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Two-dimensional Differential Transform Method for
Solving Linear and Non-linear Goursat Problem

H. Taghvafard and G. H. Erjaee

Abstract—A method for solving linear and non-linear Goursat
problem is given by using the two-dimensional differential transform
method. The approximate solution of this problem is calculated in
the form of a series with easily computable terms and also the exact
solutions can be achieved by the known forms of the series solutions.
The method can easily be applied to many linear and non-linear
problems and is capable of reducing the size of computational work.
Several examples are given to demonstrate the reliability and the
performance of the presented method.

Keywords—Quadrature, Spline interpolation, Trapezoidal rule, Nu-
merical integration, Error analysis.

I. INTRODUCTION

ONE-dimensional Differential Transform Method (DTM)
was first introduced by Zhou [1] for solving linear and

non-linear initial value problems in electrical circuit analysis.
It has been also used in obtaining series solutions to a wide
class of linear and non-linear ordinary differential equations
[2-10]. Based on the same methodology, Chen and Ho [11]
recently developed the two-dimensional DTM for solving the
differential and integral equations. For example, in [12] this
method is used for solving a system of differential equations
and in [13] for differential-algebraic equations and in [14],
[15] is applied to partial differential equations.

The subject of the presented paper is to apply the two–
dimensional DTM for solving linear and non-linear Goursat
problem which arises in physical phenomena and applied
sciences. For this purpose, we consider the standard form of
the Goursat problem [16-19]

uxt = f(x, t, u, ux, ut), 0 ≤ x ≤ a, 0 ≤ t ≤ b,
u(x, 0) = g(x), u(0, t) = h(t),
g(0) = h(0) = u(0, 0).

This equation has been examined by several numerical meth-
ods such as Runge-Kutta method, finite difference method,
finite elements method, Adomian Decomposition Method
(ADM), Variational Iteration Method (VIM) and geometric
mean averaging of the functional values of f(x, t, u, ux, ut).
See for example [16-21] and references therein.

In this paper, we present the applicability and effectiveness
of DTM on linear and non-linear Goursat problem. The main
advantage of DTM is that it can be applied directly to problems
without requiring linearization, discretization or perturbation.
Another important advantage is that this method is capable
of greatly reducing the size of computational work while
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accurately providing the series solution with fast convergence
rate.

II. TWO-DIMENSIONAL DIFFERENTIAL TRANSFORM

The basic definitions and fundamental operations of the
two-dimensional differential transform are defined in [12] as
follows:

Consider an analytical function w(x, t) of two variables in
domain Ω. Then this function can be represented as a series
in (x0, t0) ∈ Ω, using the differential transform

W (m,n) =
1

m!n!

[
∂m+nw(x, t)
∂xm∂tn

]

x=x0,t=t0

, (1)

by

w(x, y) =
∞∑

m=0

∞∑
n=0

1
m!n!

[
∂m+nw(x, t)
∂xm∂tn

]

x=0,t=0

xmtn, (2)

where w(x, t) is called the inverse transform of W (m,n).
In the following theorem, we summarize fundamental prop-

erties of the two-dimensional differential transform (see [12],
[14], [22]).

Theorem 1: Let U(m,n), V (m,n) and W (m,n) be the
two-dimensional differential transforms of the functions
u(x, t), v(x, t) and w(x, t) in (0, 0), respectively. Then

(a) If u(x, t) = v(x, t)± w(x, t), then

U(m,n) = V (m,n)±W (m,n).

(b) If u(x, t) = av(x, t), then

U(m,n) = aV (m,n).

(c) If u(x, t) = v(x, t)w(x, t), then

U(m,n) =
m∑

k=0

n∑
l=0

V (k, n− l)W (m− k, l)

(d) If u(x, t) = ∂r+sv(x,t)
∂xr∂ts , then

U(m,n) =
(m+ r)!
m!

(n+ s)!
n!

V (m+ r, n+ s).

(e) If u(x, t) = eav(x,t), then
U(m,n) =
⎧⎪⎨
⎪⎩

eaV (0,0),m = n = 0,
a

∑m−1
k=0

∑n
l=0

m−k
m V (m− k, l)U(k, n− l),m ≥ 1,

a
∑m

k=0

∑n−1
l=0

n−l
n V (k, n− l)U(m− k, l), n ≥ 1.
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(f) If u(x, t) = xkth , then

U(m,n) = δ(m− k, n− h) (3)

=

{
1 if m = k, n = h,

0 otherwise.
(4)

(g) If u(x, t) = xkeat, then

U(m,n) = δ(m− k)a
n

n!
.

All the results in the parts (f) and (g) have been obtained by
setting x = 0 and t = 0 in (1).

III. APPLICATIONS AND RESULTS

In this section, to see the accuracy of DTM, we apply the
method to some linear and non-linear Goursat problems.

A. The linear homogeneous Goursat problem

We first consider the linear homogeneous Goursat problem

uxt = L(u),
u(x, 0) = g(x), u(0, t) = h(t),
g(0) = h(0) = u(0, 0),

where L(u) is a linear function of u.
Example 1: Consider the homogeneous Goursat problem

uxt = u, (5)

u(x, 0) = ex, u(0, t) = et, u(0, 0) = 1. (6)

Taking differential transform of (5), (6) and using Theorem
1, we obtain

(m+ 1)(n+ 1)U(m+ 1, n+ 1) = U(m,n), (7)

U(m, 0) =
1
m!
, U(0, n) =

1
n!
, U(0, 0) = 1. (8)

Substituting (8) into (7) and using the recurrence relation, the
results are listed as follows.

U(0, 0) = 1, U(0, 1) =
1
1!
, U(0, 2) =

1
2!
,

U(0, 3) =
1
3!
, U(1, 0) = 1, U(1, 1) = 1,

U(1, 2) =
1
2!
, U(1, 3) =

1
3!
, U(2, 0) =

1
2!
,

U(2, 1) =
1
2!
, U(2, 2) =

1
2!2!

, U(2, 3) =
1

2!3!
,

and so on. In general, we have U(m,n) = 1
m!n! . Substituting

all U(m,n) into (2) yiels the solution u(x, t) = ex+t. This
result is in full agreement with the one obtained in [21] by
VIM and in [20] by using ADM [23].

Example 2: Now consider the homogeneous Goursat prob-
lem

uxt = −2u, (9)

u(x, 0) = ex, u(0, t) = e−2t, u(0, 0) = 1. (10)

Applying differential transform of (9), (10) and using Theo-
rem 1, we obtain

(m+ 1)(n+ 1)U(m+ 1, n+ 1) = −2U(m,n), (11)

U(m, 0) =
1
m!
, U(0, n) =

(−2)n

n!
,

U(0, 0) = 1. (12)

Substituting (12) into (11) and using the recurrence relation,
we have

U(0, 0) = 1, U(0, 1) =
−2
1!
, U(0, 2) =

(−2)2

2!
,

U(0, 3) =
(−2)3

3!
, U(1, 0) = 1, U(1, 1) =

−2
1!
,

U(1, 2) =
(−2)2

2!
, U(1, 3) =

(−2)3

3!
, U(2, 0) =

1
2!
,

U(2, 1) =
−2
2!
, U(2, 2) =

(−2)2

2!2!
, U(2, 3) =

(−2)3

2!3!
,

and so on. In general, we have U(m,n) = (−2)n

m!n! . Substituting
all U(m,n) into (2), the solution is u(x, t) = ex−2t. This
result is again in full agreement with the one obtained in [21]
by VIM and in [20] by using ADM.

B. The linear inhomogeneous Goursat problem

We now consider the linear inhomogeneous Goursat prob-
lem

uxt = L(u) + w(x, t),
u(x, 0) = g(x), u(0, t) = h(t),
g(0) = h(0) = u(0, 0),

where L(u) is a linear function of u.
Example 3: We first consider the linear inhomogeneous

Goursat problem

uxt = u− t, (13)

u(x, 0) = ex, u(0, t) = t+ et, u(0, 0) = 1. (14)

Taking differential transform of (13), (14) and using Theorem
1, we obtain

(m+ 1)(n+ 1)U(m+ 1, n+ 1)
= U(m,n)− δ(m,n− 1), (15)

U(m, 0) =
1
m!
, U(0, n) =

1
n!

+ δ(n− 1),

U(0, 0) = 1. (16)

Substituting (16) into (15) and using the recurrence relation,
we have

U(0, 0) = 1, U(0, 1) =
1
1!

+ 1, U(0, 2) =
1
2!
,

U(0, 3) =
1
3!
, U(1, 0) = 1, U(1, 1) = 1,

U(1, 2) =
1
2!
, U(1, 3) =

1
3!
, U(2, 0) =

1
2!
,

U(2, 1) =
1
2!
, U(2, 2) =

1
2!2!

, U(2, 3) =
1

2!3!
,
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and so on. In general, we have

U(m,n) =

{
2 if m = 0, n = 1,

1
m!n! otherwise.

Substituting all U(m,n) into (2) yields the solution u(x, t) =
t+ex+t. This result is in full agreement with the one obtained
in [20] by using ADM and in [21] by using VIM.

Example 4: Consider the linear inhomogeneous Goursat
problem

uxt = u+ 4xt− x2t2, (17)

u(x, 0) = ex, u(0, t) = et, u(0, 0) = 1. (18)

Taking differential transform of (17), (18) and using Theorem
1, we obtain

(m+ 1)(n+ 1)U(m+ 1, n+ 1) =
U(m,n) + 4δ(m− 1, n− 1)− δ(m− 2, n− 2),(19)

U(m, 0) =
1
m!
, U(0, n) =

1
n!

+ δ(n− 1), (20)

U(0, 0) = 1. (21)

Substituting (20) and (21) into (19) and using the recurrence
relation, we have

U(0, 0) = 1, U(0, 1) =
1
1!
, U(0, 2) =

1
2!
,

U(0, 3) =
1
3!
, U(1, 0) = 1, U(1, 1) = 1,

U(1, 2) =
1
2!
, U(1, 3) =

1
3!
, U(2, 0) =

1
2!
,

U(2, 1) =
1
2!
, U(2, 2) =

5
2!2!

, U(2, 3) =
1

2!3!
,

and so on. In general, we have

U(m,n) =

{
5
4 if m = 2, n = 2,

1
m!n! otherwise.

Substituting all U(m,n) into (2), the solution is u(x, t) =
x2t2 + ex+t. This result is in full agreement with the one
obtained in [21] by VIM and in [20] by using ADM.

C. The non-linear Goursat problem

Here, we apply DTM to non-linear Goursat problem.
Example 5: We first consider the non-linear Goursat prob-

lem

uxt = −u3 + x3 + 3x2t+ 3xt2 + t3 (22)

u(x, 0) = x, u(0, t) = t, u(0, 0) = 0. (23)

Taking differential transform of (22), (23) and using Theorem
1, we obtain

(m+ 1)(n+ 1)U(m+ 1, n+ 1)

= −
m∑

r=0

m−r∑
l=0

n∑
s=0

n−s∑
p=0

U(r, n− s− p)U(l, s)

U(m− r − l, p) + δ(m− 3, n) + 3δ(m− 2, n− 1)
+3δ(m− 1, n− 2) + δ(m,n− 3),

U(m, 0) = δ(m− 1), U(0, n) = δ(n− 1), U(0, 0) = 0. (24)

Substituting (24) into (24) and using the recurrence relation,
we obtain

U(m,n) =

⎧⎪⎨
⎪⎩

1 if m = 1, n = 0,
1 if m = 0, n = 1,
0 otherwise.

Therefore, the solution is u(x, t) = x + t which is in full
agreement with the one obtained in [21] by VIM.

Example 6: We finally consider the non-linear Goursat
problem

uxt = e−2u (25)

u(x, 0) = 0, u(0, t) = 0, u(0, 0) = 0. (26)

Applying differential transform of (25), (26) and using The-
orem 1, we obtain

(m+ 1)(n+ 1)U(m+ 1, n+ 1) = V (m,n), (27)

U(m, 0) = 0, U(0, n) = 0, U(0, 0) = 0, (28)

where

V (m,n) =

⎧⎪⎨
⎪⎩

e−2U(0,0), m = 0 and n = 0,
−2

∑m−1
k=0

∑n
l=0

m−k
m U(m− k, l)V (k, n− l),m ≥ 1,

−2
∑m

k=0

∑n−1
l=0

n−l
n U(k, n− l)V (m− k, l), n ≥ 1

(29)

Substituting (28) and (29) into (27) and using the recurrence
relation, we obtain

V (m, 0) = δ(m), U(m, 1) = δ(m− 1),

V (m, 1) = −2δ(m− 1), U(m, 2) = −1
2
δ(m− 2),

V (m, 2) = 3δ(m− 2), U(m, 3) =
1
3
δ(m− 3),

and so on. In general, one gets

V (m,n) = (−1)n(n+ 1)δ(m− n),

U(m,n) =
(−1)n+1

n
δ(m− n), (30)

and thus

U(m,n) =

{
(−1)n+1

m , if m = n,

0, otherwise.

Therefore, the solution is u(x, t) = ln(1 + xt) which is the
exact solution.

IV. CONCLUSIONS

We successfully applied the two–dimensional DTM to find
the approximate series solutions of linear and non-linear Gour-
sat problem. The presented method reduces the computational
difficulties existing in the other traditional methods and all
the calculations can be done by simple manipulations. Several
examples of linear and non-linear Goursat problem were tested
by applying DTM and the results have revealed remarkable
performances.
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