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Abstract—In this paper, for the first time, a two-dimensional 

(2D) analytical drain current model for sub-100 nm multi-layered 
gate material engineered trapezoidal recessed channel (MLGME-
TRC) MOSFET: a novel design is presented and investigated using 
ATLAS and DEVEDIT device simulators, to mitigate the large gate 
leakages and increased standby power consumption that arise due to 
continued scaling of SiO2-based gate dielectrics. The two-
dimensional (2D) analytical model based on solution of Poisson’s 
equation in cylindrical coordinates,  utilizing the cylindrical 
approximation, has been developed which evaluate the surface 
potential, electric field, drain current, switching metric: ION/IOFF 
ratio and transconductance for the proposed design. A good 
agreement between the model predictions and device simulation 
results is obtained, verifying the accuracy of the proposed analytical 
model. 
 

Keywords—ATLAS, DEVEDIT, NJD, MLGME- TRC 
MOSFET.  

I. INTRODUCTION 

TEADY downscaling of device dimensions, innovative 
device designs and rapid advances in technology are some 

of the factors that have largely governed the evaluation of 
CMOS technology at a remarkable rate over the last few 
decades. As a result denser and faster integrated circuits have 
been achieved that offer superior performance and much 
reduced physical size compared to their predecessors. 
However, the continued miniaturization of MOSFETs in sub-
100nm regime, further scaling down of SiO2 gate dielectric 
leads to high direct tunneling gate leakage current, which in 
turn causes increase in device power consumption. To reduce 
the gate leakage current in small geometry MOSFETs, high-k 
gate dielectrics emerged as an alternative to conventional 
SiO2. A high-k gate dielectric layer [1, 2] allows physically 
thicker films while permitting smaller electrical thickness. It 
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increases the gate control over the channel, but gives rise to 
unacceptable levels of interface traps [3], bulk fixed charges, 
low interface carrier mobility and phase instability issues [4]. 
Thus, it gives way to a gate stacked engineered structure [5, 6] 
that uses the stack of a thin SiO2 and a thick high-k layer. 
Thus, an ultra thin SiO2 interlayer between the high-K layer 
and silicon substrate was introduced (resulting in a multi-layer 
gate structure) to improve the interface quality and stability. 
Further, to achieve higher speeds and higher packing densities, 
gate length miniaturization is the key parameter, but it leads to 
many SCEs and hot carrier effects.  

Multilayered Gate Material Engineered Trapezoidal 
Recessed Channel (MLGME-TRC) MOSFET design, 
considered in this study integrates the desired features of 
multi-layered gate architecture [7,8] such as improvement in 
gate controllability and reduction in gate leakage and tunneling 
effects; and those allied with GME-TRC [9] and RC MOSFET 
[10,11] such as excellent hot carrier immunity, SCE and 
punchthrough suppression, thereby enhancing the gate 
controllability over the channel and the electrical and 
switching characteristics in terms of DIBL, subthreshold swing 
and hot carrier effects. Thus, multi-layered dielectric gate 
architecture in conjunction with recessed channel structure is 
of paramount importance in nanoscale devices which in turn 
enhances the gate controllability, current driving capabilities, 
ION/IOFF ratio and transconductance across the channel.  

Further, to gain insight into the effectiveness of MLGME-
TRC MOSFET design, a simple 2D analytical model has been 
developed by solving the 2D Poisson equation in cylindrical 
coordinates, utilizing the cylindrical approximation, and 
compared with conventional gate material engineered 
trapezoidal recessed channel (GME-TRC) and trapezoidal 
recessed channel (TRC) MOSFETs.  The device simulators: 
ATLAS and DEVEDIT [12] have been used to verify the 
accuracy of the proposed model, and a good agreement 
between their results is obtained. The proposed design proves 
its efficacy for improved high performance analog and 
switching applications. 
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II. MODEL FORMULATION 

 
1. Two dimensional potential and Electric field profile 
 
1.1 Potential analysis: 
 

In the present analysis, the channel region is divided into 
two parts, since the gate is made up of two different materials 
laterally merged together. Assuming the concave corner to be 

part of a cylinder, having radius 
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Poisson equation in cylindrical coordinates for potential, i.e. 
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In the present analysis, the channel region has been divided 
in to two parts; hence the potential under the gate region M1 
and M2 can be represented as 
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Where, depletion layer thickness is given by
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Based on boundary conditions, as shown in Fig.1. the 
Poisson’s equation is solved separately under the two gate 
regions (M1 and M2) and the potential can be calculated as: 
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  where, j =1,2 for regions under M1 and M2 respectively. 

 
1.2 Electric field analysis: 
 

The electron velocity through the channel is related to the 
electric field pattern along the channel. Thus, the electric field 
is given as 

( ) ( , ) ( )
. .oS j j r r EOT S j

d d
E r

r d r d
θ ψ θ ψ θ

θ θ= += − = −
                                                   

where,  or r EOT= +  

Electric field component, under M1 is given as 
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2. Drain current and transconductance profile   
 

In this section, Ids-Vgs model for the proposed design 
incorporation with channel length modulation (CLM) effect 
for linear to saturation region has been summarized [14]. 
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Case.II Saturation region 
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Transconductance: 
 
Transconductance is an important device parameter for analog 
circuit simulation and can be calculated as: 

ds
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m V constant
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III.  RESULT AND DISCUSSION 

The schematic structure of MLGME-TRC MOSFET  is 
shown in Fig.1. with metal gates, M1 and M2 of lengths L1 
and L2 respectively. In MLGME-TRC MOSFET, the gate 
consists of multi-layered-gate dielectrics having a thickness 
tox1 and tox2 of the lower and the upper gate dielectrics with the 
corresponding permittivites,  εox1 and εox2, respectively; and for 
GME-TRC and TRC MOSFETs: tox1 = tox2. 
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Fig.2. and Fig.3. shows the modeled and simulated results 
for potential and electric field profile for MLGME-TRC, 
GME-TRC and TRC MOSFETs. A close proximity between 
the modeled and simulated results validates the proposed 
model. Simulation results reveal that TRC-MOSFET with 
GME architecture improves the device performance with the 
use of  two metal gates i.e. M1(control gate) and M2 
(screening gate) where ΦM1 > ΦM2, in terms of improved 
gate control and driving current capabilities. This is due to the 
step in surface potential at the interface of two metals, which 
results in screening of channel region under metal gate M1 
from drain potential variations and hence ensures reduction in 
DIBL and punch through effects. Further, the significant 
enhancement in step of potential profile for MLGME-TRC 
MOSFET, as shown in Fig.2., in comparison with GME-TRC 
MOSFET is due to improvement in screening effect as a 
consequence of the incorporation of multi-layered high-K 
dielectric system that facilitates physically thicker gates, 
thereby permitting the scaling of gate oxide thickness and thus, 
increasing gate control over the channel.  Fig.3. clearly depicts 
that for GME-TRC MOSFET, the step in potential forces the 
electric field to be redistributed on the drain side. This electric 
field discontinuity at the interface of the two gate metals 
causes the overall channel field to be more uniform across the 
channel resulting in the enhancement of carrier transport 
efficiency across the channel. For, MLGME-TRC MOSFET, 
the peak in electric field further increases at the interface 
thereby, improving the current driving capabilities across the 
channel, due to the improved gate control and hot carrier 
immunity for ML-GME-TRC MOSFET. 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Normalized Position along the Channel

S
ur

fa
ce

 P
ot

en
tia

l(V
)

       SIMULATED   
               
□□□  MLGME-TRC 
             
∆∆∆  GME-TRC

●●●  TRC

−−−−MODEL

Vds=0.5V

 
 
 
 

-2.00E+06

-1.50E+06

-1.00E+06

-5.00E+05

0.00E+00

5.00E+05

1.00E+06

1.50E+06

0 0.2 0.4 0.6 0.8 1

Normalized Position along the Channel

E
le

ct
ric

 fi
el

d 
(V

/c
m

)
−−−−MODELVds=0.5V

       SIMULATED   
               
□□□  MLGME-TRC 
             
∆∆∆  GME-TRC

●●●  TRC

 
 
 
 

Fig.4, 5 and 6 shows the drain current, transconductance 
ION/IOFF ratio profile, respectively, for MLGME-TRC, 
GME-TRC and TRC MOSFETs. For GME-TRC MOSFET, 
the step in potential profile results in a more uniform electric 
field across channel, leading to improved driving current, 
transconductance, and ION/IOFF ratio as shown in Fig.4, 5 
and 6, respectively. The amalgamation of multilayered gate 
stack and GME-TRC MOSFET, further enhances the peak 
electric field at the interface, there by improving the drain 
current and hence the transconductance and switching speed in 
terms of ION/IOFF ratio as shown in Fig.4, 5 and 6, 
respectively, due to the improved gate control and; reduces 
short channel and hot carrier effects for MLGME-TRC 
MOSFET. 

Fig.1.Schematic structure of MLGME-TRC MOSFET, where channel 
length Lg= L1 + L2 =74nm, with work function ФM1=4.77V and ФM2 = 
4.10V  for MLGME-TRC and GME-TRC MOSFET and for TRC 
MOSFET, channel length Lg=L1=74nm  and work function ФM1=4.77V  
having Negative junction depth (NJD)=10nm,   Groove Depth d=20nm, NA 
=1x1017 cm-3, ND=1x1020 cm-3 , tox1= tox2 =2nm, Leff=(2 x Ls) + Lp,where 
Lp=28nm, Ls=14nm unless stated otherwise. 

Fig. 2. Potential profile for ML-GME-TRC, GME-TRC and 
TRC MOSFETs having εox1=3.9 and εox2=20. The solid 
line represents the modeled results. 

Fig. 3. Electric field profile for ML-GME-TRC, GME-TRC and 
TRC MOSFETs having εox1=3.9 and εox2=20. The solid line 
represents the modeled results. 
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IV.  CONCLUSION 

In this work, a novel structure, MLGME-TRC MOSFET has 
been proposed, analyzed and investigated using device  
simulators: ATLAS and DEVEDIT. Continued scaling of 
SiO2-based gate dielectrics necessitates the introduction of 
high-K materials for sub-100 nm technology node. The 
analytical and simulation results reveal that, MLGME-TRC 
MOSFET proves to be superior to GME-TRC and TRC 
MOSFETs in terms of improved gate controllability, enhanced 
electric field across the channel and thus, increased driving 
current, transconductance and switching characteristic in terms 
of ION/IOFF ratio. The proposed MLGME-TRC design, 
hence, presents its applicability for high speed logic and low 
standby power (LSP) applications. 
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