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Abstract—Modelling is a widely used tool to facilitate the 
evaluation of disease management. The interest of epidemiological 
models lies in their ability to explore hypothetical scenarios and 
provide decision makers with evidence to anticipate the consequences 
of disease incursion and impact of intervention strategies. 

All models are, by nature, simplification of more complex 
systems. Models that involve diseases can be classified into different 
categories depending on how they treat the variability, time, space, 
and structure of the population. Approaches may be different from 
simple deterministic mathematical models, to complex stochastic 
simulations spatially explicit. 

Thus, epidemiological modelling is now a necessity for 
epidemiological investigations, surveillance, testing hypotheses and 
generating follow-up activities necessary to perform complete and 
appropriate analysis.  

The state of the art presented in the following, allows us to 
position itself to the most appropriate approaches in the 
epidemiological study. 

 
Keywords—Bio-PEPA, Cellular automata, Epidemiological 

modelling, multi agent system, ordinary differential equations, PEPA, 
Process Algebra, Tuberculosis.  

I. INTRODUCTION 

PIDEMIOLOGY is "the study of the relationship between 
disease and various factors that influence their frequency, 

distribution, evolution". 
The main advantage of these models is their use as tools 

inter-epidemic, to facilitate the retrospective analysis of past 
epidemics and understand their behaviour. Allowing the 
combination of large amounts of information in a structured 
way, we manage to develop scenarios to get an idea of the 
merits of different strategies in different situations. Thus, 
decision makers can benefit from guidelines to support their 
strategies against future outbreaks, these guidelines can be 
used. 

The need for models in epidemiology was understood very 
early by the scientific community, as the first significant use 
of modelling has been carried out in the 1920s by Kermarck 
and MacKendrick [15]. The architecture of these models, 
based on a classification of individuals in, susceptible (not 
infected), Infectious (may transmit the disease) and removed 
(being immunized against pathogenic) close to the clinical 
status and understandable by the medical is still the most 
widely used formalism. 
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The purpose of this paper was to examine what has 
occurred in epidemiological modelling over the past 100 
years, from 1920 to 2012. 

This paper is structured as fellow: In Section II, we present 
the epidemiological system where we describe in its 
subsections the compartmental model as well as the principal 
features to study it. Section III is devoted to the state of the art 
of the related works with epidemiological system which are 
represented with different methods and approaches. The 
implementation of the computational model with Bio-PEPA 
language, as well as some results obtained for tuberculosis 
model and comparing it with other work are discussed in 
Section IV. Concluding remarks and possible extensions of 
this model are presented in Section V.  

II.  EPIDEMIOLOGICAL SYSTEM 

A. Epidemiology 

Epidemiology is an exciting field with many applications 
that are helpful in solving today’s health related problems. 

For example, epidemiology can demonstrate the risks 
associated with smoking, as well as those related to exposure 
to second hand cigarette smoke among no-smokers. 

Epidemiology research can identify factors related to such 
diseases and suggest methods for its prevention [7]. 

An epidemic term refers to “the occurrence in a community 
or region of cases of an illness, specific health related 
behaviour, or other related events clearly in excess of normal 
expectancy”. 

The use of the word epidemic is not limited to 
communicable disease. The term is applied to chronic diseases 
and other conditions as well. 

Other term which is used: pandemic, defined as “an 
epidemic occurring worldwide, or over a very wide area, 
crossing international boundaries, and usually affecting a large 
number of people. 

Epidemiology is one of the basic sciences of public health; 
it is concerned with the distribution and determinants of health 
and diseases, morbidity, injuries, disability, and mortality in 
populations. For this, epidemiologic methods could be applied 
to a variety of public health related fields: health education, 
health care administration, tropical medicine and 
environmental health, where, epidemiologists quantify health 
outcomes by using statistics, formulate hypothesis and they 
explore causal relationships between exposures and health 
outcomes.  

Epidemiology studies are applied to the control of health 
problems in populations; they are focused on [34]: 

1. Populations where are called population medicine. 
2. Distribution: this term implies that the occurrence of 

diseases and other health outcomes varies in population, 
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with some subgroups of the populations more frequently 
affected than others. 

3. Determinants: defined as “any factor that brings about 
change in a health condition or other defined 
characteristic”, like viruses. 

4. Outcomes: is all the possible results that may stern from 
exposure to a causal factor, it may be expressed as types 
and measures of morbidity, mortality, ...etc 

5. Quantification: epidemiology is a quantitative discipline. 
Quantification means the use of statistical measures to 
describe the occurrence of health outcomes as well as to 
measure their association with exposures. 

Epidemiology contributes to health policy development by 
providing quantitative information that can be used by policy 
makers. 

From the public health point of view, there are three modes 
of prevention, primary prevention which involves the 
prevention of disease before it occurs, secondary prevention 
which takes place during the early phases of pathogenesis and 
includes activities that limit the progression of disease, finally, 
tertiary prevention which is directed toward the later stages of 
pathogenesis and includes programs for restoring the patient’s 
optimal functioning.  

B. Compartmental Model 

In order to model the progress of an epidemic in a large 
population, comprising many different individuals in various 
fields, the population diversity must be reduced to a few key 
characteristics which are relevant to the infection under 
consideration. For example, for most common childhood 
diseases that confer long-lasting immunity it makes sense to 
divide the population into those who are susceptible to the 
disease, those who are infected and those who have recovered 
and are immune. These subdivisions of the population are 
called compartments. 

The compartmental model is dynamic, in that is defined by 
a variable function of t where the numbers in each 
compartment may fluctuate over time. The importance of this 
dynamic aspect is most obvious in an endemic disease with a 
short infectious period, such as measles in the UK prior to the 
introduction of a vaccine in 1968. Such diseases tend to occur 
in cycles of outbreaks due to the variation in number of 
susceptible (S(t)) over time. During an epidemic, the number 
of susceptible individuals falls rapidly as more of them are 
infected (I(t)) and thus enter the infectious and recovered 
(R(t)) compartments. The disease cannot break out again until 
the number of susceptible has built back up as a result of 
babies being born into the susceptible compartment. 

Each member of the population typically progresses from 
susceptible to infectious, to recovered. 

For the full specification of the model, the transition 
between compartments is expressed by rates. 

As between S and I, the transition rate is β, where β is the 
contact rate, which -roughly speaking - takes into the account 
the probability of getting the disease in a contact between a 
susceptible and an infectious subject. Between I and R, the 
transition rate is ν (simply the rate of recovery). If the duration 

of the infection is denoted D, then ν = 1/D, since an individual 
experiences one recovery in D units of time, [36].  

C. Epidemiology and Modelling Features 

Owing to the different properties and behaviour of the 
epidemiological system, they require different modelling 
features: 

• Outcomes and hierarchy: Despite its great complexity, the 
epidemiological model is organized as a set of connected 
modules with specific functions [29], [18]. Taking 
advantage of this modularity can help to alleviate the 
complexity burden, facilitating the model analysis. 
Compositionality is a related concept meaning that two 
modelling blocks can be aggregated together into one 
model without changes to any of the submodels. 

• Multi-state components, spatial structure and 
compartmentalization: as mentioned above the 
epidemiological model could be expressed by different 
compartment which correspond to the different states of 
individuals or its place of location. 

• Qualitative analysis: Experimental determination of 
kinetic parameters to build quantitative models is a 
cumbersome task. Furthermore, they are dependent on the 
experimental conditions. Therefore, the qualitative 
characteristics of models allow us to ask qualitative 
questions about the system and to learn valuable 
knowledge. 

Dynamic simulation and standardization: Dynamic 
simulation allows the prediction of the transient behaviour of a 
system under different conditions. For each model, the 
particular simulation approach depends on the type of 
components included, which depend on the nature of the 
involved interactions and also on the available information for 
their characterization. To do this, epidemiological models 
need to be represented in a common format for exchange 
between different tools. 

III. RELATED WORK 

Since the appearing of epidemiology research, has been a 
long way between epidemiologists and computer scientists and 
many formalisms have been used. 

The real problem between them is that, the epidemiologist 
may be more familiar with mathematical modelling and 
computer scientist also may be familiar with their 
computational formalism. The following section describes 
briefly existing formalisms which was used by computer 
scientist to help epidemiologist. 

A. Mathematical Models 

The first epidemiological models have emerged in the early 
twentieth century based on ordinary differential equations 
(ODEs). [3], [15] It was in 1927 that Kermack and 
McKendrick, offer the first complete model to model an 
epidemic. The main idea is that differential equations describe 
the rate of change of continuous variables. They are typically 
used for modelling dynamical systems in several areas. 
Systems of non-linear ordinary differential equations (ODEs) 
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have been used in epidemiological system to describe the 
variation of the amount of species in the modelled system as a 
function of time, the number of new infections is proportional 
to the product of the number of infected and susceptible [20], 
[15], [11], [25]. 

After, the first stochastic model was presented by Frost and 
Reed in 1928, on a scale of discrete time (typically one 
generation); it describes the probability of evolution of 
different classes of the population. In every generation, the 
population of the state depends only on the previous 
generation and evolution probabilities are binomial. It was in 
1949 that Bartlett [15] offers what will be the standard 
epidemiological model. At the initial time, the population 
consists of n infected and m susceptible. Each infected has a 
period of contagion which follows a law I, independent of the 
others. And during this period he meets another given 
individual according the moments of jump of a Poisson 
process with intensity λ / n. All these processes are 
independent of one another and periods of contagion. An 
equivalent construction proposed by Sellke in 1983 [30], is 
based on the idea to assign to each individual a capacity of 
resistance to the epidemic and to define, from the number of 
infected, pressure of the epidemic and criterion of infection on 
the resistance of the individual. The SIR model extends in a 
natural way on a graph. In the initial model, the infected 
individuals contact any type of individuals randomly chosen at 
an average rate β and are recovering at an average rate γ. The 
graph allows considering the heterogeneity of contacts in the 
population, and precise relationships between individuals in a 
population. Newman showed [27], [28] that the behaviour of 
the epidemic on the graph can be studied by a percolation on 
the same graph. In this case, the results of percolation allow 
having information on the size of the connected components 
and the epidemic outbreak. These results provide information 
on the importance degree of the epidemic, but not on its 
evolution over time [15]. 

Michael Y. Li in 2010 [22], improved the Kermack and 
McKendrick model by integrating Heterogeneity of age, using 
the partial differential equations instead of ODEs, his model 
could represent realistically the disease transmission process 
but it was very complex [22]. 

Others mathematical models have been presented. Ronald 
Ross in his first mathematical model of malaria [25], showed 
that reduction of mosquito numbers (Transmission threshold) 
was sufficient to counter malaria - a concept far ahead of his 
time, Ross could introduce the deterministic differential 
equation model of malaria by dividing the human population 
into susceptible (S) and infected (I) compartments, with the 
infected class returning to susceptible class again leading to 
the SIS structure. The simple Ross model did not consider the 
latency period of the parasite in mosquitoes and their survival 
during a necessary period. After about 40 years, George 
Macdonald [23], in the 1950s, reasserted the usefulness of 
mathematical epidemiology based on 20 years of fieldwork. 
He modified Ross’s model by integrating biological 
information of latency in the mosquito due to malaria parasite 
development, and implicated the survivorship of adult female 

mosquito as the weakest element in the malaria cycle. This 
provided a rationale for a massive World Health Organization 
(WHO), which focused on using the insecticide 
dichlorodiphenyltrichloroethane (DDT) that killed mosquitoes, 
for the elimination of malaria transmission among 500 million 
people in Africa [23], [25]. 

One another work which drew our attention because it 
studied the same case study of us, Blower et al. [8]-[10] who 
developed a compartmental model for the spread of 
tuberculosis in a population where each one of the disease 
states is identified as a compartment. Individuals that are in 
the same state belong to the same compartment, namely: 
susceptible (X), latent (Li) latently infected that effectively 
received chemoprophylaxis (CS), infectious (Ti) and 
effectively treated individuals (Ei). The subscripts i define if 
the pathogen is sensitive (S) or resistant (R) to antibiotics. 
This compartmental model consists of eight ordinary 
differential equations (ODEs) that represent the dynamics 
between compartments (see [8]-[10] for more details).  

However, building ODE models requires insight into the 
reaction mechanisms to select the appropriate rate laws, and 
experimental data to estimate the kinetic parameters and the 
spatial characteristics that could potentially play a nontrivial 
role in the development were not been taking into 
consideration. Also, as outlined in [17], reported by [16]: 
“modelling based on deterministic ODEs used by Blower and 
collaborators presents some limitations, such as: the constant 
population size, i.e. no births, deaths and migration occur, and 
the populations are well mixed, i.e. there is homogeneous 
movement between subpopulations”. Also in [17], the author 
mentions that “changes in the density of localized populations, 
changes in immunity, susceptibility and incubation time, are 
natural attributes of epidemics, but are omitted in simulations 
with ODE’s”. 

B. Cellular Automata 

Although the differential equation models are perhaps the 
most common and are typically used to simulate the 
epidemiological dynamics of particular diseases to try and 
identify the critical parameters involved [6],  

But we have seen that in this previous model, the 
population is always considered homogeneous — which is 
obviously untrue in reality. Epidemiologists know that 
population heterogeneity can greatly influence the propagation 
of epidemics. To represent this heterogeneity, it is necessary to 
explicitly represent, in a model, individuals (or groups) instead 
of the global population: computational models have offered 
this possibility. Micro-simulation is the first type of model to 
have addressed these issues: individuals are represented by a 
vector of parameters and the whole population by a matrix 
[individuals x parameters] on which global computations are 
made, which was presented by Artzrouni’s work [4]. The 
drawback of this model that is could not represent 
relationships between individuals. These relationships can 
however be crucial to understand the dynamics of epidemics. 
Of particular interest for epidemiologists is the spatial 
organization of the individuals particularly the neighbourhood 
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organization [12]. Obviously, two individuals located at 
distant locations have a smaller probability of interaction than 
two neighbours. According to [1], a way to model this 
hypothesis is to use the cellular automata model, which 
represents relationships’ topology using a grid where 
individuals can be located. Every cell of the grid contains a 
parameters vector that represents an individual. Their 
evolution (which occurs locally) is based on this vector but it 
is also influenced by the state of its “neighbours”. Turner et al. 
showed in [33] that taking local neighbourhood topology into 
account can correctly treat cases where the population is not 
homogeneously distributed over space [31], [21]. However, 
interactions between individuals hardly follow such fixed 
contact patterns when there is a necessity to take more realistic 
populations into account. Other drawback of this model is that 
the most common way to interrogate the model is simulation, 
but full exploration of the model requires instantiation over a 
range of parameter values. Ensuring that all important areas of 
parameter space have been covered incurs heavy 
computational expense, and may even be impossible. 

C.  Agent Based Model (ABM) 

Taking relationships among individuals into account is a 
first step towards a more realistic representation of (human or 
animal) communities. Nevertheless, the previous models do 
not offer any help in representing the behavioural 
heterogeneity of the individuals. Yet, according to specialists, 
it can play a major role. For instance, vectors able of “long-
distance translocations” [32] may transform a successful 
containment into a wide propagation and it is not possible to 
model this using previous models. Epidemiologists have then 
started to use ABMs in order to address this issue. In these 
models, it is possible to integrate all the information (global 
factors, heterogeneity of individuals, relationships) 
represented in the previous models as well as individualized 
behaviours. Each action of each agent can be designed 
according to its internal state and perceptions (neighbours and 
their parameters, global parameters, even environmental data, 
etc). An example is provided by [18], [1], [2]. 

De Espindola et al. [16] proposed an agent-based model for 
the spread of tuberculosis and the emergence of drug 
resistance due to the use of antibiotics which was based on 
Blower et al. [8]-[10]. The model is based on the interactions 
among individuals placed on the sites of a square lattice. 
Different from models based on differential equations, the 
spatial structure is taken into account in this model. These 
individuals can be in one of five states of the disease: 
susceptible (X), latent with type S bacteria (LS), latent with 
type R bacteria (LR) and active tuberculosis with type S (TS) 
and type R (TR) bacteria. This approach has allowed, as 
mentioned by Espindola, to deal with the problem with more 
refinement than the existing models based on differential 
equations. 

More generally, ABMs allow epidemiologists to test 
hypotheses related to the behaviours of the individuals that 
may be impossible to test on the field. These models are able 
to represent global parameters, individuals, their behaviours 

and their effect on the environment, their relationships, in 
combination with any of the environmental representation 
above. However, considering more detailed descriptions of the 
environment is currently beyond their scope and they may 
have difficulties in dealing with unstructured or dynamic ones, 
also, in order to achieve a good ABMs model, the computer 
scientist should be an excellent developer, something that is 
not always possible. 

D. Process Algebras 

Process algebras are abstract languages used for the 
specification and design of concurrent systems. The most 
widely known process algebras are Milner’s The Calculus of 
Communicating Systems (CCS) and Hoare’s Communicating 
Sequential Processes (CSP) [24]. The process algebras take 
inspiration from both these formalisms. 

In the process algebra approach systems are modelled as 
collections of entities, called agents, which execute atomic 
actions. These actions are the building blocks of the language 
and they are used to describe sequential behaviours which may 
run concurrently, and synchronizations or communications 
between them. The first works which started using process 
algebra in epidemiology is PEPA (the Performance Evaluation 
process Algebra) and WSCCS (Weighted Synchronous 

Calculus of Communicating Systems). PEPA was started in 
Edinburgh in 1991 [19], it was motivated by problems 
encountered when carrying out performance analysis of large 
computer and communication systems, based on numerical 
analysis of Markov processes. Performance analysis seeks to 
predict the behaviour of a system with respect to dynamic 
properties such as the number of requests that can be satisfied 
per unit time and response time. McCaig et al. [26] used 
“Weighted Synchronous Calculus of Communicating 
Systems” (WSCCS). The semantics of WSCCS can be viewed 
as a Discrete Time Markov Chain (DTMC). Simulation can be 
used to explore the model, steady state analysis can be carried 
out, and properties of the Markov Chain computed. Benkirane 
in 2009 [5], tried to reproduce with PEPA the propagation of 
bubonic plague in a prairie dog burrow studied by Webb et al. 
[35], by doing this, he could reproduce the same results as 
ODEs, but he could not expressed explicitly the space and the 
transmission from fleas to prairie dogs, and the reproduction 
of fleas which is driven by density dependent terms, cannot be 
precisely described in PEPA, he also, published the similar 
work [5], where he deduced that : “process algebras provide 
different forms of analysis not previously available to 
biologists and in the case of epidemiology, the study of 
disease spread, process algebra gives us a way to describe 
individual based models (drawn from observations of 
individual behaviour) and to then automatically derive 
population level models”. In parallel, Ciochetta developed 
Bio-PEPA, to specifically deal with biochemical networks 
[13]. She also defined a variant of it suitable for representing 
epidemiological models. She specified that some features of 
Bio-PEPA are useful in the context of epidemiology as well: 
location can abstract spatial structure and event can describe 
the introduction of prophylaxis in a population infected by a 
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disease at a given day and concerning the analysis, from Bio-
PEPA, we can take advantage of the various kinds of analysis 
supported by Bio-PEPA, such as, stochastic simulation, model 
checking and ODE-based analyses. In particular, the modeller 
can select the most appropriate approach for the study of the 
model and analysis techniques can be used together for a 
better understanding of the behaviour of the system [13]. 

IV. MODELLING TUBERCULOSIS IN BIO-PEPA 

The previous section helped us to detect that the best 
methods to study epidemiological system are ABMs and Bio-
PEPA approaches, for the reasons mentioned above. 

For this in this section we tried to compare between them, 
and conclude which one is better than the other for 
epidemiological modelling. 

By coming back to the related work we chose Espindola’s 
model [16]. 

Taking this ABMs-based model as a reference, we propose 
an alternative computational Bio-PEPA model, to study TB 
dynamics and the emergence of drug resistance. 

A. The ABM Model 

 

Fig. 1 Schematic representation of the interaction between the five 
states of tuberculosis (taken from [16]) 

 
According to [16], in ABM model, the individual is 

described by Iij, with (i, j) = {1, 2, . . . ,L}, and placed on one 
site of a square lattice of side L. The quantity Iij belongs to a 
population of size N = L ×L and it can have one of five 
possible states: Iij ∈ {X,LS,LR,TS,TR}. If Iij = X, the 
individual is susceptible to tuberculosis, i.e. not exposed to the 
pathogen that causes it. The individual Iij = Lk, with k = S,R, is 
in a state of latency, or exposed to the bacteria that causes TB 
but he/she is not sick. The subscript k defines whether the 
pathogen is sensitive (S) or resistant (R) to antibiotics. Finally, 
the individual Iij=Tk, with k = S,R, is called infectious, i.e. this 
individual has active tuberculosis. 

Individuals may undergo probabilistic transitions between 
the states of the system. 

The main parameters that drive these transitions are shown 
in Table I, which are reported in [16]. Transitions are allowed 
between states and their respective probability can be seen in 
the scheme shown in Fig. 1. 

 

TABLE I 
MODEL PARAMETERS (TAKEN FROM [16]) 

Parameter  Description  
µ Probability of natural death 
µT Probability of death due to tuberculosis 
Þ Probability of developing active tuberculosis from X state 
υ  Probability of disease progression in latent individuals 
Σ Probability that chemoprophylaxis therapy is effective 
φ  Probability of effective treatment for infectious individuals 
r  Probability to develop drug resistance during treatment 
δ  Relative treatment efficacy 
ɳL  Proportion of latent individuals that receive 

chemoprophylaxis 
ɳT Proportion of infective individuals that receive treatment 

 
Refer to [16] for further description of each state of the 

model and the dynamics of interaction between them. 

B. Translating the Model to Bio-PEPA 

To describe the various components of tuberculosis model 
in Bio-PEPA, we must first present the most important 
elements of Bio-PEPA, [14]. 

Bio-PEPA Language 

In this subsection, we present a brief description of Bio-
PEPA. Its main components are the component "species", 
describing the behavior of each species, and component 
"model", describing the interaction between different species. 

The syntax of Bio-PEPA is defined as follows: 
 
S:= (α,k) op S:=S ; S:=S+S; S:=C 
with    
op = ↓׀⊖׀⊕׀↑ ׀⊙ 
And       

� �� � �� �
��   

 
where,  

S: the species component (different types of individual); 
 P: the model component describing the system and 

interactions between components.  
 The prefix term (α, k) op S, k: the stoichiometry coefficient 

of species S in reaction α, where, prefix combinatory “op” 
represents the role of S in the reaction.  

Op={ ↓: a reactant, ↑: a product, ⊕ : an activator, ⊖ : an 
inhibitor, ⊙ : a generic modifier}.  

The operator “+”: expresses the choice between possible 
actions. 

The constant C: defined by an equation C 
 S.  

The process � �: denotes synchronization and 
cooperation between components P and Q, where L, 
determines those activities on which the operands are forced to 

synchronize, with , denoting synchronization on all 
common action types.  

S (x): The model component, where the parameter x ∈ R 
represents the initial amount of the species [13], [14].  

Among the most important properties of Bio-PEPA, that it 
could support the events and the environment which are 
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expressed directly by Bio-PEPA’s syntax [13
According to the syntax of Bio-PEPA we define:

1. Location: As defined in [16], besides the probability that 
the individual to be infected by the neighbourhood
also the probability of contagion due to other individuals with 
TB in the lattice. Thus, in Bio-PEPA we use tow 
compartmental components, the first one for the local 
contagion and second one for global contagion. Which are 
expressed by: 

Location “Local in world”: size = sizeLocal, type = 
compartment; 

Location “Global in world”: size = sizeGlobal, type = 
compartment; 

2. The Functional Rates : As mentioned above the 
individual could be in different states expressed in Bio
by: (for more clarity of this paper, we decided to present in 
following only functions corresponding to 
treatment)  

• susceptible_infected: p * X@Local * T@Local, describes 
the contact between susceptible X and local infected T 
with rate p.  

• susceptible_infected_Global: p*X@Local* T@Global, 
describes the contact between susceptible X and infec
T in other place in the lattice with rate p. for these two 
functions, X goes directly to the infected state T.

• susceptible_exposed : Beta * X@Local * T@Local 
(susceptible_exposed_global : Beta * X@Local * 
T@Global), the same descriptions as the two f
here X goes to the latent state L.  

• exposed_infected: v * L@Local, Describes the latent’s L 
transition to T by a parameter v. 

• infected_died: MuT * T@Local (infected_died_G :
* T@Global), Describes the local T (global T) which died 
by a parameter MuT. 

• died_X : Mu * X@Local(died_L :
died_T : Mu * T@Local, died_T_G :
describes the natural died of X (L, T(local/global))by 
parameter Mu. 

3. The Species Components:  

• X =(susceptible_infectedTr,1) ↓ X+(succ_Tr,1) ↑ X+ 
(died_inf_Tr,1) ↑ X+ (died_inf_Tst,1) ↑ X+(succ_Tst,1) ↑ 
X+(susceptible_exposedTr,1) ↓ X + (succ_Lst,1) ↑ 
X+(infected_diedTs,1) ↑ X +(died_Ls,1) ↑ X 
+(died_Ts,1)↑ X+ (died_X,1)
X+(susceptible_exposedTs,1)↓X 
+(susceptible_infectedTs,1)↓ X. 

• Ls=(trait_Ls,1)↓Ls+(inf_Ls,1)↓Ls+(susceptible_exposed
Ts,1)↑Ls +(died_Ls,1)↓Ls + (exposed_infected,1)↓Ls.

• Lst=(trait_Ls,1)↑Lst+(succ_Lst,1)↓Lst+(resi_Lst,1)↓Lst+ 
(inf1_Lst,1) ↓ Lst+ (inf2_Lst,1) ↓ Lst.

• Lr=(resi_Lst,1)↑Lr+(susceptible_exposedTr,1)
Lr,1)↓Lr. 

• Tr=(susceptible_infectedTr,1)↑Tr+(inf_Ls,1)↑Tr+(inf2_L
st,1)↑Tr+ 

 

syntax [13], [14]. 
PEPA we define: 

defined in [16], besides the probability that 
neighbourhood, there is 

also the probability of contagion due to other individuals with 
PEPA we use tow 

compartmental components, the first one for the local 
contagion and second one for global contagion. Which are 

Location “Local in world”: size = sizeLocal, type = 

ld”: size = sizeGlobal, type = 

As mentioned above the 
states expressed in Bio-PEPA 

by: (for more clarity of this paper, we decided to present in 
following only functions corresponding to a spread without 

susceptible_infected: p * X@Local * T@Local, describes 
the contact between susceptible X and local infected T 

susceptible_infected_Global: p*X@Local* T@Global, 
describes the contact between susceptible X and infected 
T in other place in the lattice with rate p. for these two 
functions, X goes directly to the infected state T. 

Beta * X@Local * T@Local 
Beta * X@Local * 

T@Global), the same descriptions as the two firsts, but 

v * L@Local, Describes the latent’s L 

MuT * T@Local (infected_died_G : MuT 
* T@Global), Describes the local T (global T) which died 

Mu * X@Local(died_L : Mu * L@Local, 
Mu * T@Local, died_T_G : Mu * T@Global), 

describes the natural died of X (L, T(local/global))by 

↓ X+(succ_Tr,1) ↑ X+ 
↑ X+ (died_inf_Tst,1) ↑ X+(succ_Tst,1) ↑ 

↓ X + (succ_Lst,1) ↑ 
↑ X +(died_Ls,1) ↑ X 

↑ X+ (died_X,1)ʘ 

↓Ls+(inf_Ls,1)↓Ls+(susceptible_exposed
↓Ls + (exposed_infected,1)↓Ls. 

↑Lst+(succ_Lst,1)↓Lst+(resi_Lst,1)↓Lst+ 
↓ Lst+ (inf2_Lst,1) ↓ Lst. 

susceptible_exposedTr,1)↑Lr+(inf_

↑Tr+(inf_Ls,1)↑Tr+(inf2_L

(inf_Lr,1)↑Tr+(resi_Tst,1)↑Tr+(died_inf_Tr,1)↓Tr + 
(succ_Tr,1) ↓ Tr. 

• Ts=(trait_Ts,1)↓Ts+(inf1_Lst,1)↑Ts+(susceptible_infecte
dTs,1)↑Ts +(infected_died
(exposed_infected,1) ↑ Ts.

• Tst =(trait_Ts,1) ↑ Tst+ (succ_Tst,1) ↓ Tst+ (resi_Tst,1) ↓ 
Tst + (died_inf_Tst,1) ↓ Tst.

where: X (susceptible), Ls (sensitive Latent), Lst (Latent 
sensitive with treatment), Lr (resistant Latent), Tr 
infected), Ts (sensitive infected), Tst (sensitive infected with 
treatment). 

4. Model Component: 

X[x]  Ls[ls]  Ts[ts] 

Tr[tr]  Tst[tst]. 
where x, ls, lst, lr, tr, tst are the initial number of species 
(individual), and L: all the functional rates.

C. Simulation Results and Comparisons

In this section, we reproduced all the parameters used in 
[16], and also we took the same remarks for the best 
comparisons and prove that Bio
same results. 

1. No Treatment For Tuberculosis 

The simulation started at t = 0 where only X and Ts 
individuals are present. The amount of TS individuals is 20% 
of the total population. The system evolves with no public 
health intervention (no treatment for TB) until the 200th year. 
In this stage, three states can be seen in the lattice: X, Ls and 
Ts. At this step, we could reproduce the same result as in [16], 
i.e., the reduction in the amount of TS cases is due to the death 
of ill individuals, once there is no treatment with antibiotics
In the same figure, there can also be seen the large quantity of 
latent individuals, which can be explained by the absence of 
antibiotics treatment and chemoprophylaxis, 
figure is the reproduction of local contagion.

Fig. 2 No treatment for tuberculosis for local interaction during 200 
years

The global contagion is illustrated in 
comparison between this figure and 

↑Tr+(resi_Tst,1)↑Tr+(died_inf_Tr,1)↓Tr + 

↓Ts+(inf1_Lst,1)↑Ts+(susceptible_infecte
↑Ts +(infected_diedTs,1)↓Ts+(died_Ts,1) ↓ Ts+ 

↑ Ts. 
↑ Tst+ (succ_Tst,1) ↓ Tst+ (resi_Tst,1) ↓ 

↓ Tst. 
: X (susceptible), Ls (sensitive Latent), Lst (Latent 

sensitive with treatment), Lr (resistant Latent), Tr (resistant 
infected), Ts (sensitive infected), Tst (sensitive infected with 

Ts[ts]  Lst[lst]  Lr[lr]  

are the initial number of species 
the functional rates. 

Comparisons 

In this section, we reproduced all the parameters used in 
[16], and also we took the same remarks for the best 
comparisons and prove that Bio-PEPA could reproduce the 

Tuberculosis  

The simulation started at t = 0 where only X and Ts 
individuals are present. The amount of TS individuals is 20% 
of the total population. The system evolves with no public 
health intervention (no treatment for TB) until the 200th year. 

this stage, three states can be seen in the lattice: X, Ls and 
Ts. At this step, we could reproduce the same result as in [16], 

reduction in the amount of TS cases is due to the death 
of ill individuals, once there is no treatment with antibiotics. 
In the same figure, there can also be seen the large quantity of 
latent individuals, which can be explained by the absence of 
antibiotics treatment and chemoprophylaxis, Fig. 2. This 
figure is the reproduction of local contagion. 

 

 

r tuberculosis for local interaction during 200 
years 

 
The global contagion is illustrated in Fig. 3. The 

comparison between this figure and Fig. 2 shows that the time 
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to reach a steady state is longer when we assume only local 
interactions. When only local interactions are taken into 
account the spread of the disease is limited to the 
neighbourhood of the susceptible individuals. On the other 
hand, when only global interactions are present, the pool of 
susceptible individuals subjected to be infected is bigger, 
speeding up the spread of TB. 

 

Fig. 3 No treatment for tuberculosis for global interaction during 
200 years 

2. Simulation with Treatment 

Then, in order to visualize the effect of this public health 
intervention, the introduction of treatment with antibiotics and 
chemoprophylaxis started on the first day of the 200th year, 
we can see in Fig. 4, as expected, the amount of TS (yellow) 
individuals has decreased dramatically (from the 200th year) 
due to treatment with 50% probability of effective cure (φ = 
0.5). There is also a decrease in the amount of LS (blue) 
individuals because of the lower quantity of TS people (source 
of infection) and the response to chemoprophylaxis.

 

Fig. 4 Model with treatment injected after 200 years
 

In the period running from the 200th to 300th year, we can 
see in Fig. 5 that cases of tuberculosis sensitive to antibiotics 
(TS) have vanished around 20 years after the beginning of the 
treatment. As soon as the treatment starts, due to the 
probability of treatment failure, r, the emergence of drug 
resistance occurs and there is a peak in the TR cases between 
the 200th and 210th years. The emergence of TR cases 
depends upon the treatment failure of TS cases. Thus, initially, 

 

to reach a steady state is longer when we assume only local 
interactions. When only local interactions are taken into 
account the spread of the disease is limited to the 

of the susceptible individuals. On the other 
, when only global interactions are present, the pool of 

susceptible individuals subjected to be infected is bigger, 
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n, in order to visualize the effect of this public health 
intervention, the introduction of treatment with antibiotics and 
chemoprophylaxis started on the first day of the 200th year, 

4, as expected, the amount of TS (yellow) 
has decreased dramatically (from the 200th year) 

due to treatment with 50% probability of effective cure (φ = 
0.5). There is also a decrease in the amount of LS (blue) 
individuals because of the lower quantity of TS people (source 

sponse to chemoprophylaxis. 

 

Fig. 4 Model with treatment injected after 200 years 

In the period running from the 200th to 300th year, we can 
that cases of tuberculosis sensitive to antibiotics 

(TS) have vanished around 20 years after the beginning of the 
treatment. As soon as the treatment starts, due to the 
probability of treatment failure, r, the emergence of drug 

is a peak in the TR cases between 
the 200th and 210th years. The emergence of TR cases 
depends upon the treatment failure of TS cases. Thus, initially, 

the amount of TS individuals is higher, which creates a pool of 
TS individuals to be converted to TR ca
as soon as TS has decreased, the amount of TR cases also 
decrease, and the peak shown in the figure converges to a 
stable endemic state. This convergence is due to the TR cases 
which are cured with an efficacy relative to TS cases d
by the parameter δ. It is then expected that infective 
individuals TR remain in the population, even though in the 
case of high efficacy treatments.

 

Fig. 5 Impact 

V. CONCLUSION

Here we proposed a Bio-
tuberculosis and the emergence of drug resistance due to the 
use of antibiotics. The model is based on the interactions 
among individuals placed on the same or different place. 
Different from agent-based model, we taken into account all 
the parameters and features of this model with a simple syntax 
and without doing a computing probabilities. These 
individuals can be in one of five states of the disease: 
susceptible (X), latent with type S bacteria (LS), l
type R bacteria (LR) and active tuberculosis with type S (TS) 
and type R (TR) bacteria. This approach has allowed us to 
deal with the problem with more refinement than the existing 
agent-based model with which was inspired.

We remembered here, that our aim is not to improve the 
ABMs model, but to prove that it is simpler to use Bio
in modelling than other, and also the drawback which was 
observed for ABMs model is dealing here.
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