the
elements of I−1 are defined as follows [2]:

(aε)−1 + t : = (aε)−1 := t+ (aε)−1
,

q (aε)−1 : =
(
aq−1ε

)−1
,

(aε)−1
q : =

(
q−1aε

)−1
,(

(aε)−1
)−1

: = aε,

where (aε)−1 ∈ I−1, t ∈ A, q ∈ A \ I. (Other terms are not
defined.). For more information about A and its relation to
MK-planes, the reader is referred to the papers of Blunck [2],
[3]. In [3], the centre Z (A) is defined to be the (commutative,
associative) subring of A which is commuting and associating
with all elements of A. It is Z (A) := Z (ε) = Z+Zε where
Z = {z ∈ A :za = az, ∀a ∈ A} is the centre of A. If A is
not associative, then A is a Cayley division algebra over its
centre Z. Throughout this paper we assume charA 	= 2 and
we restrict ourselves to the MK-planes M(A). In the next
section, we will introduce two collineations of M(A).

III. TWO COLLINEATIONS OF M(A)
In this section we will give two transformations. We will

show that these are collineations of M(A).
Now we start with giving the transformations, where

w, z, q, n ∈ A: For any s /∈ I, the map Js transforms points
and lines as follows:

(x, y, 1) → (
ys−1, xs, 1

)
,

(1, y, zε) → (
1, sy−1s, s(y−1z)

)
if y /∈ I,

(1, y, zε) → (
s−1ys−1, 1, s−1z

)
if y ∈ I,

(wε, 1, zε) → (1, sws, sz)

and

[m, 1, k] → [
sm−1s, 1,− (

km−1
)
s
]
if m /∈ I,

[m, 1, k] → [
1, s−1ms−1, ks−1

]
if m ∈ I,

[1, nε, p] → [sns, 1, ps] ,
[qε, nε, 1] → [

sn, s−1q, 1
]
.

For any s /∈ I, the map Hs transforms points and lines as
follows:

(x, y, 1) →
(
s
(
(y + s)−1

x
)
,
(
s (y + s)−1

)
y, 1

)
if y + s /∈ I,

(x, y, 1) → (
1, x−1y,

(
x−1 (y + s)

)
s−1

)
if y + s ∈ I ∧ x /∈ I,

(x, y, 1) → (
y−1x, 1, y−1

(
(y + s) s−1

))
if y + s ∈ I ∧ x ∈ I,

(1, y, zε) →
(
s (y + zs)−1

,
(
s (y + zs)−1

)
y, 1

)
if y /∈ I,

(1, y, zε) → (
1, y, z + ys−1

)
if y ∈ I,

(wε, 1, zε) →
((
s (1 + zs)−1

)
w, s (1 + zs)−1

, 1
)

and

[m, 1, k] →
⎡
⎣ m− (

ms−1
) ((

s (s+ k)−1
)
k
)
,

1,
(
s (s+ k)−1

)
k

⎤
⎦

if s+ k /∈ I,

[m, 1, k] → [
1, s−1

(
(s+ k)m−1

)
,−km−1

]
if s+ k ∈ I ∧m /∈ I,

[m, 1, k] → [−mk−1, k−1
(
(s+ k) s−1

)
, 1

]
if s+ k ∈ I ∧m ∈ I,

[1, nε, p] →
[
(sn− p)−1

s, 1,−p
(
(sn− p)−1

s
)]

if p /∈ I,

[1, nε, p] → [
1, n− s−1p, p

]
if p ∈ I,

[qε, nε, 1] →
[
−q

(
s (1 + ns)−1

)
, 1, s (1 + ns)−1

]
.

Now we are ready to give the main result of the paper.

Theorem 3.1: The transformations Js and Hs, defined
above, are collineations of M(A).

Proof: The proof can be done by direct computation
with using Moufang identities and properties of the local
alternative rings (cf [1]). We will only show that Js preserves
the incidence relation (i.e. P ∈ l ⇔Js (P ) ∈Js (l)) and
the neighbour relation (i.e. P ∼ Q ⇔Js (P ) ∼Js (Q) and
g ∼ h⇔Js (g) ∼Js (h)).

Case 1. Let P = (x, y, 1). Then Js (P ) =
(
ys−1, xs, 1

)
.

1.1. Let l = [m, 1, k].
1.1.1. If m ∈ I, then since Js(P ) = (ys−1, xs, 1)

and Js(l) = [1, s−1ms−1, ks−1], we have Js (P ) ∈Js (l) ⇔
ys−1 = (xs)

(
s−1ms−1

)
+ ks−s. By Lemma 2.1 and 2.2, we

get Js (P ) ∈Js (l) ⇔ ys−1 =
((
xss−1

)
m

)
s−1 + ks−1 =

(xm)s−1 + ks−1 and multiplying by s on the right, we find
y = xm+ k ⇔ P ∈ l.

1.1.2. If m /∈ I, then since Js(P ) = (ys−1, xs, 1)
and Js(l) = [sm−1s, 1,−(km−1)s], we have Js (P ) ∈Js (l) ⇔
xs =

(
ys−1

) (
sm−1s

)
+ − (

km−1
)
s. Again by Lemma 2.1

and 2.2, we get Js (P ) ∈Js (l) ⇔ xs =
((
ys−1s

)
m−1

)
s +
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− (
km−1

)
s =

(
ym−1

)
s−(

km−1
)
s and multiplying by s−1

on the right, we obtain Js(P ) ∈Js(l) ⇔ x = ym−1 − km−1.
Finally, by multiplying both sides on the right by m, y =
xm+ k ⇔ P ∈ l.

1.2. Let l = [1, nε, p] where n ∈ A. Then since
Js (P ) =

(
ys−1, xs, 1

)
and Js (l) = [sns, 1, ps], we have

Js (P ) ∈Js (l) ⇔ xs =
(
ys−1

)
(sns) + ps ⇔ xs =((

ys−1s
)
n
)
s+ ps⇔ x = yn+ p⇔ P ∈ l.

1.3. Let l = [qε, nε, 1] where q, n ∈ A. In this case
P /∈ l. Since Js (P ) =

(
ys−1, xs, 1

)
and Js (l) =

[
sn, s−1q, 1

]
then Js (P ) /∈Js (l). So, P /∈ l ⇔Js (P ) /∈Js (l).

Case 2. Let P = (1, y, zε) where z ∈ A.
2.1. Let l = [m, 1, k].

2.1.1. If m ∈ I and y ∈ I then since Js (P ) =(
s−1ys−1, 1, s−1z

)
and Js (l) =

[
1, s−1ms−1, ks−1

]
. In this

case, we have Js (P ) ∈Js (l) ⇔ s−1ys−1 = s−1ms−1 +(
s−1z

) (
ks−1

)
. By Lemma 2.1, we obtain Js (P ) ∈Js (l) ⇔

s−1ys−1 = s−1ms−1 + s−1 (zk) s−1. By multiplying both
sides on the right and left by s we find Js (P ) ∈Js (l) ⇔ y =
m+ zk and so Js (P ) ∈Js (l) ⇔ P ∈ l.

2.1.2. If m ∈ I and y /∈ I then y = m + zk ∈ I,
which is a contradiction. That is, P /∈ l. Also as a direct
consequence of the coordinatization of M(A), Js (P ) /∈Js (l).

2.1.3. If m /∈ I and y ∈ I then y − zk = m ∈ I,
which is a contradiction. That is, P /∈ l. Also as a direct
consequence of the coordinatization of M(A), Js (P ) /∈Js (l).

2.1.4. If m /∈ I and y /∈ I then since Js (P ) =(
1, sy−1s, s(y−1z)

)
and Js (l) =

[
sm−1s, 1,− (

km−1
)
s
]
.In

this case, we have P ∈ l ⇒ y = m + zk. where
y−1 = m−1 − m−1 (zk)m−1. By Lemma 2.2, we get
y−1 = m−1 − (

m−1z
) (
km−1

)
. Note that m−1z = y−1z

where z ∈ I. So, y−1 = m−1 − (
y−1z

) (
km−1

)
. By

multiplying both sides on the right and left by s, we find
sy−1s = sm−1s−s (

(y−1z)
) ((

km−1
))
s. By Lemma 2.2, we

obtain sy−1s = sm−1s−(
s(y−1z)

) ((
km−1

)
s
)

which means
that Js (P ) ∈Js (l). Conversely, let Js (P ) ∈Js (l) ⇒ sy−1s =
sm−1s − (

s(y−1z)
) ((

km−1
)
s
)
. Since m /∈ I and y /∈ I,

there exists m1, m2, y1, y2 ∈ A such that m1 	= 0 	= y1
and m = m1 +m2ε, y = y1 + y2ε. Then using the inverses
m−1 = m−1

1 −m−1
1 m2m

−1
1 ε and y−1 = y−1

1 − y−1
1 y2y

−1
1 ε

of m and y, respectively;(
1, sy−1s, s(y−1z)

) ∈ [
sm−1s, 1,− (

km−1
)
s
]

⇔
⎧⎨
⎩

y−1
1 = m−1

1 ⇔ y1 = m1

y−1
1 y2y

−1
1 = m−1

1 m2m
−1
1

+
(
y−1
1 z

) (
k1m

−1
1

)
(in which k has the form k1 + k2ε where k1, k2 ∈ A) and so
the solution of this equation system is

y−1
1 y2y

−1
1 = y−1

1 m2y
−1
1 +

(
y−1
1 z

) (
k1y

−1
1

)
.

Since all terms of this equation are elements of Cayley division
ring A, Moufang identities are valid. Therefore,

y−1
1 y2y

−1
1 = y−1

1 m2y
−1
1 + y−1

1 (zk1) y−1
1

= y−1
1 (m2 + zk1) y−1

1

= y−1
1

(
(m2 + zk1) y−1

1

)

is obtained. Then we have

y−1
1 y2y

−1
1 = y−1

1

(
(m2 + zk1) y−1

1

) ⇔ y2 = m2 + zk1

from Lemma 2.1. Finally we have y1 = m1 and y2 = m2+zk1

which means that P ∈ l.

2.2. Let l = [1, nε, p] where n ∈ A. In this case,
Js (l) = [sns, 1, ps] and P /∈ l.

2.2.1. If y ∈ I, then Js (P ) =
(
s−1ys−1, 1, s−1z

)
.

Also as a direct consequence of the coordinatization of M(A),
Js (P ) /∈Js (l).

2.2.2. If y /∈ I, then Js(P ) = (1, sy−1s, s(y−1z)).
In this case we have Js (P ) ∈ Js (l) ⇔ sy−1s = sns +(
s(y−1z)

)
(ps). By Lemma 2.2, Js (P ) ∈ Js (l) ⇔ sy−1s =

sns+s
(
(y−1z)p

)
s. By multiplying both sides on the right and

left by s−1, we find Js (P ) ∈ Js (l) ⇔ y−1 = n+(y−1z)p ∈ I
which contradicts with our hypothesis y /∈ I. That is, Js (P ) /∈
Js (l).

2.3. Let l = [qε, nε, 1] where q, n ∈ A. In this case,
Js (l) =

[
sn, s−1q, 1

]
.

2.3.1. If y ∈ I, then Js (P ) =
(
s−1ys−1, 1, s−1z

)
.

So we have Js(P ) ∈ Js(l) ⇔ s−1z = (s−1ys−1)(sn)+s−1q.
By Lemma 2.1 and 2.2, we get Js (P ) ∈ Js (l) ⇔ s−1z =
s−1

(
y

(
s−1sn

))
+s−1q. By multiplying both sides on the left

by s, we find Js (P ) ∈ Js (l) ⇔ z = yn + q. So, Js (P ) ∈
Js (l) ⇔ P ∈ l.

2.3.2. If y /∈ I, then Js(P ) = (1, sy−1s, s(y−1z)).
In his case, we have Js (P ) ∈ Js (l) ⇔ s(y−1z) = sn +(
sy−1s

) (
s−1q

)
. By Lemma 2.1 and 2.2, we get Js (P ) ∈

Js (l) ⇔ s(y−1z) = sn + s
(
y−1

(
ss−1q

))
. By multiplying

both sides on the left by s, we find Js (P ) ∈ Js (l) ⇔ y−1z =
n+y−1q. By multiplying both sides on the left by y, we obtain
Js (P ) ∈ Js (l) ⇔ z = yn+ q. So, we get Js (P ) ∈ Js (l) ⇔
P ∈ l.

Case 3. Let P = (wε, 1, zε) where w, z ∈ A. Then
Js (P ) = (1, sws, sz).

3.1. Let l = [m, 1, k]. Then from the coordinatization
of M(A) we obviously have P /∈ l.

3.1.1. If m ∈ I, then Js(l) = [1, s−1ms−1, ks−1].
Also as a direct consequence of the coordinatization of M(A),
Js (P ) /∈Js (l).

3.1.2. If m /∈ I, then Js(l) = [sm−1s, 1,
−(km−1)s]. In this case, we have Js (P ) ∈ Js (l) ⇔
sws = sm−1s − (sz)

((
km−1

)
s
)
. By Lemma 2.2, we get

Js (P ) ∈ Js (l) ⇔ sws = sm−1s − s
(
z

(
km−1

))
s. By

multiplying both sides on the right and left by s−1, we find
Js (P ) ∈ Js (l) ⇔ w = m−1 − z

(
km−1

)
. So, we obtain

Js (P ) ∈ Js (l) ⇔ m−1 = w + z
(
km−1

) ∈ I which contra-
dicts with our hypothesis m /∈ I. That is, Js (P ) /∈ Js (l).

3.2. Let l = [1, nε, p] where n ∈ A. Then Js (P ) =
[sns, 1, ps]. In this case, Js (P ) ∈ Js (l) ⇔ sws = sns +
(sz) (ps). By Lemma 2.2, we have Js (P ) ∈ Js (l) ⇔ sws =
sns+ s (zp) s. By multiplying both sides on the right and left
by s−1, we obtain Js (P ) ∈ Js (l) ⇔ w = n + zp which
means that P ∈ l.
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3.3. Let l = [qε, nε, 1] where q, n ∈ A. Then Js (l) =[
sn, s−1q, 1

]
. In this case we have Js (P ) ∈ Js (l) ⇔ sz =

sn+(sws)
(
s−1q

)
= sn+ s (wq) by Lemma 2.1 and 2.2. By

multiplying both sides on the left by s−1, we find Js (P ) ∈
Js (l) ⇔ z = n+ wq which means that P ∈ l.

Now, we will show that Js preserves the neighbour re-
lation for the point and the lines by using properties of
ideals. The case in which the most complicated computa-
tions arise is when m,u /∈ I for the lines [m, 1, k] and
[u, 1, v]. Therefore we give the proof for only this case. Then
Js ([m, 1, k]) =

[
sm−1s, 1,− (

km−1
)
s
]

and Js ([u, 1, v]) =[
su−1s, 1,− (

vu−1
)
s
]

and also[
sm−1s, 1,− (

km−1
)
s
] ∼ [

su−1s, 1,− (
vu−1

)
s
]

⇔ m−1 − u−1 ∈ I ∧ vu−1 − km−1 ∈ I

⇔ m−1
1 − u−1

1 = 0, v1u−1
1 − k1m

−1
1 = 0

⇔ m1 = u1, v1 = k1

⇔ m1 − u1 = 0, v1 − k1 = 0
⇔ m− u ∈ I ∧ v − k ∈ I (or k − v ∈ I)
⇔ [m, 1, k] ∼ [u, 1, v] .
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