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 
Abstract—The effect of non-homogeneity on the free transverse 

vibration of thin rectangular plates of bilinearly varying thickness has 
been analyzed using generalized differential quadrature (GDQ) 
method. The non-homogeneity of the plate material is assumed to 
arise due to linear variations in Young’s modulus and density of the 
plate material with the in-plane coordinates x  and y . Numerical 

results have been computed for fully clamped and fully simply 
supported boundary conditions. The solution procedure by means of 
GDQ method has been implemented in a MATLAB code. The effect 
of various plate parameters has been investigated for the first three 
modes of vibration. A comparison of results with those available in 
literature has been presented. 

 
Keywords—Bilinear thickness, generalized differential 

quadrature (GDQ), non-homogeneous, Rectangular. 

I. INTRODUCTION 

HE study of non-homogeneous materials is of great 
interest to the researchers in the various field of 

engineering because in many engineering applications the 
mechanical properties of the material are not homogeneous 
and display spatial variation. Plywood, timber and fiber-
reinforced plastic etc. are the examples of non-homogeneous 
materials. Nowadays some high-strength lightweight premium 
composites, fabricated by mixing two or more materials such 
as carbon fiber and epoxies are being used for aerospace 
applications and in high performance sporting goods. The non-
homogeneity of a structure is characterized by a number of 
factors governing its structural features. For plate type 
structure these features are geometrical imperfections, 
inclusion of foreign materials and reinforcements of various 
types [1]-[3]. Sometimes plate type structural elements have to 
work under high temperature environment which causes non-
homogeneity in the material, particularly in aerospace 
industry, modern missile technology and microelectronics. 
These rectangular plates with appropriate thickness variation 
have significantly greater efficiency for vibration as compared 
to the plates of uniform thickness and also provide the 
advantage of material saving and hence the cost requirement. 
Thus their design requires an accurate analysis for their 
vibration characteristic. Various models for the non-
homogeneity of the plate material have been proposed in the 
literature and a detailed discussion is given by Lal and 
Dhanpati [4], [5]. In these papers, it is considered that non-
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homogeneity of the plate material arises due to change in only 
one space variable.  

The present study analyze the effect of non-homogeneity on 
the free transverse vibration of thin rectangular plates of 
varying thickness employing generalized differential 
quadrature (GDQ) method with the two boundary conditions 
namely, fully clamped and fully simply supported. The 
thickness of the plate is taken bilinear along both the 
directions. Non-homogeneity of the plate material is assumed 
to arise due to linear variation in Young’s modulus and 
density of the plate material with both the in-plane 
coordinates. The effect of various parameters on the natural 
frequencies has been investigated for the first two modes of 
vibration. A comparison of results has been presented. 

II. MATHEMATICAL FORMULATION 

Referred to a Cartesian coordinates (x, y, z), the 
configuration of a non-homogeneous isotropic rectangular 
plate of length a, breadth b, thickness ),( yxh  and density 

),( yx  is shown in Fig. 1. The x - and y -axes are taken 

along the edges of the plate, the axis of z  is perpendicular to 
the xy -plane. The middle surface being 0z and origin is at 

the one of the corners of the plate. The differential equation 
governing the transverse vibration of such plates, is given by 
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where )1(12/ 23  EhD  is the flexural rigidity, ),,( tyxw  
is the transverse displacement, E is the Young’s modulus,  is 
the Poisson ratio, ),( yx is the density.  

For a harmonic solution, the displacement w  is assumed to 
be  

 

( , , ) ( , ) i tw x y t w x y e                        (2) 
 

where   is the circular frequency in radians. 
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Fig. 1 Geometry of the rectangular plate 
 
Using (2), (1) reduces to 
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Introducing the non-dimensional variables 

awWahHbyYaxX /,/,/,/   and assuming that 

Young’s modulus and density of the plate material vary with 
the space co-ordinates by the functional values 

 

 0 1 2 0 1 2(1 ) , (1 )E E X Y X Y            (4)  

                                                                                         
and thickness of the plate varies linearly in both X  and Y
directions [14], given by  

 

0 1 2(1 ) (1 )H h X Y   
                       

(5) 

 

where 0E , 0  and 0h
 
are the Young’s modulus, density and 

thickness of the plate at ,0,0  YX 1 and 2 are non-

homogeneity parameters and 1 and 2  are the density 

parameters respectively. Equation (3) now, reduces to  
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where 
 

ba / 2
2

2
1210 )1()1()1( YXYXA    

2
21112111 )1()1())1(2)1(6( YXXYXA  

)1()1())1(2)1(6( 2
2

1222122 YXYYXA  
2 2

3 1 1 2 1 1 2(6 (1 ) 6 (1 ) (1 )A X Y X Y          
2

12221
2

24 )1()1(6)1(6( XYYXA  

)1()1)()1(3

)1(3)1(9()1(2

21212

1212121
2

5

YXY

XYXA






 

)1( 21
2

6 YXA   , 2
00

22
0

2 /)1(12 hEa    
 
Equation (6) is a fourth order partial differential equation of 

variable coefficients with respect to X  and Y . It requires two 
boundary conditions at each edge. The combinations of 
following boundary conditions are considered in the present 
paper. For clamped edge: 
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dX

dW
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0

dY

dW
W , at 0X or 1X , and 0Y  or 

1Y , respectively. 
 
For simply supported edge: 
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0Y  or 1Y , respectively. 

III. GENERALIZED DIFFERENTIAL QUADRATURE METHOD 

According to Generalized differential quadrature (GDQ) 
method, the derivative of a function, with respect to a space 
variable at a given grid point, is approximated as a weighted 
linear sum of the function values at all of the grid points in the 
computational domain of that variable [7] . 

The computational domain of a rectangular plate is 

10,10  YX  Let NXXX ,,, 21   and MYYY ,,, 21  are 

grid points in X and Y directions respectively. In this method, 

the thn  and thm  order derivatives of ),( YXW with respect to

X , Y and its mixed derivative with respect to X and Y are 
approximated as  
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respectively. The weighting coefficient of first order 
derivative are determined as  
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Similarly, for the second and higher order derivatives the 

recurrence relationships are obtained as follows 
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for  
 

1,,3,2,,,2,1,  NnNji   
 

The corresponding coefficients )(m
jlb  associated with 

derivatives with respect to y required can be similarly 
determined [7]. Discretizing (6) at the internal grid points  
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where ,N M are the number of grid points in the X and Y

directions and ,)(n
ila  )(m

ilb  are the weighting coefficients in the 

X and Y directions, respectively. Similarly, the boundary 

conditions can be non-dimensionalized and then discretized by 
using GDQ. Here, the grid points chosen for collocation are 
the zeroes of shifted Chebyshev polynomial with 
orthogonality range [0, 1] given by 
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IV. NUMERICAL RESULTS AND DISCUSSION 

Equation (10) together with boundary conditions form a 
standard eigenvalue problem [7], which has been solve 
numerically using generalized differential quadrature method 
to obtain the frequency parameter   for various values of 
plate parameters. The values of various plate parameters are 
taken as follows: Non-homogeneity parameters 21, = (-

0.5(0.1)0.5), density parameters 21 ,  = 0.5(0.1)0.5), 

thickness parameter 21, = (-0.5(0.1)0.5), aspect ratio ba / = 

(0.25(0.25)2.0) and Poisson’s ratio  =0.3. 
To choose an appropriate number of grid points ),( MN , 

convergence studies have been carried out for various set of 
plate parameters until the first six significant digits had 
converged. The convergence of frequency parameter  for the 
first three modes of vibration for a particular set i.e.

1/,5.0212121  ba  is shown in 

Table I. The values of both the grid points N and M have 
been fixed as 15 for both the boundary conditions.  

A comparison of frequency parameter  for homogeneous 
)0( 2121    square plate with those results 

obtained by other methods has been presented in Table II. A 
close agreement of results is obtained.  

Fig. 2 depicts the behavior of frequency parameter   with 
non-homogeneity parameter 1  for 5.021    

,5.0,5.0 12    5.02   and 1/ ba  for the first 

three modes of vibration. It is observed that the frequency 
parameter  increases with the increasing values of non-
homogeneity parameter .1 Further it is increases with the 

increasing values of 2  while decreases with the increasing 

values of 1 keeping all other parameters fixed. The rate of 

increase of  with 1 is in the order of the boundary 

conditions CCCC>SSSS for both the values of 2  and 1 for 

the first three modes of vibration whatever be the values of 
other parameters. 
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TABLE I 
CONVERGENCE STUDY FOR THE FIRST THREE FREQUENCIES FOR 1/,5.0212121  ba  

MODE                                                         I                    II                  III                    I                  II                 III  

No. of grid points ( MN  )                      CCCC                      SSSS 

8 
10 
12 
14 
15 
16 

55.3769        111.501        112.291 
55.3821        111.950        112.831 
55.3816        111.943        112.825 
55.3816        111.943        112.825 
55.3816        111.943        112.825 
55.3816        111.943        112.825 

30.7124       76.1069        76.9258 
30.7187       75.5726        76.4308 
30.7170       75.5727        76.4290 
30.7169       75.5731        76.4297 
30.7169       75.5730        76.4297 
30.7169       75.5730        76.4297 

 

 
 
 

Fig. 2 Frequency parameter   for .1/,5.0212  ba first mode : ——; second mode: -------; third mode: ……;  □, 

5.0,5.0 12   ;■, 5.02  5.01  ; ∆, 5.0,5.0 12   ; ▲, 5.0,5.0 12    
 

 
 
 

Fig. 3 Frequency parameter   for .1/,5.0,5.0 212  ba first mode : ——; second mode: ------; third mode: ……; □,

5.0,5.0 21   ;■, 5.01  5.02  ; ∆, 5.0,5.0 21   ; ▲, 5.0,5.0 21    
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Fig. 4 Frequency parameter   for  .5.01211   first mode : ——; second mode:------; third mode: ……;□, 5.0,5.0 22   ;■, 

5.02  5.02  ; ∆, 5.0,5.0 22   ; ▲, 5.0,5.0 22    
 

,
  

 
 

Fig. 5 Frequency parameter   for .1/,5.0,5.0 212  ba first mode : ——; second mode: ------; third mode: ……; □,

5.0,5.0 21   ; ■, 5.01  5.02  ; ∆, 5.0,5.0 21   ; ▲, 5.0,5.0 21    

 
TABLE II 

 COMPARISON OF FREQUENCY PARAMETER   FOR HOMOGENEOUS ( 02121   ) SQUARE ( 1/ ba ) PLATE  

     Ref. 
  1  

  2  
                             CCCC                              SSSS 

         I                      II                     III          I        II        III 
[8] 
[9] 
[10] 
[11] 
[12] 
[13] 
[6] 

Present 
[11] 
[6] 
[14] 

Present 
[14] 

Present 
[14] 

Present 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.2 
0.2 
0.2 
0.2 
-0.5 
-0.5 
0.5 
0.5 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
-0.5 
-0.5 
0.5 
0.5 

35.992 
35.986 
35.986 
35.99 
35.99 
35.989 
35.9855 
35.9852 
39.5097 
39.5097 
39.513 
39.5094 
19.209 
19.2072 
55.208 
55.2019 

73.413 
73.395 
73.395 
73.41 
73.419 
73.399 

73.3954 
73.3938 
80.5194 
80.5201 
80.525 

80.5184 
38.327 

38.3218 
111.72 

111.710 

73.413 
73.395 
73.395 

-- 
73.419 
73.399 
73.3954 
73.3938 
80.5857 
80.5859 
80.591 
80.5842 
39.238 
39.2272 
112.66 
112.643 

19.7392  
19.739 

19.7392  
19.74 
19.74 
19.739 

---- 
19.7392 
21.6920 

----- 
21.692 
21.692 
10.812 
10.8119 
30.553 
30.5526 

49.3480       
49.348 

49.3481    
49.35 
49.35 
49.349 

----- 
49.3480 
54.1607 

----- 
54.165 
54.1606 
25.970 
25.9245 
75.300 
75.2625 

49.3480       
49.348 

49.3481    
49.35 
49.35 

49.349 
----- 

49.3480 
54.2047 

----- 
54.209 
54.2038 
26.832 
26.8264 
76.211 
76.187 

 

  

ba /  ba /  

CCCC-Plate 

1  1  

  

SSSS-Plate 

SSSS-Plate CCCC-Plate 

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

50

100

150

200

250

300

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

50

100

150

200

250

300

-0.5 -0.3 -0.1 0.1 0.3 0.5
0

20

40

60

80

100

120

-0.5 -0.3 -0.1 0.1 0.3 0.5
0

10

20

30

40

50

60

70

80



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:9, 2014

1216

Fig. 3 shows the behavior of the frequency parameter   
with the density parameter 1  for ,5.0,5.0 21     

,5.02   5.021    and 1/ ba  for the first three modes 

of vibration. It is found that the frequency parameter   
decreases with the increasing values of density parameter 1 . 

The value of   increases with the increasing values of 1 . 

The rate of decrease of   with 1  increases with the 

increasing values of 1  while it is decreases with the 

increasing values of 2 . The rate of decrease of with 1  for 

CCCC plate is higher than that for SSSS plates when 1  and 

2  changes from -0.5 to 0.5.  

Fig. 4 illustrates the behavior of frequency parameter Ω with 
the increasing values of aspect ratio a/b for 5.022   , 

,5.01  5.021   and 5.01  for the first three modes 

of vibration. It is clear that the frequency parameter 
increases with the increasing values of aspect ratio ./ ba  The 
rate of increase of frequency parameter Ω with aspect ratio a/b 
is in the order of the boundary conditions CCCC>SSSS for 
both the values of 2 and 2  keeping other parameters fixed. 

This rate of increase is much higher for 1/ ba as compared 
to .1/ ba  

The effect of thickness parameter 1 on the frequency 

parameter  for ,5.02  5.021   , 5.0,1/ 2  ba  
and 5.02  for the first three mode of vibration has been 

shown in Fig. 5. It is seen that the frequency parameter 
increases with the increasing values of 1 for both the 

boundary conditions. The rate of increase of  with 1 is in 

the order of boundary condition CCCC>SSSS for the fixed 
values of other parameters. 

V. CONCLUSIONS 

The effect of non-homogeneity and thickness variation on 
the vibration characteristics of isotropic rectangular plates with 
varying aspect ratios has been studied on the basis of classical 
plate theory using generalized differential quadrature method. 
The thickness of the plate is taken bilinear along both the 
directions. The non-homogeneity of the plate material is 
assumed to arises due to the linear variations in Young’s 
modulus and density of the plate material with in-plane co-
ordinates x  and y . Numerical results show that the 

frequencies for a CCCC plate are higher than that for a SSSS 
plate. It is observed that the values of frequency parameter   
increases with the increasing values of non-homogeneity 
parameters 1 and 2 , aspect ratio ba / while it decreases 

with the increasing values of density parameter 1 and 2 for 

both the boundary conditions keeping other plate parameters 
fixed. The frequency parameter   also increases with the 
increasing values of thickness parameter 1 . The present 

analysis will be of great use to the design engineers in 

obtaining the desired frequency by varying one or more plate 
parameters considered here. 
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