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Abstract—Natural frequencies and dynamic response of a spur 

gear sector are investigated using a two dimensional finite element 
model that offers significant advantages for dynamic gear analyses. 
The gear teeth are analyzed for different operating speeds. A primary 
feature of this modeling is determination of mesh forces using a 
detailed contact analysis for each time step as the gears roll through 
the mesh. ANSYS software has been used on the proposed model to 
find the natural frequencies by Block Lanczos technique and 
displacements and dynamic stresses by transient mode super position 
method. The effect of rotational speed of the gear on the dynamic 
response of gear tooth has been studied and design limits have been 
discussed. 

 
Keywords—Spur gear, Natural frequency, transient analysis, 

Mode super position technique. 

I. INTRODUCTION 

OTATING members like shafts, pulleys, gears, etc are 
subjected to dynamic loads. In gears the dynamic load 

creates bending stresses at the tooth root which can lead to 
fatigue failure. One of the major concerns in the design of 
power transmission gears is the reduction of dynamic load. 
Research work has revealed that the basic mechanism of noise 
generated from gears is due to vibration excited by the 
dynamic load. The life and reliability of a gear transmission is 
reduced by high dynamic load. Minimizing gear dynamic load 
will decrease gear noise, increase efficiency, improve pitting 
fatigue life, and help prevent gear tooth fracture. [2], [3], [7], 
[9], [10], [13] and [16] worked in the area of static and 
dynamic analysis of spur gear tooth. In this work, three tooth 
segment of a 30 tooth pinion meshing with 60 tooth gear has 
been considered. Trochoid fillet at the base of the involute 
tooth is generated using rack tip. 

II. GEAR TOOTH GEOMETRY 
The pinion has a pitch diameter of 240mm, module of 

12mm and a nominal pressure angle of 20 degree. The pinion 
has standard full depth teeth with addendum of 1.0 m and 
dedendum of 1.25 m. The face width of the pinion is 60mm. A 
6425N load is considered along the line of action of the 
model. Development of the finite element model begins with 
data describing the outline of a single tooth and its fillets from 
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the center of the tooth space on one side to the center of the 
tooth space on the other side. Several different curves make 
up the tooth outline: concentric circular arc at the tooth tip 
defining the addendum circle, involutes on the two sides of 
the tooth, and trochoides between the involutes and the bottom 
lands at the base of the tooth. The tooth side involutes, fillet 
trochoides, and bottom lands were shaped to model a gear cut 
with a rack form cutter. Coordinates for the surface profile of 
the tooth come from a kinematic analysis of the cutting 
process [4]. Both the rack form cutter and the resulting gear 
surface are tangent to each other at the cutting points, which 
generate the gear shape from the rack shape. The involute is 
generated by points on the side of the rack form, the gear 
tooth fillet is generated by the tip of the rack form, and the 
bottom land is generated by the top surface of the rack form 
tooth. With the appropriate rotations, this slope and radius 
locates the direction and point of application of the gear mesh 
force on the central tooth. For this mesh, the gear parameters 
used are: module (m) 12mm, the pressure angle (φ) 20 
degrees, gear ratio (i) 2, modulus of elasticity (E) 2.15 ×105  
N/mm2, poisson’s ratio (ν) 0.3, Steel mass density ( ρ) 8.75 
×10-9 N.s2/mm4  and the speed (n) 1440rpm. 

III. NATURAL FREQUENCY CALCULATION 
Fig. 1 shows the gear tooth as a cantilever beam. It is easy 

to calculate the natural frequency of this beam by the 
following equation [12]: 

 
 

Fig. 1 Gear tooth modeled as a cantilever beam 

 

                                                                                           (1) 

  k is the stiffness of the beam and it can be calculated from 
the following equations: 
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The length of the beam l is equal to the height of the tooth 
while the width of the beam t is the tooth thickness at pitch 
circle radius (π m/2).  

( )mass l t Fρ= × ×                                                                 (4)                                                                                                  

Where, ρ is the mass density of Steel and F is the tooth face 
width. By using the above formula, the natural frequency is 
calculated using the equation (1) and is equal to 89065rad/sec.    

IV. NATURAL FREQUENCY BY RAYLIEGH’S METHOD 
Rayliegh’s method can also be used to find the natural 

frequency of continuous systems. This method is much 
simpler than exact analysis for systems with varying 
distribution of mass and stiffness. Although the method is 
applicable to all continuous systems, it is applied to beam in 
this section; the natural frequency by this theory is [8]: 
  
              
 
                                                    

                                                                                           (5)      
The shape function u(x) of cantilever beam can be taken as 
[12]: 
 

            (6) 
 
By substituting Eq. (6) in Eq. (5) and applying the required 
gear details of the selected model, the resulting value of the 
natural frequency is (100423rad/sec).  

V. STRESS CALCULATION 
The load acting during the entire period of engagement is 

not uniform. In the beginning, at the start of engagement, two 
pairs of teeth will be in contact and it is assumed each pair 
will carry only half of the load, and the contact point will be in 
the tip of one of these teeth, but due to rotation, during the 
engagement, a new stage of contact is effected when a single 
pair of teeth is in contact near the pitch circle. This is called a 
single tooth contact and the first point of contact of this new 
stage is called the highest point of single tooth contact 
(HPSTC). Hence, loads equal to 6425N (total load) are 
applied to the end of the cantilever beam at an angle equal to 
the pressure angle of the two mating gears, namely 20 
degrees. The height of the beam (l) will be assumed to be the 
distance between the pitch radius and root radius of the gear. 
The axial and radial components of this load are taken as the 
X-direction and Y-direction components of the load at a point 
corresponding to the pitch radius of the cantilever beam where 
the load is full value, which are 6037.5N, and 2197.4N 
respectively. The stresses in X and Y directions can be 
calculated by the following equations:  
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Where, t is the thickness of the tooth at the critical section 
(root of the tooth), F is the face width of the tooth, P is the 
total load and σx and σy are the maximum stresses of the beam 
in X and Y axes respectively. From this formulation, the 
obtained value of stress in X direction for the proposed model 
is 1.94MPa, and the stress in Y direction is 25.488MPa 
respectively. 

VI. FINITE ELEMENT MODEL 
A model consisting of a three tooth section of a 20 tooth of 

12mm module pinion was developed with the general purpose 
finite element software ANSYS. Figs. 2 show the finite 
element grid for the three tooth gear segment for this model. 
Successive reflections of the coordinates for the initial tooth 
generated segments of three equally spaced, identical teeth are 
noted. Both the tooth surface and the inside rim surface are 
unconstrained. The total angle subtended by the segment is 52 
degrees. The radial lines defining the ends of the three teeth 
segment is at ±26 degrees from the centre line of the model. 
An eight noded iso-parametric plane stress quadratic 
quadrilateral element was used to build the finite element 
model inside the frameworks described above. This element 
has a quadratic displacement function and is well-suited for 
analyzing irregular shapes. Each node in the element has two 
degrees of freedom - translations in the X and Y directions. 
The plane stress option with unit thickness was used and 
scaled to the actual model thickness of 60mm. To specify the 
boundary conditions, all the nodes on the two radial lines 
defining the ends of the segment and the bottom rim were 
selected and given zero displacement in both directions. To 
apply the load at a node, the grid had to have a node point at 
or near this loading point. Fig. 3 show the right and left sides 
of the central tooth of the model (tension and the compression 
sides), with the nodal numbers in position and stresses at these 
nodes will be evaluated for comparison purposes later. The 
complete model has 320 elements, 1071 nodes, and 2142 
degrees of freedom. The backup ratio and the rim thickness in 
this model are 2.5 and 67.5mm respectively. 
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Fig. 2 Finite element mesh 

 

 
Fig. 3 Enlarged view of central tooth of the model 

 
The plane stress option with unit thickness was used and 

scaled to the actual model thickness of 60mm. To specify the 
boundary conditions, all the nodes on the two radial lines 
defining the ends of the segment and the bottom rim were 
selected and given zero displacement in both directions. To 
apply the load at a node, the grid had to have a node point at 
or near this loading point. Fig. 3 show the right and left sides 
of the central tooth of the model (tension and the compression 
sides), with the nodal numbers in position and stresses at these 
nodes will be evaluated for comparison purposes later. The 
complete model has 326 elements, 1097 nodes, and2194 
degrees of freedom. The backup ratio and the rim thickness in 
this model are 2.5 and 140.625mm respectively. 

VII. MODAL ANALYSIS 
Having obtained the finite element model, a modal analysis 

has been conducted on the same. The global stiffness matrix 
[K] and global mass matrix [M] was obtained by assembling 
the element stiffness and mass matrices, respectively. The 
natural frequencies of the gear tooth were obtained by solving 
the eigen value problem given by the following equation: 

{ } [ ] { }2[ ]    nK U M Uω=                                                              (9) 

where ωn is the natural frequency of the system and {U} is the 
corresponding normalized eigen vector (mode shape). The 
eigen values and eigen vectors were obtained using Block 
Lanczos method[14]. The first five natural frequencies and 
corresponding normalized eigen vectors were calculated using 
this technique. The first five natural frequencies of the gear 
tooth obtained for the selected model are given in Table I.   
                                                                                                                      

TABLE I 
FIRST FIVE NATURAL FREQUENCIES 

 
 
 
 
 
 
 
 
 

VIII. LOAD DISTRIBUTION ON GEAR TOOTH 
Load distribution on gear tooth In order to conduct a static 

stress analysis the loads have to be evaluated. The load on the 
central tooth of the finite element model, which produces the 
largest bending stress, is the full load acting at the highest 
point of single tooth contact (HPSTC).  The magnitude of load 
at any point of contact on profile of gear tooth as the load 
moves from root to tip of tooth depends on the contact ratio. 
Fig. 4 shows the contact path, the contact ratio CR is defined 
as the ratio of length of path of contact AB to base circle pitch 
Pb. 
 

(10)                   
 
Where: 

                  
(11) 

 
The contact ratio of the spur gear, for the present case is 

1.63. Fig. 5 shows the magnitude of loads at various points 
along the path of contact. The maximum normal load P acting 
on the gear tooth sector of the proposed model is taken as 
6425N based on the strength of gear tooth material. This 
normal load is considered in terms of its components in radial 
and tangential directions taking into account the pressure 
angle (Load angle γw) at any point under consideration, and 
then the tangential load and radial load can be determined by 
the following equations: 
 
 Pt = P cos   γw 

 Pr  = P sin   γw 

    

Natural frequency of the model Mode 
cycle/sec rad/sec 

1 14674 92199 

2 15584 97917 

3 15666 98432 

4 22368 140542 

5 26720 167886 
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Fig. 4 Contact path 

 

 
Fig. 5 Magnitude of loads along the path of contact 

 

 
Fig. 6 Load on various nodes of the selected model 

 
Fig. 6 show the right side (Tension side) of the profiles of 

the central tooth of the selected model, shown in Fig. 3, 
stretched out into straight line with the nodes indicated for the 
purpose of application of loads. The load that have been 
applied for the various runs of static analysis are indicated on 
the respective nodes starting from the extreme left end (node 
48) to the final point of contact (node 54) of the model[1]. 
  

IX. STATIC BENDING STRESS ANALYSIS 
After computing the natural frequencies and the mode 

shapes the forced response is obtained using the modal 
superposition technique [13]. The method is computationally 
efficient particularly for a large sized problem. The governing 
differential equation of gear tooth considering the damping is: 
 

(12)                                                                                                                             
 

The moving load during the time of contact is considered in 9 
intervals. At each time interval, the position and magnitude of 
the load is different and shown in Table II. The static stress on 
all the elements for each load is obtained by using ANSYS 
Finite Element software and the static bending stresses on the 
critical nodes (Node 92) on the compression side are listed in 
the same table.  
 
 

 

 

 

 

 

 

 

 

 

 

X. TRANSIENT ANALYSIS 
After computing the natural frequencies and the mode 

shapes the forced response is obtained using the modal 
superposition technique [12], [14]. The method is 
computationally efficient particularly for a large sized 
problem. The governing differential equation of gear tooth 
considering the damping is: 

                  
(13) 

 
Where [M], [C] and [K] are global mass, damping and 
stiffness matrices of size (n×n), respectively. The {P (t)} is the 
external time varying load of size (n×1).The symbols {δ}, 
{δ°}, {δ°°} are the displacement, velocity, acceleration 
vectors of size (n×1). Eq.(13) has to be recast such that m 
uncoupled equations in a single degree may be obtained. The 
recast equation can be obtained by substituting for {δ}, as {δ} 
= [U] {p}, where [U] is a matrix (size n×m) of the first m 
eigen vectors (m<<n), and {p} is a generalized displacement 
vector of size (m×1). Pre multiplying Eq. (13) by [U]T ,  gives: 

                  
(14) 

 
Here [U]T [M] [U] is a unity diagonal matrix of size (m×m) 
and [U]T [C] [U] is a diagonal matrix of size (m×m). The 
diagonal elements of these matrices are 2ξi ωi where ξi are the 
damping ratio and ωi are the natural frequencies for i= 1, 2, 3, 
……m. The [U]T [K] [U] is also a diagonal matrix with the 
square of the natural frequencies (ω1

2, ω2
2, ω3

2…, ωm
2) as the 

diagonal terms. The resulting decoupled set of equations are 
solved as standard single degree of freedom system and the [ ]   }{ [K] P=δ

TABLE II  
STATIC BENDING STRESS OF THE MODEL FOR EACH LOAD STEP 

Stress at node 92 (MPa) Load 
Step 

Load  Applied 
on Nodes Load 

σX σY 

1 48 Half 1.732 20.399 

2 68 Half 1.534 17.863 

3 66 Half 1.331 15.259 

4 64 Full 2. 231 24.989 

5 62 Full 1.799 19.539 

6 60 Full 0.694 7.236 

7 58 Half 0.480 4.765 

8 56 Half 0.268 2.605 

9 54 Half 0.086 0.987 

 

{ } { })(    }{ [k] }{ [C] ][ tPM =++ δδδ

{ } { } { } { })(  ][  ]][[][]][[][ ]][[][ tPUpUKUpUCUpUMU TTTT =++ °°°
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resulting displacement vector is transformed back to represent 
the gear tooth displacements.  
 

                                                                                                                            
(15) 

 
 
In order to obtain the diagonal elements of the [U]T [C] [U] 
given in Eq. (15), the damping matrix is expressed as a linear 
combination of [M] and [K] (Rayleigh damping), that is: 
  

(16)                                                                                                                             
Where α and β are constants to be determined. Then,  
 
                                                                                                                                        

(17) 
From the finding of Mohammad et al. [6] the values for mild 
steel material, ξ1 ω1=2.0 and ξ3 ω3=3.2, where ω1 and ω3 are 
the first and third natural frequencies in rad/sec. Using these 
two expressions, the damping ratio for other modes are 
calculated by substituting in Eq. (17). Since for most 
industrial problems (ω3 >> ω1) including the first three natural 
frequencies to compute the dynamic transient response is 
fairly accurate. After substituting the values of ω1 and ω3 of 
the model from Table I in Eq. (17), the values of α and β are 
obtained as 13.2 and 8×10-8 respectively. 

A. Time Steps 
The time of contact T of gear tooth depends on the 

rotational speed of the gear. If the gear is assumed to run at a 
speed of n-rpm, the time taken for one revolution of the gear 
will be (60/n) sec. In one revolution, Z number of teeth will 
get engaged and disengaged. 

                                                                                                                            
(18) 

 
Where Z is gear number of teeth. Then the time taken for one 
pair of teeth in engagement will be (60/ n. Z) sec, which will 
be (2.09×10-3 sec) in the selected model. The time taken for 
one pair of teeth in engagement can be divided into required 
number of steps (NTS - number of time steps). One time step 
∆T can be calculated by considering the number of modes, 
which are expected to contribute to the dynamic response. So, 
the third frequency of the model is (15666 cycle/sec) which is 
taken from the finite element modal analysis results in Table 
1; the time interval obtained is (6.38×10-6 sec) and is shown in 
Fig. 6, if the natural period of the mth mode is Tm, a choice of 
∆T equal to Tm/10 should give a reasonable dynamic 
response up to mth mode [13]. Therefore,  

                                                                                                                             
(19) 

 
Where, TNTS is the total number of time steps or intervals. 
So, the total number of intervals (time steps) for the model is 
326 which mean that there are about 40 intervals between 
each two nodes shown in Fig. 6. At any time, two nodes are 
considered to calculate the load vector for that time interval. 
The actual load at a point is distributed in inverse proportion 

to its distance from either node, to the two nodes under 
consideration as shown in Fig. 6. The Initial conditions for 
displacements and velocities for the gear tooth in the proposed 
model are taken as zero for all degrees of freedom. The third 
mode is selected for the mode superposition technique. At 
each time interval, the acting load is calculated and fed into 
the mode superposition part in ANSYS software and the 
corresponding deformation and stress are thus obtained. The 
dynamic displacements and dynamic stresses in the X and Y 
directions in the central tooth root portion of the selected gear 
model, which are at node 92, are plotted in condition of 
1440rpm. The dynamic analysis is also carried out for the 
following four speeds of gear namely, 360rpm, 720rpm, 
1440rpm and 1800rpm.    

XI. RESULTS 
Figs. 7 and 8 show the dynamic displacements in the X and 

Y directions of the selected model at node 92. Figs. 9 and 10 
show the dynamic stresses at X and Y directions of the model 
at node 92. Figs. 11 and 12 show the dynamic shear stress 
(τxy) and dynamic von Mises stress of the model at node 92. 
 

 

Fig. 7 Displacement of the model in X-Direction 
 

 
 

Fig. 8 Displacement of the model in Y-Direction 
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Fig. 9 Dynamic Stress of the model in X-Direction 
 

 
 

Fig. 10 Dynamic Stress of the model in Y-Direction. 
 

 
 

Fig. 11 Dynamic Shear Stress of the model 
 

 
 

Fig. 12 Dynamic von Mises Stress of the model 
 

Table III lists the Maximum values of σX, σY, τxy and von 
Mises stresses of the model at node 92 for different speeds. 
Figs. 13, 14 and 15 show the relation curves of σX, σY and von 
Mises stresses with the rotational speeds, respectively. 
 

 
 

 

Fig. 13 Curve Relation of the Speed and Maximum Dynamic Stress 
in X-Direction  

TABLE III 
MAXIMUM DYNAMIC STRESSES FOR EACH SPEED OF THE MODEL 

Spee
d 

(rpm) 

σX 
(MPa) 

σY 
(MPa) 

τxy 

(MPa) 
von Mises 

(MPa) 

360 2.119 20.343 5. 723 21.701 

720 2.623 28.127 7.51 29.867 

1440 3.512 39.006 10.441 41.78 

1800 3.918 44.217 12.022 47.225 
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Fig. 14 Curve Relation of the Speed and Maximum Dynamic Stress 
in Y-Direction 

 

 
Fig. 15 Curve Relation of the Speed and Maximum Dynamic von 

Mises and Shear Stresses 
 

A. Checking for Plot Fluctuation 
The correctness of the results in Figs. 7 to 12 were verified 

by the following procedure,  the number of peaks for a 
selected time period was calculated for each of the above 
plots. The frequency of the response, in cycles per seconds, 
can be calculated by dividing the number of peaks for a 
selected time period by the time taken for the same. For 
example; at Fig. 10 (which shows the dynamic stress of the 
model in Y-direction) for time period (0 to 0.418×10-3 sec) the 
number of peaks was 6, so; the resulting frequency was 
calculated by dividing  3 on 0.417×10-3 sec, which yields 
(14354 cycle/sec). It was clear that this value matches with 
fundamental natural frequency of the model (first natural 
frequency of the model in Table I). 

XII. DISCUSSION 
The natural frequency of the tooth obtained by Rayliegh’s 

method (Eq. 5) was 100423rad/sec. The natural frequency 
obtained by beam formulation (Eq.1) was 89065rad/sec. It 
was noted in Rayliegh’s method that the assumed shape u(x) 
unintentionally introduces a constraint on the system (which 
amounts to adding additional stiffness to the system), and 
hence the frequency given by Eq. (5) is higher than the exact 

value. The natural frequency obtained from Eq. (1) is more 
reasonable and recommended. The first natural frequency 
obtained from finite element modal analysis was 
92199rad/sec; there is a good agreement between this value 
and the recommended natural frequency value obtained from 
Eq. (1). It was observed from the plots (shown in Figs. 9 and 
10) that the dynamic stresses were varied with a time period of 
6.96 ×10-5sec whereas the time period of the fundamental 
natural frequency was 6.814 ×10-5sec. So, the dynamic 
stresses are varying periodically with fundamental bending 
vibration time period of the model. The dynamic stress plots at 
tooth root where (shown in Figs. 9 and 10) and deformation at 
the tooth root were (shown in Figs. 7 and 8), three important 
distinguishable regions were observed. In the first region the 
displacements and dynamic stresses during starting of 
engagement of the gear tooth were zero, and both the pairs of 
teeth were contact and share normal load equally. In the 
second region, displacements and dynamic stresses were high 
compared to all other regions, in this region, a single pair of 
gear tooth will be in contact and full load act on the gear pair 
under study. In the third region again, two pairs of gear teeth 
were in contact and share load equally. From the dynamic 
analysis results, the dynamic stresses at the root are lesser 
when the load was at the tip, and were high when the load was 
at the mid height [that is at HSPTC- the highest point of single 
tooth contact] at this point the full load was acting. From the 
static analysis, the maximum values of σX and σY were at node 
92 of the model lie in the root at left side (compression side) 
of the central tooth. For the actual load distribution on the gear 
profile obtained by finite element method the stresses σX and 
σY were 2.231MPa and 24.989MPa, respectively, when full 
load is at HSPTC point (node 64). By beam gear design 
approach the values of σx and σY calculated from Eqs.7 and 8 
were 1.94MPa and 25.488MPa, respectively, this shows good 
agreement between these values if the differences between the 
tooth and beam shapes are considered. From the dynamic 
stress analysis stress plots at the root of the model (node 92; 
the maximum σx, σy, τxy and von Mises stress were 3.512MPa, 
39.296MPa, 10.441MPa and 41.78MPa respectively. 
Referring to Figs. 9 and 10, it was observed that the 
magnitude of static stresses (σx and σy) at the point of 
application was half of the enveloping curves of the dynamic 
stresses (mean of the maximum and minimum dynamic 
stresses). The amplitude of the dynamic stress goes on 
increasing as the speed increases with its major frequency of 
variation corresponding to the fundamental frequency of the 
gear tooth. This may be observed from Fig. 16. It is observed 
from Table III that the maximum magnitudes of σx , σy , τxy, 
and von Mises stress at the tooth root for various speeds of the 
selected gear model (in the range of 360rpm to 1800rpm) were 
increasing gradually from 2.119MPa to 3.918MPa, from 
20.343MPa to 44.217MPa, from 5.723MPa to 12.022MPa and 
from 21.711MPa to 47.225MPa respectively, for increase in 
speed from 360rpm to 1800rpm. The variation is shown in 
Figs. 13, 14 and 15. Therefore, the dynamic stresses at the 
root of the low modules spur gear tooth were increasing with 
increase in the rotational speed of the gear.  
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:5, 2009

485

 

 

 
Fig. 16 Stress response of the 1st model in Y-Direction 

 
A. Food for Thought  
Modal super position technique assumes that any transient 

disturbance of member was the sums total of the disturbances 
due to the first few modes of vibration. In reality the 
contribution from the higher modes die down very fast in 
comparison with the 1st mode. This has been experimentally 
observed to be true. This is the basis of subsections 7 to 9 of 
this paper.  

Referring to section 14.8 (Dynamic Factor) of [15], 
dynamic stress is obtained by multiplying by the Lewis form 
factor cv (Equation 14.27): 
 

(i). This factor does not take into account gear face width 
(F). 

(ii). It is assumed that the static stress is multiplied by a 
factor involving peripheral velocity of the gear[5].  

(iii). It is well known that when the face width is increased 
the gear tooth becomes stronger and, hence the 
magnitude of dynamic stress is smaller than the gear 
with smaller face width, but this has not been taken into 
account in this formula. 

(iv). During the transient phase the gear tooth is expected to 
vibrate in one or more of its natural frequencies, which 
has not been assimilated or taken into account in the 
existing code.   

In the present approach these aspects have been taken into 
account. 

XIII. CONCLUSION 
Modal super position technique assumes that any transient 

disturbance of member is the sum totals of the disturbance due 
to the first few modes of vibration. In reality the contribution 
from the higher modes die down very fast in comparison with 
the first mode. This has been experimentally observed to be 
true. It is found that as the rotational speed of gear increases, 
the bending stress of dynamic stress also increases. For the 
moving load, the ratio of maximum dynamic bending root 
stress to maximum static bending root stress is increases.  
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