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Abstract—The Smith arithmetic determinant is investigated in this
paper. By using two different methods, we derive the explicit formula
for the Smith arithmetic determinant.
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I. INTRODUCTION

SUPPOSE A is an n × n matrix, A = [ai,j ] = [(i, j)],
(i, j = 1, 2, . . . , n), and (i, j) denotes the greatest com-

mon divisor of integer i and j. We call the determinan-

t of this kind of matrix the Smith arithmetic determinan-
t([3],[4],[5],[6]), and we use the symbol Sn to denote the value

of the Smith arithmetic determinant of order n.

A proof has been given in reference[3]. In this paper, we

present another two different methods to derive the explicit

formula of the Smith arithmetic determinant.

Firstly, we introduce some definitions and several basic

results.

Definition 1 ([1]). Suppose a, b are two integers that not
all of them equal to zero. If a nonzero integer d divides both a
and b, then we call d a common divisor of a and b; Moreover,
if any other common divisors of a and b is the divisor of d,
we call d a greatest common divisor of a and b. Using symbol
(a, b) to denote the positive greatest common divisor of a and
b.

Obviously we have:

1) (1, i) = 1;

2) Suppose p is a prime. If n is not a multiple of p, then

(p, n) = 1; else (p, n) = p.

Theorem 1 ([1, Euclid Algorithm]). Suppose a and b �= 0
are two integers, and

a = q1b+ r1, 0 < r1 < b,

b = q2r1 + r2, 0 < r2 < r1,

r1 = q2r2 + r3, 0 < r3 < r2,

...

rn−1 = qnrn + rn+1, 0 < rn+1 < rn,

rn = qn+1rn+1.

Then (a, b) = rn+1.
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Theorem 2 ([1]). Suppose integer n ≥ 2, then there exist
such primes that

0 < p1 ≤ p2 ≤ · · · ≤ pr, n = p1p2 · · · pr.
Furthermore, if there are other primes

0 < q1 ≤ q2 ≤ · · · ≤ qs, n = q1q2 · · · qs,
then we have r = s and pi = qi for 1 ≤ i ≤ s.

Definition 2 ([2]). Suppose n is a positive integer, and let
φ(n) denote the number of positive integers which are prime
to n and less than n. Then we call φ(n) the Euler function of
n.

Apparently if p is a prime, then φ(p) = p− 1.

In the following, we will give a classical result about Euler

function, which will be used in the proof.

Theorem 3 ([2]). Suppose m is a positive integer, then∑
d|m

φ(d) = m.

II. ELEMENTARY ROW TRANSFORMATION ON THE SMITH

ARITHMETIC DETERMINANT

Firstly we give two examples.

Example 1. Consider the computation of the Smith arith-

metic determinant of order 4. By the definition,

S4 =

∣∣∣∣∣∣∣∣

1 1 1 1
1 2 1 2
1 1 3 1
1 2 1 4

∣∣∣∣∣∣∣∣
.

This determinant can be computed as follows: Multiply the

first row R1 by −1 and add it to every other row. Then

multiply the second row R2 by −1 and add it to the fourth row

R2×2 = R4. As a result, we have a determinant of an upper

triangular matrix, of which the dominating diagonal elements

are φ(1), φ(2), φ(3), φ(4) in order. Therefore, the value of this

Smith arithmetic determinant is
4∏

i=1

φ(i).

The process above can be written as follows:∣∣∣∣∣∣∣∣

1 1 1 1
1 2 1 2
1 1 3 1
1 2 1 4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 1 1 1
0 1 0 1
0 0 2 0
0 1 0 3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 1 1 1
0 1 0 1
0 0 2 0
0 0 0 2

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

φ(1) φ(1) φ(1) φ(1)
0 φ(2) 0 φ(2)
0 0 φ(3) 0
0 0 0 φ(4)

∣∣∣∣∣∣∣∣
=

4∏
i=1

φ(i).
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Example 2. Consider the computation of the Smith arith-

metic determinant of order 6. According to the definition,

S6 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1
1 2 1 2 1 2
1 1 3 1 1 3
1 2 1 4 1 2
1 1 1 1 5 1
1 2 3 2 1 6

∣∣∣∣∣∣∣∣∣∣∣∣
.

Inspired by the method above, we can compute it with the

following method: multiply the first row R1 by −1 and add

it to every other row. Then multiply the second row R2 by

−1 and add it to the fourth row R2×2, the sixth row R2×3.

Finally, we multiply the third row R3 by −1 and add it to

the sixth row R3×2. As a result, we have a determinant of an

upper triangular matrix, the value of which is
6∏

i=1

φ(i).

The process above can be written as follows:∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1
1 2 1 2 1 2
1 1 3 1 1 3
1 2 1 4 1 2
1 1 1 1 5 1
1 2 3 2 1 6

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1
0 1 0 1 0 1
0 0 2 0 0 2
0 1 0 3 0 1
0 0 0 0 4 0
0 1 2 1 0 5

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1
0 1 0 1 0 1
0 0 2 0 0 2
0 0 0 2 0 0
0 0 0 0 4 0
0 0 0 0 0 2

∣∣∣∣∣∣∣∣∣∣∣∣
,

of which the diagonal elements are φ(1), φ(2), φ(3), φ(4),

φ(5), φ(6) in order. Thus, we have S6 =
6∏

i=1

φ(i).

A general method of the computation of the Smith arith-

metic determinant can be concluded from the two examples

above: Multiply R1 by −1 and add it to every other row, then

multiply R2 by −1 and add it to R2×i(i ≥ 2), then multiply

R3 by −1 and add it to R3×i(i ≥ 2), . . . , until a determinant

of an upper triangular matrix is yielded.

As the examples illustrated, we give out a determinant of an

upper triangular matrix in which the elements on the diagonal

are φ(1), φ(2), . . . , φ(n) in order. Therefore, we have

Sn =
n∏

i=1

φ(i).

Before giving a complete proof, we firstly introduce several

lemmas.

Lemma 1. 1) The sequence composed by the elements of
each row of the Smith arithmetic determinant is periodic, and
the minimal positive period is the row index number;

2) After the elementary row transformation used above, each
row is still periodic, and the minimal positive period remains
the same.

Proof. 1) It is equivalent to prove (t, i) = (t, kt + i).
According to the Euclid algorithm, it is obviously true.

Moreover, there is a one to one correspondence between the

sequence (t, i + 1), (t, i + 2), . . . , (t, i + t) and the sequence

(t, 1), (t, 2), . . . , (t, t), so the minimal positive period is t.

2) For each row Ra, according to the algorithm above, only

when d|a that the row Rd will be timed by −1 and added to

Ra. The period of Rd and Ra are respectively d and a, and

d|a, so a is also a period of Rd. It means that Ra and Rd

have the same period a.

Therefore, when Rd is timed by −1 and added to Ra, the

period of Ra does not change.

If the index number of a row is a prime, then this row

will be called prime row. Otherwise this row will be called

composite row.

It is obvious that each element of the first row as well as

the first column equals to 1 and each element of the row Rp

(suppose p is a prime) equals to 1 or p (which occurs only

when p divides its corresponding column index number).

Now we investigate the expression of the Smith arithmetic

determinant of order n:

Sn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 · · · 1 · · · 1
1 2 1 2 1 2 · · · 1 · · · ∗
1 1 3 1 1 3 · · · 1 · · · ∗
1 a42 a43 a44 a45 a46 · · · 1 · · · ∗
1 1 1 1 5 1 · · · 1 · · · ∗
1 a62 a63 a64 a65 a66 · · · 1 · · · ∗
...

...
...

...
...

...
. . .

...
. . .

...

1 1 1 1 1 1 · · · p · · · ∗
...

...
...

...
...

...
. . .

...
. . .

...

1 an2 an3 an4 an5 an6 · · · anp · · · n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where aij = (i, j).

Because of the periodicity in each row Ri, we only need to

consider the elements from ai,1 to ai,i.

Elementary row transformation on the Smith arithmetic
determinant of order n:

Step 1: Multiply R1 by −1 and add it to all the prime rows,

and the result is:

Sn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 · · · 1 · · · 1
0 1 0 1 0 1 · · · 0 · · · ∗
0 0 2 0 0 2 · · · 0 · · · ∗
1 a42 a43 a44 a45 a46 · · · 1 · · · ∗
0 0 0 0 4 0 · · · 0 · · · ∗
1 a62 a63 a64 a65 a66 · · · 1 · · · ∗
...

...
...

...
...

...
. . .

...
. . .

...

0 0 0 0 0 0 · · · p− 1 · · · ∗
...

...
...

...
...

...
. . .

...
. . .

...

1 an2 an3 an4 an5 an6 · · · anp · · · n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Because we have φ(1) = 1, φ(p) = p − 1(suppose p is a
prime), we replace p− 1 by φ(p) in Rp, and the determinant
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above can be written into:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ(1) φ(1) φ(1) φ(1) φ(1) φ(1) · · · 1 · · · ∗
0 φ(2) 0 φ(2) 0 φ(2) · · · 0 · · · ∗
0 0 φ(3) 0 0 φ(3) · · · 0 · · · ∗
1 a42 a43 a44 a45 a46 · · · 1 · · · ∗
0 0 0 0 φ(5) 0 · · · 0 · · · ∗
1 a62 a63 a64 a65 a66 · · · 1 · · · ∗
...

...
...

...
...

...
. . .

...
. . .

...
0 0 0 0 0 0 · · · φ(p) · · · ∗
...

...
...

...
...

...
. . .

...
. . .

...
1 an2 an3 an4 an5 an6 · · · anp · · · n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where every prime row has the form (0, 0, . . . , 0, φ(p), 0, . . .),
or

apt =

{
φ(p), if p divides t;
0, otherwise.

Step 2: We compute this determinant with the following

method: if a row Rb is determined and the rows above Rb

have the form

ait =

{
φ(i), if i divides t;
0, otherwise.

(i = 1, 2, . . . , p− 1),

we multiply Rd by −1 and add it to Rb where d|b and d < b,
and we have a new row R′

b. It is obvious to know that R4 is the

first row to be transformed, and all the rows to be transformed

are composite rows. We assert that:

Property 1. After the transformation, R′
b has the form

a′bt =
{

φ(b), if b divides t;
0, otherwise.

.

Proof. Because of the periodicity in Rb, and abb = b, we

only need to consider the result after the transformation on

abi(i = 1, 2, . . . , b). For each abi = (b, i), according to the

method,

a′bi = abi −
∑

d|b,d<b

adi,

where a′bi is the result after the transformation on abi. We

prove it in four different cases:

1) If b and i are prime to each other, i.e. (b, i) = 1. Because

d|b and (b, i) = 1, we have (d, i) = 1. If d �= 1, d will not

divide i, so adi = 0; else if d = 1 then adi = 1. Therefore,

a′bi = abi − 1 = (b, i)− 1 = 0.

2) If b and i are not prime to each other and b > i. Suppose

(b, i) = r, then r|b and r|i, and for each common divisor e of

b and i, we have e|r. Because we have

a′bi = abi −
∑

d|b,d<b

adi, and adi = φ(d) or 0,

which depends on whether or not d divides i, so only when d
is a common divisor of b and i, i.e. d|r, adi = φ(d), otherwise

adi = 0. Then we have∑
d|b,d<b

adi =
∑
i|r

φ(i) = r.

Therefore,

a′bi = abi −
∑

d|b,d<b

adi = (b, i)− r = 0.

3) If b and i are not prime to each other and b = i, then

a′bb = abb −
∑

d|b,d<b

adb = b−
∑

d|b,d<b

φ(d).

Because

b =
∑
d|b

φ(d) =
∑

d|b,d<b

φ(d) + φ(b),

then

a′bb = b−
∑

d|b,d<b

φ(d) = φ(b).

4) If b and i are not prime to each other and b < i.
According to the periodicity in each row, the elements behind

the diagonal element are the same as the elements before it.

In summary, after the transformation on Rb, the result R′
b

has the form

a′bi =
{

φ(b), if b divides i,
0, otherwise,

which means that R′
b has the same form as the rows above,

so the conclusion is true.
Step 3: Based on the method, the original determinant can

be transformed into∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ(1) φ(1) φ(1) φ(1) φ(1) φ(1) · · · 1 · · · ∗
0 φ(2) 0 φ(2) 0 φ(2) · · · 0 · · · ∗
0 0 φ(3) 0 0 φ(3) · · · 0 · · · ∗
0 0 0 φ(4) 0 0 · · · 0 · · · ∗
0 0 0 0 φ(5) 0 · · · 0 · · · ∗
0 0 0 0 0 φ(6) · · · 0 · · · ∗
...

...
...

...
...

...
. . .

...
. . .

...
0 0 0 0 0 0 · · · φ(p) · · · ∗
...

...
...

...
...

...
. . .

...
. . .

...
0 0 0 0 0 0 · · · 0 · · · φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The value of this determinant is
n∏

i=1

φ(i). Therefore, the value

of order n Smith arithmetic determinant is
n∏

i=1

φ(i), i.e. Sn =

n∏
i=1

φ(i).

III. COMPUTING THE SMITH ARITHMETIC

DETERMINANT BY MATRIX DECOMPOSITION

Firstly we consider two examples of smaller order Smith

arithmetic determinant.

Example 3. Consider the computation of the Smith arith-

metic determinant of order 4. According to the definition, we

have

S4 =

∣∣∣∣∣∣∣∣

1 1 1 1
1 2 1 2
1 1 3 1
1 2 1 4

∣∣∣∣∣∣∣∣
.

The matrix corresponding to this determinant is⎛
⎜⎜⎝

1 1 1 1
1 2 1 2
1 1 3 1
1 2 1 4

⎞
⎟⎟⎠ .
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We find that this matrix can be regarded as the multiplicative

product of two matrices⎛
⎜⎜⎝

φ(1) 0 0 0
φ(1) φ(2) 0 0
φ(1) 0 φ(3) 0
φ(1) φ(2) 0 φ(4)

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

1 1 1 1
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

Therefore,

S4 =

∣∣∣∣∣∣∣∣

φ(1) 0 0 0
φ(1) φ(2) 0 0
φ(1) 0 φ(3) 0
φ(1) φ(2) 0 φ(4)

∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣

1 1 1 1
0 1 0 1
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
=

4∏
i=1

φ(i)

Example 4. Consider the computation of the Smith arith-

metic determinant of order 6. The matrix corresponding to the

6 order Smith arithmetic determinant is⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 2 1 2 1 2
1 1 3 1 1 3
1 2 1 4 1 2
1 1 1 1 5 1
1 2 3 2 1 6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This matrix can be decomposed into the multiplicative product

of ⎛
⎜⎜⎜⎜⎜⎜⎝

φ(1) 0 0 0 0 0
φ(1) φ(2) 0 0 0 0
φ(1) 0 φ(3) 0 0 0
φ(1) φ(2) 0 φ(4) 0 0
φ(1) 0 0 0 φ(5) 0
φ(1) φ(2) φ(3) 0 0 φ(6)

⎞
⎟⎟⎟⎟⎟⎟⎠

and ⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Therefore,

S6 =

∣∣∣∣∣∣∣∣∣∣∣∣

φ(1) 0 0 0 0 0
φ(1) φ(2) 0 0 0 0
φ(1) 0 φ(3) 0 0 0
φ(1) φ(2) 0 φ(4) 0 0
φ(1) 0 0 0 φ(5) 0
φ(1) φ(2) φ(3) 0 0 φ(6)

∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
=

6∏
i=1

φ(i).

The examples illustrated above reveal that a Smith arith-

metic determinant can be decomposed into two determinants

that are simple enough to be computed.

Now we present the decomposition of a general Smith

arithmetic determinant.

We define two new matrices B and C of order n in the

following:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ(1) 0 0 0 0 0 · · ·
φ(1) φ(2) 0 0 0 0 · · ·
φ(1) 0 φ(3) 0 0 0 · · ·
φ(1) φ(2) 0 φ(4) 0 0 · · ·
φ(1) 0 0 0 φ(5) 0 · · ·
φ(1) φ(2) φ(3) 0 0 φ(6) · · ·

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each element bik of row Ri satisfies

bik =

{
φ(k), if k divides i;
0, otherwise.

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 · · ·
0 1 0 1 0 1 · · ·
0 0 1 0 0 1 · · ·
0 0 0 1 0 0 · · ·
0 0 0 0 1 0 · · ·
0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each element ckj of column Cj satisfies

ckj =

{
1, if k divides j;

0, otherwise.

Property 2. Suppose the matrix corresponding to the Smith
arithmetic determinant of n order is A, then A = B · C.

Proof. Suppose each element of A is aij , and each element

of B · C is a′ij . What is needed to be proved is aij = a′ij .

Because aij =
n∑

k=1

bikckj and according to the definition of

bik and ckj , we can deduce that

n∑
k=1

bikckj =
∑

k|(i,j)
φ(k) = (i, j) = aij ,

which means that aij = a′ij , i.e. A = B · C.

Note: For each element of the expression
n∑

k=1

bikckj , only

when bik �= 0 and ckj �= 0, this element does not equal to 0,

and when bik �= 0 and ckj �= 0, we have k|i and k|j, so k is a

common divisor of i and j. Moreover, the value of k ranges

from 1 to n, so the value of expression bikckj also ranges over

every positive divisors of (i, j). Therefore,

n∑
k=1

bikckj =
∑

k|(i,j)
φ(k) = (i, j) = aij .

As a consequence of Property 2, we have

Sn = det(B) · det(C) =
n∏

i=1

φ(i).
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So

Sn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ(1) 0 0 0 0 0 · · ·
φ(1) φ(2) 0 0 0 0 · · ·
φ(1) 0 φ(3) 0 0 0 · · ·
φ(1) φ(2) 0 φ(4) 0 0 · · ·
φ(1) 0 0 0 φ(5) 0 · · ·
φ(1) φ(2) φ(3) 0 0 φ(6) · · ·

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 · · ·
0 1 0 1 0 1 · · ·
0 0 1 0 0 1 · · ·
0 0 0 1 0 0 · · ·
0 0 0 0 1 0 · · ·
0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∏

i=1

φ(i).
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