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Abstract—This study introduces two types of self-oscillating 

circuits that are frequently found in power electronics applications. 
Special effort is made to relate the circuits to the analogous mechanical 
systems of some important scientific inventions: Galileo’s pendulum 
clock and Coulomb’s friction model. A little touch of related history 
and philosophy of science will hopefully encourage curiosity, advance 
the understanding of self-oscillating systems and satisfy the aspiration 
of some students for scientific literacy. Finally, the two self-oscillating 
circuits are applied to design a simple class-D audio amplifier. 

 
Keywords—Self-oscillation, sigma-delta modulator, pendulum 

clock, Coulomb friction, class-D amplifier.  

I. INTRODUCTION 

ANY textbooks on basic circuit theory overemphasize 
circuit analysis methods, but lack real applications to 

explain the uses of circuits. Consequently, students tend to 
know how to lay bricks, but not know how to build a beautiful 
chapel or cathedral. This work develops a lecture on basic LCR 
circuits and self-oscillating circuits [1]-[6] by using analogy in 
mechanical systems and introducing some related scientific 
history, hopefully providing some demonstrations and 
stimulation for students. Two types of self-oscillating circuits 
are introduced here. Both find uses in power electronics 
applications, one useful for self-oscillating power amplification 
[3], [4] and the other for pulse width modulation [5], [6]. The 
lecture is designed using the following two pedagogic 
strategies:  
1) Use of analogy: A major part of human creativity and 

thinking is based on analogy and metaphor [7]. Teaching 
by analogy is especially effective, since previous 
knowledge or experience helps build meaning of the new 
materials. The LCR circuit is first introduced as an 
electrical analog of a mass-spring-damper system. The 
LCR-based oscillator and modulator are then presented by 
analogy with a mechanical clock and an imaginary friction 
mechanism, respectively. 

2) Introduction of the scientific history and philosophy: The 
lecture relates the LCR self-oscillating circuits with two 
important scientific inventions in the seventeenth and 
eighteenth centuries: Galileo’s pendulum clock [8], [9] and 
Coulomb’s friction model [10]. By considering the history 
and the underlying philosophy of science, students can 
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gain a deeper understanding of the presented circuit and 
appreciate the intelligence of historical figures in science.  

II. LCR OSCILLATOR 

A square-wave oscillator, which generates regularly spaced 
pulses, is an essential component of many digital instruments 
and systems. An LCR oscillator that uses positive relay 
feedback around an LCR circuit to generate a stable oscillation 
is a particularly interesting design. Such an LCR oscillator can 
be viewed as a direct descendant of the mechanical clocks 
inspired by Galileo. 

 

 

(a)                                          (b) 

Fig. 1 (a) A pendulum with the damping proportional to the angular 
velocity (b) Mechanical analog of the linearized pendulum, where m, 
b, k, and f corresponds to the moment of inertia ml2, c, mgl, and τ in a 
damped pendulum. The linear damping is to account for air drag and 

friction 

A. Galileo’s Pendulum Clock 

Galileo Galilei (1564-1642) discovered the pendulum’s 
isochronic property by observing a swaying lamp hanging from 
a cathedral ceiling in the late sixteenth century [8]. A pendulum 
that does not swing too widely swings at a constant period, 
irrespective of mass and amplitude. Galileo realized that this 
isochronic property could be useful in measuring time periods, 
and mentioned to his son Vincenzio the idea of utilizing a 
pendulum to build a clock in 1641. However, Vincenzio never 
succeeded in building such a clock. Dutch physicist Christiaan 
Huygens (1629-1695) constructed the first working pendulum 
clock in 1656, and later published books about its design and 
the improvement, named Horologium in 1658 and Horologium 

Oscillatorium in 1673, respectively. Later Robert Hooke and 
Huygens independently invented a new mechanical oscillator 
to replace a pendulum in 1675. Their oscillator comprised a 
balance wheel attached to a coil spring that rotated back and 
forth due to the elasticity of a spring. This design became a 
prototype for modern mechanical wristwatches. John Harrison 
(1693-1776) later significantly improved clock accuracy in his 
lifelong pursuit of an accurate and reliable clock to solve the 
long-standing problem of longitude determination [11].  
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The invention of a pendulum clock had a major impact on 
scientific development, and marks the beginning of dynamic 
mechanics. Physical quantities involving time could not easily 
be measured before this invention. Newton’s incomparable 
work Principia would almost certainly not have been possible 
without the invention of the pendulum clock [12]. 

B. Perpetual Oscillation of a Mechanical Clock 

The most important components of a mechanical clock are 
the oscillator and the regulator [13], [8]. The oscillator is a 
pendulum or a balance wheel with a spring, and the regulator is 
a device called an escapement, which supplies energy to the 
oscillator and regulates the motion of the clock. Fig. 1 shows 
simple models for common mechanical oscillators. The 
equation of the mass-spring-damper oscillator is given by 

 

 fkxxbxm =++ ɺɺɺ . (1) 

 
Considering an initial energy and zero external force, the 

mass-spring-damper system oscillates at a rate given by  
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The oscillation frequency is independent of the amplitude 

(isochronic property), and is close to the undamped natural 
frequency (k/m)0.5 when the damping is very small. However, 
this oscillator is not suitable for measuring long time periods, 
because, without a supply of energy, the oscillator will 
eventually stop because of unavoidable damping caused by 
friction and air drag. Equation (1) multiplied by xɺ  yields, 

 

 ( ) 22
2
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 xbxfkxxm
dt
d ɺɺɺ −=+ .    (3) 

 
The left-hand side of (3) is the changing rate of the stored 

energy. Without an external force (i.e., f=0), the damping 
eventually consumes all the stored energy, causing the 
oscillation to stop. The oscillation can only be sustained by 
exerting a force on the mass along its direction of movement to 
compensate the energy loss. The important issue is finding an 
effective method of supplying energy without affecting the 
oscillation frequency. The impulse response is known to have 
the same oscillation frequency as the natural response. 
Additionally, as implied by (3), an impulsive force is most 
effective when applied at the instant of the mass passing its 
equilibrium (i.e., x=0), since the velocity reaches maximum at 
the equilibrium. Hence, exerting impulsive forces upon the 
mass at the instants of time when x=0 enhances its oscillation 
[1, Sec. III-5]. The resulting impulse responses oscillate at the 
same frequency, with their zero-crossings coinciding with that 
of the original oscillation. Superimposing such an impulse 
response is completely constructive, making it the most 
effective technique for a clock’s escapement to compensate for 
the energy loss of a mechanical oscillator. The video 
presentation of professor Sussman [13] provides an excellent 

demonstration of the escapement mechanism.  

)sgn(⋅

)(⋅
dt
da

fkxxbxm =++ ɺɺɺ

 

(a)                                                 (b) 

Fig. 2 Relay feedback for sustained oscillation of a mechanical clock 
(a) Schematic demonstration (b) Electrical analog, where L, C, R, and 

VR corresponds to m, 1/k, b, and x in the mechanical system, 

respectively. An additional pullup resistor Rp is required for the 
comparator that has an open-collector or open-drain output 

C. Electrical Analog of a Mechanical Clock 

Fig. 2 (a) mathematically illustrates the energy-supply 
mechanism of a mechanical clock. The signum function 
(sgn(x)=1 when x ≥ 0, otherwise sgn(x) = –1) detects the 
zero-crossings of x, producing a binary output y that alters its 
state at each zero-crossing. A differentiator transforms the 
square wave y into an impulse train f, with positive impulses 
occurring at the rising edges of the square wave, and negative 
impulses at the falling edges. The dynamics of the overall 
feedback energy-supply mechanism is described by 
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Fig. 2 (b) presents an electrical realization of this feedback 

oscillation, of which the equations are as follows 
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In analogy with the mechanical clock, the oscillation 

frequency of this LCR oscillator is exactly equal to the natural 
frequency of the series LCR in the circuit. By direct one-to-one 
correspondence with (2), the oscillation frequency is given by 

 

 ( )2
2

1 
L

R
LC

−=ω . (6) 

 
This kind of self-oscillation can be applied to the design of 

self-oscillating electronic drive [3], [4]. 

III. LCR MODULATOR  

This section introduces another type of oscillator that can 
carry the information of the external signal in its varying 
pulse-width of oscillation [5], [6]. The most well-known of 
these pulse-width modulated oscillators are sigma-delta 
modulators [5], [14], which have various applications in signal 
coding, analog-to-digital conversion and communication. Of 
particular interest is their intimate connection with an 
imaginary mechanical oscillator.  
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(a)                                                      (b) 

Fig. 3 (a) Mass-spring-damper system with friction; (b) Binary 
representation of the Coulomb friction model, fc =a when v ≥ 0, 

otherwise fc =–a, where a is proportional to the normal force of the 
block to the surface 

A. Coulomb’s Friction Model 

Friction is a common experience in our daily life. A small 
force to push a heavy object causes no motion until the force 
exceeds a certain minimum level. Leonardo da Vinci 
(1452–1519) first systematically studied of friction by 
discovering that friction is proportional to the weight and is 
independent of the area of contact. These two laws of friction 
were rediscovered by the French physicist Guillaume 
Amontons in 1699, and later augmented by Coulomb in 1785. 
D. Dowson [15] provides a complete history of the discovery 
and investigation of friction. Charles Augustin Coulomb 
(1736-1806), who is best known for Coulomb’s law in 
electrostatic force, proposed a simple mathematical model for 
friction in 1785. 
 

 )(sgn vafc = , (7) 

 
 where the constant a is proportional to the normal force mg, 
with the proportionality depending on the materials of the 
surfaces in contact.  

In the binary representation of Fig. 3 (b), the Coulomb 
friction switches between two extreme values, and does not 
disappear even when the block is at rest. Suppose that the block 
in Fig. 3 (a) has zero velocity at the origin, and that the 
Coulomb friction force is larger than the external force. In this 
case, the Coulomb friction force repetitively pushes the block 
back and forth according to the sign of the velocity, restricting 
its motion within an extremely small region. Since no humane 
eye or equipment in the world can detect such an infinitely 
high-frequency and infinitesimally small movement, the block 
is observed to be “at rest”. The external force does not disturb 
this state unless it exceeds the magnitude of the friction force. 
The phenomenon described by this model is consistent with our 
observation, although it seems difficult to accept intuitively.  

The Coulomb’s binary friction model can be applied without 
necessarily believing in it, because a mathematical model is 
only a simplified analogous construct of physical reality [16], 
just as Newton’s laws is a model of bodies in motion. A 
mathematical model is generally consonant with empirical 
findings, but not identical with nature. The mathematical 
principle or model needs modification when it is not consistent 
with the observations of nature. Various modifications of the 
Coulomb friction model have been made by comparing and 
contrasting it with the reality of nature [10].  

 

(a)                                                (b) 

Fig. 4 (a) Block diagram of a mass-spring-damper system with 
Coulomb friction. (b) Electrical analog: LCR modulator, where L, C, 
R, VR, Vi and Vo corresponds to m, 1/k, b, v, fe, and fc in the mechanical 

system, respectively 

B. Coulomb Friction Oscillator: Binary Representation of a 

Continuous Force  

Except for its practical use in estimating friction, the binary 
Coulomb friction model suggests a clever way to transform a 
continuous signal into a binary one.  

Consider the mass-spring-damper system with binary 
Coulomb friction shown in Fig. 6 (a). The mass oscillates 
infinitely fast in an infinitesimally small region when the 
external force is below the Coulomb friction. Such a system is 
referred to herein as a Coulomb friction oscillator. 
Macroscopically, the block of mass does not make an 
observable movement, even though the total net force on it is 
not zero at any moment. This is because a body in motion is a 
memory system, which reacts to a force by accelerating, and its 
motion (i.e., velocity and position) is the result of the 
accumulation of all past forces. Therefore, the body barely 
moves if the effects of the net forces exerted at different instants 
tend to cancel each other out. In other words, the body cannot 
“feel” the difference between the continuous external force and 
the binary friction, and therefore responds with no observable 
movement. This can be interpreted in the frequency domain as 
meaning that the binary friction has identical frequency content 
to the continuous external force within the bandwidth of the 
mass-spring-damper system. The mass-spring-damper system 
completely filters out their difference. Therefore, the 
continuous external force can be reconstructed from the binary 
friction by filtering out those out-of-band differences.  

C. Electrical Analog of a Coulomb Friction Oscillator  

Fig. 4 (a) displays a block diagram of the Coulomb friction 
oscillator in Fig. 3 (a). Fig. 4 (b) depicts an analogous circuit 
realization in which the series LCR mimics the 
mass-spring-damper system with input Vi, comparator output 
Vo and resistor voltage VR corresponding to external force fe, 
friction fc and velocity v, respectively. The s-domain model of 
the LCR circuit is given below to examine the relationship 
between the continuous input and the binary output. 

 

 )()]()()[( sVsVsVsT Roi =− , (8) 
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Fig. 5 Sigma-delta modulator clocked by a square-wave oscillator 
 

 )()()()( 1 sVsTsVsV Rio
−−= . (10) 

 
The comparator output Vo, which is a binary representation 

of the input signal Vi, contains two terms in (10), the desired 

signal Vi and unwanted noise 1−T VR. By analogy, VR 
corresponds to the velocity of the mass-spring-damper system, 
and is close to zero when |Vi|<|Vo| (which corresponds to the 
condition that the external force is below the Coulomb friction 
in the mechanical system). Significantly, T is a bandpass filter, 
and its inverse magnitude response spectrally shapes the 
frequency content of the noise. This means that the in-band 
noise will be attenuated, and Vo contains mostly the input signal 
Vi within the bandwidth of the bandpass LCR. Such a 
modulator belongs to a group of noise-shaping modulators 
named sigma-delta modulators [5] 

IV. COMPARISON AND APPLICATION  

This work presents two oscillators that utilize relay feedback. 
This section highlights their differences, and also presents an 
application for them.  

A. Comparison of LCR Oscillator and Modulator 

The LCR oscillator and modulator in Figs. 2 (b) and 4 (b) are 
similar in structure, but very different in operation. They belong 
to the same category of feedback called relay feedback, and are 
designed to be self-oscillatory. However, the LCR oscillator 
oscillates at the natural frequency of the LCR, whereas the LCR 
modulator tends to oscillate at an extremely high frequency; the 
former carries the information of the natural response of the 
LCR, but the latter carries the information of the external input 
signal. The difference is caused by the sign of the feedback. 
According to the law of energy conservation, the changing rate 
of the total stored energy of the inductor and capacitor equals 
the supply power minus the power dissipated on the resistor. 
This law is expressed mathematically as follows: 

 

( ) 2222 1
2
1

2
1 RIVV

R
RIIVCVLI

dt
d

sRsC −=−=+ . (11) 

 

Fig. 6 Waveforms of the resistor voltage and the comparator output in 
the designed LCR oscillator 

 

 

Fig. 7 Output spectrum of the clocked modulator (black) and the 
magnitude response of (103T)–1 (gray). The noise spectrum follows the 

shape of the magnitude response of T–1 
 

The voltages sV  for the LCR oscillator and modulator are 

respectively, 
 

Oscillator: )sgn( Rs VV = ;                      (12) 

 

Modulator: )sgn( Ris VVV −= .                (13) 

 
In the oscillator, the feedback of the comparator output 

makes the first term on the right-hand side of (11) positive, 
supplying energy to the LCR and sustaining oscillation of the 
LCR. However, in the modulator, the feedback drains energy 
out of the LCR in an attempt to cancel the external input and 
steer the state of the LCR to its equilibrium.  

B. Application: Class-D Speech Amplifier  

This section combines the LCR oscillator and modulator 
with a half bridge of power transistors to construct a class-D 
speech amplifier [17]. Figs. 5 and 8 display the designed circuit. 
In Fig. 5, the modulator converts a continuous input speech 
signal into a binary signal, and a D-type flipflop is inserted at 
the output of the modulator to sample and hold the output signal 
at a rate of 1 MHz set by the LCR oscillator. The oscillation 
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frequency of the LCR oscillator with the chosen LCR 
parameters, according to (6), is ω=6.3E6  rad/sec, roughly 1 
MHz. The experimental result is consistent with the theoretical 
expectation. The waveforms of the oscillator are displayed in 
Fig. 6. A modulator with the LCR parameters shown in Fig. 5 
has its frequency band in the major speech frequency range, 
namely from 200Hz to 3.4 kHz. Fig. 7 shows the output 
spectrum of the modulator in response to a 1 kHz sinewave 
input. As expected, the modulator output spectrum contains an 
isolated tone at 1 kHz and noise that distributes following the 
shape of the magnitude response of T–1, where T is the transfer 
function of the LCR bandpass filter in the modulator, as given 
in (9). A slight rise of the output spectrum near DC is caused by 
the DC offsets of the amplifier and the comparator.  

 

 

Fig. 8 A non-overlapped circuit and a half bridge of MOSFET 
transistors make a simple class-D power amplifier and its output LC 

circuit together with a 36Ω earphone forms a bandpass filter 
 

 

Fig. 9 Speech signal “God bless you” as an test input to the proposed 
class-D amplifier (channel 2) and its reconstructed waveform on the 

earphone at the output (channel 3) 
 
Fig. 8 shows the proposed class-D amplifier that reproduces 

the speech from the binary signal sent from the modulator. The 
class-D amplifier comprises a non-overlapped circuit and a pair 
of P-channel and N-channel power MOSFETs. The 
non-overlapped circuit controls the alternately conducting 
PMOS and NMOS, turning off one transistor first and delaying 
the turn-on of the other transistor by about 50 ns to prevent two 
transistors from conducting simultaneously during the 
switching transitions. The amplifier drives an earphone. The 
earphone combined with an inductor and a capacitor constitutes 
an LCR bandpass filter with its passband from 200Hz to 3.4 
kHz, recovering the speech signal as a reproducing sound from 

the binary signal by filtering out the out-of-band modulation 
noise. Fig. 9 plots the waveforms of a test speech signal as the 
input to the modulator and its reconstructed signal across the 
earphone driven by the class-D amplifier. The measurement 
shows that the proposed pulse width modulated amplifier has 
total harmonic distortion plus noise of 0.4% for a 1V 
peak-to-peak sinewave input, a quality comparable to a 
telephone.   

V. CONCLUSION 

This short lecture introduces two common types of 
self-oscillating circuits and their connections to Galileo’s 
pendulum clock and Coulomb’s friction model. These 
analogies help describe, visualize and make sense of the 
unintuitive aspects of electrical world, thus promoting greater 
understanding of the two different self-oscillating circuits and 
their possible applications. Furthermore, meandering through 
the related scientific history and philosophy should help correct 
the serious imbalance between engineering competence and 
scientific literacy in the current engineering education. 
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