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Abstract—To achieve the desired specifications of gain and 
phase margins for plants with time-delay that stabilized with FO-PID 
controller a lead compensator is designed. At first the range of 
controlled system stability based on stability boundary criteria is 
determined. Using stability boundary locus method in frequency 
domain the fractional order controller parameters are tuned and then 
with drawing bode diagram in frequency domain accessing to desired 
gain and phase margin are shown. Numerical examples are given to 
illustrate the shapes of the stabilizing region and to show the design 
procedure. 
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I.INTRODUCTION 

N recent years finding an increasing number of studies 
related with the application of fractional calculus in many 

areas of science and engineering (see, e.g., [1], [2]). Using the 
differentiation and integration of fractional order or non-
integer order in systems control is gaining more and more 
interests from the systems control community [3]. 

In what concerns automatic control theory the fractional 
calculus concepts are adapted to frequency domain based 
methods. The frequency response and the transient response 
of the non-integer integral and its application to control 
systems was introduced by Manabe (see [4]) [5]. In theory, 
the control systems can include both the fractional order 
dynamic system or plant to be controlled and the fractional-
order controller. However, in control practice, more common 
is to consider the fractional order controller.  

This is due to the fact that the plant model may have 
already been obtained as an integer order model in classical 
sense and the objective is to apply the fractional order control 
to enhance the system control performance [3]. Generally, 
fractional order controllers divided into 4 classes. TID1 
controller, CRONE controller2, PIλDμ controller and fractional 
lead-lag compensator [3]. The purpose of fractional order 
controller design is determined controller parameters so that 
the closed-loop system was stable and has optimal 
performance. There is different ways to designing this class of 
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controllers in the both of time domain and frequency domain 
that each has own advantages and disadvantages.   

For instance in [6] a fractional differentiator by using 
system linearization in frequency domain for chaos control is 
designed. In [7] differ-integrators are designed in the time 
domain with using least square method. In [8] based on 
definition of piecewise orthogonal functions the parameters 
for fractional order PID controller are determined. In [9] 
applying an improved differential evolution method a PIλDµ 

controller is designed using discretization. In [10]-[15] 
fractional order PI, PD and PID controllers are designed using 
gain margin, cross over frequency and phase margin criteria in 
frequency domain for integer and fractional order systems. 
Here, the goal of this paper is using stability boundary locus 
method to design a class of fractional order PID controller 
with three adjustable parameters in frequency domain. This 
method has three conditions in frequency domain to design 
fractional order controllers and so for a controller with three 
adjustable parameters can be used well. On the other hand for 
better analysis and design of fractional order controllers a 
gain-phase margin tester can be used. Based on definition 2.3 
in [16] this tester can be thought of as a "virtual compensator". 

In industrial process control applications, phase-lead/lag 
compensators are widely used next only to PID controllers 
[17]. Such controllers are tuned usually with specifications on 
gain and phase margins which can lead to good performance 
and robustness [18]. In the tuning of phase lead/lag 
compensators, knowledge of specific points on the frequency 
response of the plant are required. Such points are specialized 
by their frequency, gain and phase and are not readily 
available without an accurate model of the plant [19] 

To the best knowledge, there is no method available to 
achieve gain and phase margins exactly. Note also that phase-
lead compensators have some parameters in the denominator 
of its transfer function, unlike PID controllers where all the 
parameters appear linearly, Thus, effective techniques for PID 
controllers with exact gain and phase margin specifications 
are not applicable to phase-lead compensators [18]. 

The traditional tuning method for phase-lead/lag 
compensator parameters is based on the “trial and error” 
procedure Attempts towards analytical synthesis have been 
made since Wakeland in 1976 first proposed a one-step design 
for phase-lead compensators [17]. The major difficulties for 
tuning of phase-lead compensators under the gain and phase 
margin specifications lie in nonlinearity and coupling of all 
their three parameters [18]. Later, Yeung, Chaid, and Dinh in 
1995 developed a series of Bode design charts to allow “non-
trial and error” designs of both continuous-time and discrete-
time compensators [20]. Wang in 2003 presented the exact 
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and unique solution to the design of phase-lead and phase-lag 
compensation when the desired gains in magnitude and phase 
are known at a given frequency [21]. Recently, in [22] another 
tuning method for phase lead compensators was proposed 
which can achieve the desired gain and phase margins exactly 
regardless of the plant order, time delay or damping nature. 

In [17] a new approach is presented to first determine the 
stabilizing parameter set of phase-lead/lag compensators for 
all pole stable plants with time-delay and then to synthesize 
phase-lead/lag compensators with desired gain and phase 
margins. 

In [18] a simple and effective tuning method for phase-lead 
compensators which can achieve exact gain and phase 
margins simultaneously is presented. 

Here, at first using the stability boundary locus in the 
frequency domain parameters of fractional order controller are 
set and then gain-phase margin tester provides information for 
plotting the boundaries of constant gain margin and phase 
margin in the parameter plane [16]. 

II.CONTROLLER TUNING PROCEDURE 
Generally an integer order integrating time delay system 

described by the following dynamic equation: 
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0
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Where K open-loop gain, , ( 0,..., )ia i n= transfer 

function denominator coefficients and is θ delay for the 
system. 

Now a class of fractional order controllers with three 
adjustable parameters is consider as follow: 

 
( ) P IC s K K s sλ μ−= + −    (2) 

 
Where in “(2),” KP, KI are controllers gains 

and , 1 (0,1)μ λ μ= − ∈  are fractional order. One of the 
fractional order PID controllers is that they are not sensitive to 
the system parameters changing and due to fractional order 
having more flexibility in systems control [23]. 

As it said for better tuning of controller parameters a gain 
phase margin taster has been used that described as follow: 

 
( , ) j

tC A Ae φφ −=          (3) 
 
Where A is the gain margin andφ  is the phase margin. In 

order to finding controller parameters for a given value of 
gain margin A of the control system, one need to set 0φ =  in 
“(3),” On the other hand, setting A=1 in “(3),” one can obtain 
the controller parameters for a given phase marginφ . This 
tester in frequency domain is equal to a lead compensator. 
Generally a compensator is describing as below [24]: 

( )1( )
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+
=
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      (4) 

 
Where 1K is compensator gain and z, p are compensator 

zero and pole, respectively. So closed loop system equation is 
as follow: 
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      (5) 

 
And the characteristic equation of closed loop system is as 

follow: 
 

( ) 1 ( ) ( ) ( )tP s G s C s C s= +       (6) 
 
Based on “(4),” the compensator designing is related to 

choosing the z , p  and 1K  in order to obtaining good 

performance. If in “(4),” pz < then the compensator is a 

lead compensator. If the zero being very small (i.e. zp >> ) 
or zero being at the origin then the compensator is equal to a  
derivative that described as bellow: 

( ) 1
s

C s Kt p
≈         (7) 

 
This derivative has the following frequency response: 
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So for “(4),” the next equation will be arrived: 
 

[ ]
[ ]

1

1 2

( )( )
( )
( ( )) ( ( )) 1 (1 )               

( ( )) 1 (1 )

K j zC jt j p
K z p j z K j

j p j

ωω
ω

ω ωατ
ω ωτ

+
= =

+

+ +
=

+ +

    (9) 

 
Where pzp /1, == τα  and 2 1 /K K α= . So the 

transfer function for lead compensator is as follow: 
 

1 2(1 ) (1 )( )
(1 ) (1 )

K s K sC st s s
ατ ατ

α τ τ
+ +

= =
+ +

     (10) 

 
The phase equation for lead compensator is as follow: 
 

ωταωτωφ 1tan1tan)( −−−=      (11) 
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The maximum lead occurs on mω  that it is the through 
geometric of τ/1=p and ατ/1=z . it means that the 
maximum lead on logarithm frequency axis is in center of 
zero and pole frequencies, then 

 

ατ
ω 1== zpm       (12) 

 
In order to obtaining the maximum angle the “(10),” has 

been  rewritten as follow: 
 

αωτ

ωταωτφ 2)(1
1tan

+

−−=     (13) 

 
With substituting ατω /1=m  in “(13),” the next 

equation is obtained: 
 

α
ααααφ
2

1
11

)/1()/(tan −=
+
−=m   (14) 

 
For a given FOPID controller parameters 

, ,P IK K λ and μ  the closed-loop system is said to be 
bounded-input bounded-output (BIBO) stable if the quasi-
polynomial ( )P s  has no roots in the closed right-half of the 
s-plane (RHP). The stability domain S in the parameter space 
P with , ,P IK K λ  and μ  being coordinates is the region that 

for ( , , , )P IK K Sλ μ ∈  the roots of quasi-polynomial 

( )P s all lie in open left-half of the s-plane (LHP). The 
boundaries of the stability domain S which are described by 
real root boundary (RRB), infinite root boundary (IRB) and 
complex root boundary (CRB) can be determined by the D-
decomposition method [26,27]. These boundaries are defined 
by the equations (0, ) 0P L = , ( , ) 0P L∞ = and 

( , ) 0P j Lω± = for (0, )ω∈ ∞ , respectively, where 

( , )P s L is the characteristic function of the closed loop 

system and L is the vector of controller parameters. In 
applying the descriptions of stability boundaries of the 
stability domain S to the FOPID in “(6),” the RRB turns out to 
be simply a straight line given by: 

 

2 0 0P PKK K K= → =     (15) 
 
To construct the CRB, ∞=ωj  has been substituting into 

“(6),” and the following equation has been obtained: 
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For given gain and phase margin, IP KK ,  is obtained as 
follow: 
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Where 
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In order to plotting stability boundary locus the ω  should 

changing from 0 to ∞ . For 1A = and 0φ = , the stability 
boundaries RRB, IRB and CRB which divide the parameter 
( , )P IK K into stable and unstable regions. The stable region 
can be found by checking one arbitrary test point within each 
region. The characteristic equation belonging to the stable 
region has no RHP roots while the characteristic equation of 
the unstable region has a certain number of RHP roots. For 
checking the stability of the fractional-order characteristic 
equation, an effective numerical algorithm is given in [25]. 
The region having the stable characteristic equation, which is 
called the general stability region, gives a set of the 
stabilizing PK and IK  parameters for the fixed values of μ  

andλ . It is noted that different choice ofμ andλ  lead to 
different general stability regions [16]. In the next example for 
the given transfer functions general stability region in 
parameters space ( , )P IK K is plotted and the good 
performance of the closed loop system that controlled with 
FO-PID and lead compensator is obtained. 
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III.ILLUSTRATIVE EXAMPLE 
Example 1 
 
The first order integrating time delay system considered as 

follow: 

1

( ) sKG s e
a s

θ−=        (22) 

 

 
Fig. 1 Stable and unstable regions for first order time delay system 

without using lead compensator 
 
Where 11, 5K a= = and 1θ = . At first fractional order 

PID controller with three tunable parameters by using of 
frequency domain specification has been designed. 
Considering μ  (and soλ ) is 0.5 andω  is changing from 0 to 
11.5. So the stable and unstable regions without using lead 
compensator are as Fig.1.  It is seen that from Fig.1 the shaded 
region (R3) is the stability region for closed loop system. In 
order to better vision it is shown in Fig.2. Actually it is 
stability boundary region. 

 

 
Fig. 2 Stability boundary region for first order time delay system 

without using lead compensator 
 
Based on Fig.2 it is seen that the maximum of ω in the 

stability boundary region for closed loop system without using 
lead compensator is 3.9773. The accuracy of the found 
stability region can be easily tested using the unit step 
responses of the closed loop system. In this paper, fractional-
order operators have been approximated by continued fraction 
expansion of the direct discretization by recursive Tustin 
transformation [10]. 

 

 
Fig. 3 Step responses for first order time delay system without 

using lead compensator. 
 

The unit step responses of the 0.5 0.5PI D control system 
when IK is chosen as 0. 5 and various values of PK is 

shown in Fig. 3. In this figure, PK value has been chosen 1, 
3, 6  to 8.125. From this figure, it is seen that the control 
system has more oscillatory response when the value of PK  

is increased from 0 to boundary value, 8.125PK = . If the 

PK  is bigger than the boundary value or smaller than zero, 
the control system becomes unstable. 

Now, for this system the gain margin and phase margin has 
been considered 11 and 80 respectively. So the gain-phase 
margin tester has 1, 80A φ= = o . Based on “(17),” and 

“(18),” PK and IK  has been computed again. The stability 

region for the 0.5 0.5PI D controller with using of lead 
compensator is shown in Fig. 4. 

 

 
Fig. 4 Stable and unstable regions for first order time delay system 

with using lead compensator 
                        

 
Fig. 5 Stability boundary region for first order time delay system 

with using lead compensator 
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The shaded region (R3) is the stability region or the stability 

boundary locus. The stability boundary locus for FO-PID has 
been highlighted in Fig.5 for better clearance. As seen in this 
figure, the stability region is extended from 0ω =  up to 

5.3698ω =  and so this region is bigger than the region that 
is shown in Fig.2. Therefore, it is true to say that using lead 
compensator not only improved the gain and phase margin but 
also increased the stability boundary locus for control system. 
In order to compensator performance review, the bode 
diagram for open loop system without and with using of lead 
compensator are plotted. Fig.6 shows bode diagram for 
control system by 0.5 0.5PI D  without using lead compensator. 
According to this figure the gain margin is 10.5 dB and phase 
margin is 68 degree. To obtaining desired values of gain-
phase margin tester it is necessary the system phase margin 
increased to 80 degree. Doing the procedures provided in 
section 2 for designing lead compensator, control system was 
compensated has the bode diagram that shown in Fig.7. It can 
be seen from this figure that the phase margin in favorite 
frequency has reached to desired phase margin (i.e. 80 degree) 
and the system gain has not changed. Step responses of closed 
loop system by using of lead compensator are shown in Fig.8. 
From this figure it is seen that the maximum value PK for 

compensated system somewhat increased ( 8.34PK = ). 
Thus the good performance of closed loop system is obtained. 

 

 
Fig. 6 Bode diagram for control system by 0.5 0.5PI D  without 

using lead compensator. 
 

 
Fig. 7 Bode diagram for control system by 0.5 0.5PI D  without 

using lead compensator 
 

 
Fig. 8 Step responses for first order time delay system with using 

lead compensator 

IV.CONCLUSION 
The stabilization and phase-margin specification are 

considered, respectively, of this kind of delay systems using 
FO-PID controller, both based on stability boundary criterion 
applicable to integer-order time-delay systems. Simulation 
studies have shown that using the FO-PID with lead 
compensator can achieve bigger closed-loop stability region 
compared to the conventional this class of FO-PID controller. 
On the other hand step response of the closed loop system for 
bigger value of controller gain has been oscillatory. 
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