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Translation Surfaces in Euclidean 3-Space
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Abstract—In this paper, the translation surfaces in 3-dimensional
Euclidean space generated by two space curves have been
investigated. It has been indicated that Scherk surface is not only
minimal translation surface.
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I. INTRODUCTION

AS is well-known, the theory of translation surfaces is

always one of interesting topics in Euclidean space.
Translation surfaces have been investigated from the various
viewpoints by many differential geometers. L. Verstraelen, J.
Walrave and S. Yaprak have investigated minimal translation
surfaces in n-dimensional Euclidean spaces [3]. H. Liu has
given the classification of the translation surfaces with
constant mean curvature or constant Gauss curvature in 3-

dimensional Euclidean space E® and 3-dimensional

Minkowski space E13 [2]. D. W. Yoon has studied translation

surfaces in the 3-dimensional Minkowski space whose Gauss
map G satisfies the condition AG = AG, Ae Mat(3,IR),

where A denotes the Laplacian of the surface with respect to
the induced metric and Mat(3, IR) the set of 3x3 real metrics

[1]. M. 1. Munteanu and A. I. Nistor have studied the second

fundamental form of translation surfaces in E® [4]. They
have given a non-existence result for polynominal translation

surfaces in E* with vanishing second Gauss curvature K, .
They have classified those translation surfaces for which K,

and H are proportional.

In this paper, the translation surfaces in 3-dimensional
Euclidean space by using non-planar space curves have been
investigated and some differential geometric properties for
both translation surfaces and minimal translation surfaces
have been given. Furthermore, a classification of minimal
translation surfaces with examples have been given.

II. TRANSLATION SURFACES WITH SPACE CURVES
Let M(u,v) be a translation surface in 3-dimensional

Euclidean space. Then M (u,V) is parametrized by
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M (u,v) =a(u) + B(v)
where o and S being unit-speed space curves of the arc-
length parameters u and v, respectively. Let {Ta,N a,Ba}
be the Frenet frame field of o with curvature x, and torsion
7,. Also, let {Tﬂ, Ng, Bﬂ} be the Frenet frame field of S
with curvature x; and torsion 74.

A surface that can be generated from two space curves by
translating either one of them parallel to itself in such a way
that each of its points describes a curve that is a translation of
the other curve. Let M(u,v) be a translation surface in 3-

dimensional Euclidean space.

M(u,v) =a(u)+ B(v)
where a = (a, , 0y ,a3) and S = (,B,,ﬂz,ﬂg ) Then

M (U,V) = (o + B,y + for 0y + fB5).
The unit normal of translation surface can be defined by
1
Uu,v)=——IT, AT

=2 aTy)
where @(U) is the angle between tangent vectors of a(u) and
L(Vv). The first fundamental form | of the surface M (u,v) is

| =du? + 2 cos gdudv + dv?
and the second fundamental form Il is
Il =x, cos@,du’ + K 3 €OS ¢9ﬂdv2

where 6, and Hﬂ are the angels between U and N, Nﬂ,

respectively.
Theorem 1: If o is an asymptotic line of translation
surface, then « is a planar curve.

Proof : Since cosf, = <U, Na>, then

-l (By.Ty). (1)

sin ¢
Differentiating (1) with respect to u, so

cosf, =

6,'sing, =¢'cotpcosb, —7,sind,,.
o is an asymptotic line, so cosd, =0, sind, =+1 and 6,
should be a real constant. Hence 8,'=-7r, and 7, =0. Thus

o is a planar curve.

Corollary 1: Let’s suppose that S is not a geodesic of
surface, then f is a planar curve if and only if the 6, is
constant.

Proof : Since cosf, = <U, Nﬁ>, then

-1

cos Oy :sin¢<Ta’Bﬂ>' 2)

Differentiating (2) with respect to Vv, so
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sin@y(0,'+7,)=0.
B is not a geodesic of surface, so 65'+7; =0. Hence 84 isa
real constant if and only if S is a planar curve.

On the other hand the shape operator of translation surface

s 1 K, cosb, — K, COS(COS 905}

sin | — K cospcos b K080
Then the Gauss curvature K and mean curvature H are
_ KgKpcosf, cosby

K . 3)
sin” @
and
H _Ka cosd, + x5 cosby . @
2sin 1)

Theorem 2: Gauss curvature of a translation surface
generating by space curves is zero if and only if at least one of
generator curves is an asiymptotic line of surface.

Proof : Let Gauss curvature be zero, then from (3)

KoK 086, cosfy =0.
the generator curves of translation surface is not line, so
ko, #0, k53 #0 and cosf, cosd; =0. Hence cosd, =0 or

costy =0. If cosd, is zero, then 6, =(2k+1)%, kez,

hence « is an asymptotic line. Similarly, If' cos8y is zero,

then &, :(2k+1)%, keZ, hence £ is an asymptotic line.
Conversely, let & or £ be an asymptotic line of surface. If

o is an asymptotic line of surface, then 6, :(2k +1)%,

keZ and K=0 or If g is an asymptotic line of surface,
then 05 =(2k +1)%, ke Z and K =0.
2

Example 1: Let M (u,V) be the translation surface given by
M (u,v) =(m,,m,,m;)

where
. u \Y
m, =sin—+cos——1,
2 3
u .V
m, =cos—+sin——1,
2 3

:@+zﬁv

2 3

3

with generator curves

a(u)= sinﬂ,cosg—l,@
2 2

2

and

33

LWV) = [cos% _lLsiny, Zﬁv}

The tangent and principal normal vectors of ¢ are

Fig. 1 Translation surface generated by two helices.

Theorem 3: Let @ and S be space curves with nonzero
curvatures and let o be an asymptotic line. Translation
surface is minimal if and only if £ is an asymptotic line of
surface too.

Let xg,7y and x; be geodesic curvature, geodesic

torsion and normal curvature along o of M, respectively,
then

a
g

a

K g

=kK,sinf,, ki =k,cos0,, 7
gﬂ ,15 and K‘nﬁ be geodesic curvature,

geodesic torsion and normal curvature along £ of M,

_ [
=7,+6,"

Similarly, Let «

respectively, then
K‘gﬂ =Kkg sinﬁﬂ , K‘nﬂ =Kp cosﬁﬁ, rf =T7g +6’ﬁ'.
If M is a translation surface with K =0, then M is a

ruled surface or at least one of generator curves of surface is
asymptotic line.
Let the generator curves be asymptotic lines of M then
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shape operator, Gauss curvature and mean curvature are

s 1 Kf —cos gy
_sinzgo —cos i’ P
n n
K_K,?Kr’? H_K,‘f+/(,€
-2 - .2
sin” @ 2sin” @

and principal curvatures of M are

2
" _Krf‘+r(nﬂ+ ki +kl _Krf’r(nﬁ
1= - -
251n2(p 2sm2(p 51n2(p
2
K _Kr(]Z+I(nﬁ_ k& +xl _Kr‘fz(f
2= - -
2sin? [0 2sin? 1) sin? @

respectively. Thus, that followings are satisfies at umbilical
points of M

a_ B a _ J -
Ky =k, cospk, =0, cospxly =0.

Hence, the following theorem can be given.
Theorem 4: Let M be a translation surface generated by its
asymptotic lines then M is a minimal surface if and only if
k¢ +xl =0
is satisfies.

The Gauss curvature of translation surface with respect to
normal curvatures are

« 2 Y 2
K:—[ Xn j and K:—[f‘—”J .
sin @ sin @

Thus K <0 along the generator curves and it is concluded
that all the points of a translation surface is either flat or
hyperbolic. In other words, there are no any umbilic points on
a minimal translation surface generated by space curves. On
the other hand, differentiating «, cosd, + x5 cos6, =0 with

respect to U, then
x,'cosl, —x,0,'sin0, =0
x," 0,'sind,
Z " cos 0,
Inx, =-Incosd, +Inc,
K, cos8, =C
K5 =C, =constant.
Similarly, differentiating «, cosé, +x4cos0; =0 with
respect to v, then
Kp'cosOp —kz05'sinbg =0
K_ﬂ' _ Op'sin 04
Kp cos by
Inkg =-Incosfy +Inc,
Kz C0sls =C,
K‘r’]/} =C, = constant.

Hence, the following corollary can be given.
Corollary 2: Normal curvatures of a minimal translation

surface are constant along generator curves.

III.  CLASSIFICATION OF MINIMAL TRANSLATION SURFACES

The classification of the minimal translation surfaces have
been given in five cases here.
1. The case «, #0, x5 #0 and cosf, =cost; =0.

In this case, binormal lines of generator curves are linearly
dependent, therefore {T >N ﬂ} rotates according to {T,, Na}
with the angle ¢. Thus

Ty =singN, +cosql, 4)
Nz =cosgN, —singTl, (6)
can be written. Differentiating (5) with respect to u, then
- (K‘a + (p')sin or, + (¢)‘+Ka )COS(/)Na +7,singB, =0. (7)
T,,N, and B, are linearly independent, so
(K‘a + (o')sin =0
((0’+1(a )cos =0
7, singp=0.
Then,
xk,=-¢', 1,=0.
Thus « is a planar curve. Differentiating (6) with respect to
u, similar results can be found. Similarly, differentiating (5)
with respect to v, then
KgNp=0 = x5 =0.
It is contradiction with the case 1, so there isn’t such minimal
translation surfaces under these conditions. On the other hand,

from

[24

K K
_X%n _Kn
cosf, =—— and cosf; =—,

Ky, Kpg
there is no any minimal translation surfaces with x =0 and

K‘nﬁ =0 along generator curves. Consequently, the folowing
corollary can be given.

Corollary 3: There is no any minimal translation surface
which has admit asymptotic line with non-zero curvatures
along generator curves.

2. The case «, =0 and x4z =0.

In this case, the surface is plane.

3. The case

), =0, x5+#0 and cosf,; =0.

In this case, the surface is cylindrical. Since cos@y; =0

then nomal vector field of surface and binormal vector field of
p curve are linearly dependent. Hence, o lies in {T 5>N ﬁ}

plane.
ii) x, #0, x5z =0 and cosd, =0.
It is similar to case 3.i.
4. The case «, =k, #0, cosf, =—cosb, #0.

This case has been investigated in two parts.
) K, =Kz #0, cost, =—costy=1.
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In this case, principal normal lines of generator curves are
linearly dependent, therefore {T 5B ﬁ} rotates according to

{Ta , Ba} with the angle ¢. Thus,
T, =cosgl; —singN 4 ®)
N, =singTz +cosgN 4 )
can be written. Differentiating (8) with respect to v, then
Kpsinglg + k5 cospN g —74singB, =0.
Ts,Njy and By are linearly independent, so
Kpsing=0 = x;z=0
Tpsing=0 = 7,=0.
It is contradiction with the case 4.i, so there isn’t such minimal
translation surfaces under these conditions.
i) K, =z #0, cosf, =—cosb, #1.

The Scherk surface is an example this case.
Example 2: Surface of Scherk is defined by

M (u,v) = {u, v,l log( cosav D
a cosau

with the generator curves

a(u)= (U,O,—% log(cos au)j

AV)= (0, v, é log(cos av)}

The tangent and principal normal vectors of « are
T, - In10 [10 tanauj

VIn? 10 + tan? au In10

and

N, :;(—tanau,o,lnm) (10)

VIn210 + tan? au

The curvature of « is

all + tan? auJIn% 10
Ky = ( ) T (11)

(ln2 10 + tan> au)g
Similarly, the tangent and principal normal vectors of 3 are

Tﬂ _ In10 [0,1,— tan av]

VIn%10+ tan® av In10
and
N :;(O,—tanav,—lnlo). (12)

VIn?10 + tan? av

The curvature of g is
2 2
Ky = a(l + tan av)ln 130. (13)
(ln2 10 + tan? av)E
Also, the unit normal vector of surface is

U= ! (- tanau, tanav,In10) (14)

\/tan2 au+tan?av+In210
and from (10), (12) and (14),

tan au +1In 10

(15)

cosd, =
\/tan2 au + tan” av + In? 10\/ln2 10 + tan? au

and
—tan?av—-1n%10
cosHﬁ =
\/tan2 au + tan” av + In? 10\/ln2 10 + tan? av
Substituting (11), (13), (15) and (16) in (4), so H =0.

.(16)

Fig. 2 Scherk surface is one of minimal translation surfaces.

The following example can be given for this case different
from surface of Scherk.
Example 3: Let M (u,V) be the translation surface given by

M (u,v) =(m,,m,,m;)
where

. u .V
m; =sin——sin—
2 2

u v
M, =cos— —cos—
2 2

IRETIRET]

) 2

with the generator curves

a(u)= sinE,cosg—l,@
2 2 2

and

2

L) = [— sin%,— cos% +1, @]

The tangent and principal normal vectors of « are

in
22 2 2
and
u u
N_ =|—-sin—,—cos—,0 | 17
R TIY R
The curvature of « is
1
K, =—. 18
a3 (s)

Similarly, the tangent and principal normal vectors of S are
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2°2
and
. v
Nﬁ :(sm—,cosg,OJ. (19)
The curvature of g is
1
Kpg=—. 20
5=7 (20)
The unit vector of surface is
U =(u,,u,us) 1)
where
1o 5503
| =——| sin——sin—
4p
3( v
U, =———| cos——cos—
4p 2 2
1 .(v—u)
Uy =——sin
4p 2
and

)

5 )

ij 22)
B u-v

cosbp = —5[14-005( > D (23)

Finally, by using (4), (18), (20), (22) and (23), so H =0.
Another case &, #0, kz#0 (K‘a # Kﬁ) and cosd, #0,

3 3 u-vy) 1 .
p=.|—+=cos| — |+—sin
\/8 8 ( 2} 16
From (17), (19) and (21),

u_

cosd, = 4£[1 + cos(
P

and

cosy #0 (cos 6, #cos Gﬂ) is shown that Scherk surface is

not only minimal translation surface in 3-Euclidean space.

Fig. 2 Another minimal translation surface generated by two helices.
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