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Abstract—Transient Stability is an important issue in power 
systems planning, operation and extension. The objective of transient 
stability analysis problem is not satisfied with mere transient 
instability detection or evaluation and it is most important to 
complement it by defining fast and efficient control measures in order 
to ensure system security.  This paper presents a new Fuzzy Support 
Vector Machines (FSVM) to investigate the stability status of power 
systems and a modified generation rescheduling scheme to bring 
back the identified unstable cases to a more economical and stable 
operating point. FSVM improves the traditional SVM (Support 
Vector Machines) by adding fuzzy membership to each training 
sample to indicate the degree of membership of this sample to 
different classes. The preventive control based on economic 
generator rescheduling avoids the instability of the power systems 
with minimum change in operating cost under disturbed conditions. 
Numerical results on the New England 39 bus test system show the 
effectiveness of the proposed method. 

Keywords—Fuzzy Support Vector Machine (FSVM), Incremental 
Cost, Preventive Control, Transient stability 

I. INTRODUCTION

OWER systems operation is constrained by stability limits. 
While these limits often cause congestion and thereby alter 

energy prizes in a deregulated market, they are vital to 
maintain the security of power system. Transient stability 
based limits constitute one of the major issues and a complete 
answer about security of power system requires evaluation of 
transient stability of the system following some credible 
contingencies. A Number of techniques such as time domain 
integration [1], direct methods based on energy function and 
extended equal area criterion [2], pattern recognition [3], 
decision trees [4] and artificial neural networks [5] has been 
adopted for Transient stability Assessment (TSA) during past 
years.

Support Vector Machines become the new research focus 
following pattern recognition and neural networks. Followed 
by the introduction of Support Vector Machines many 
Transient Stability Assessment applications based on SVM 
have been presented [6-10]. The authors of [6] presented a 
support vector classifier with polynomial kernel. In [7] an -
SVM with thirteen features is used. In [8-9] a linear SVM is 
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applied to classify the Stability of Power System using scaled 
variables. A combined Support Vector classifier based on 
Fuzzy -C- Means clustering is presented in [10]. In this paper 
to deal with the stability classification, we propose the fuzzy 
SVM [11] to make the classification more generalized and 
robust. We apply a fuzzy membership function to each data 
point of SVM such that the learning of decision heperplane is 
influenced by different data point with different degrees. This 
reduces the effect of noises and outliers in the data points and 
enhances the performance of SVM. 

In a power system, maintaining an acceptable level of 
security is an important issue. When any potential instability is 
detected, some preventive control has to be applied to make 
the system secure. Generator rescheduling [13-16] is one of 
the mostly used techniques for preventive control of transient 
stability. This paper presents a new methodology for 
generation rescheduling using incremental fuel cost of 
generators. 

Thus this paper presents an integrated scheme for 
investigation of transient stability and its preventive control. 
For assessing the transient stability of power system, fuzzy 
support vector machine, which is an extended version of 
support vector machine, is adopted. FSVM takes into account 
the fuzzy nature of the training samples during training. For 
rescheduling generators, a modified approach based on 
incremental cost characteristics of generators is presented. The 
resultant operating state of the power system is stable and at 
the same time more economical when compared to other 
rescheduling schemes. 

The rest of the paper is organized as follows. In section 2 
the outline idea of proposed approach is described. Section 3 
provides a basic view of FSVM and the process of generating 
membership values for each input. Transient stability 
assessment using FSVM is presented in section 4. Section 5 
deals with the preventive control measures derived from 
modified generator rescheduling scheme.  

II. THE PROPOSED METHOD
The objective of the unified approach is to assess system 

stability and provide operating guidelines for secure operation, 
during the detection of potential instabilities. 

The overall approach is as follows. 
1. Reading power system data. 
2. Performing optimal power flow.  
3. Application of Fuzzy Support Vector classifier to 

identify the stability status of power system. 
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4. If the system is stable, the generators are dispatched as 
per the calculations in step 2. 

5. If the system is unstable the generators are rescheduled 
by the modified generation rescheduling scheme.

Stability of new operating state is checked. If stable the 
generators are dispatched as per rescheduling and end 
otherwise update  and go to step 5.  

III. FUZZY SUPPORT VECTOR MACHINES 

Given a binary classification task with k samples: ),( 11 yx
… ),( kk yx  where xi  RN  belongs to one of the classes yi -

1, +1  for i=1…k. To classify these samples, SVM first map 
the input points into a high dimensional feature space and 
finds a separating hyperplane that maximizes the margin 
between two classes in this space. Maximize the margin is a 
quadratic programming (QP) problem and can be solved from 
its dual problem by introducing Lagrangian multipliers. 
Without any knowledge of the mapping, the SVM find the 
optimal hyper plane by using the dot product functions in 
feature space that are called kernels. The solution of optimal 
hyper plane can be written as a combination of a few input 
points that are called Support Vectors.  

  Even though support vector machine is a powerful tool for 
solving classification problems, there are still some limitations 
of this theory. In SVM each training point is treated 
uniformly. In many cases, the effects of training points are 
different. In a classification problem, it is often happened that 
some training points are more important than others. 
Especially in classifying the stability status of power system, 
the state of the power system operating at the verge of stability 
is more important than other states. We would assure that the 
crucial training points must be classified correctly by defining 
a fuzzy factor 0 1is associated with each training point 
xi. This fuzzy factor si can be regarded as the attitude of the 
corresponding training point towards one class in the 
classification problem and the value (1-si) can be regarded as 
the attitude of meaningless. Thus each training point xi

nR
is given a label of yi  {-1, 1} and a fuzzy factor si. Now the 
set of training points becomes ),,( 111 syx  …… 

),,( kkk syx with associated fuzzy factor 1is  and 

sufficient small 0 .
 Basically, a linear hyperplane could be represented as 

0. bwx  (Where x is training vector, w is weight vector 
and b is bias). This hyper plane can classify a sample point xi
according to the following function. 

).()( bwxsignxf ii , ki ...1            (1) 

If 0)( ixf  then ix belongs to positive class otherwise 
negative class. In order to maximize the margin for linear 
separable cases, the optimal separating maximal margin 
classifier is constructed using the smallest norm of weights. 
This is cast as an optimization problem as follows: 

Min 2

2
1 w               (2) 

Subject to ,1).( bwxy ii ki ....1           (3) 

In the linearly non-separable case, the constraints in 
equation (1) cannot be satisfied for all data points. To account 
for the misclassified data, a soft margin is generated. This is 
incorporated into the optimal margin algorithm by introducing 
slack variables ,i ki ....1 , 0i . An extra cost term is 
included into the objective function and it gets modified into 
the following form:  

Min
k

i
iCw

1

2

2
1

                   (4) 

Subject to ,1).( iii bwxy ki ....1           (5) 

,0i ki ....1                                      (6) 

Where, C is soft margin parameter that assigns a penalty to 
the misclassifications. With the introduction of fuzzy 
membership function is  to each training datum, then the 
optimal hyperplane problem is regarded as a solution to the 
following equations: 

Min
k

i
iisCw

1

2

2
1

                 (7) 

Subject to ,1).( iii bwxy ki ....1           (8) 

,0i ki ....1 .             (9) 

A smaller is  reduces the effect of parameter i  in the 

above problem such that the corresponding point ix  is treated 
as less important, and the problem can be transformed into its 
dual problem as follows: 

Max ),,( bwJ =
l

i

l

j
jijiji

l

i
i xxkyy

1 11
).(

2
1  (10) 

Subject to
l

i
iiy

1
,0 ,0 Csii ki ....1      (11) 

In SVM, a constant C bound the Upper bounds of i while 
they are bounded by dynamical boundaries that are weight 
values is C in Fuzzy SVM. 

A. Generating Fuzzy Membership Function 
An important step in incorporating Fuzzy SVM is the 

determination of membership value. When using SVM the 
major cause for bad classification results is the noise and 
outliers present in the training data. To reduce the effect of 
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outliers, Lin and Wang [11] set the membership as a function 
of the distance between the point and its class centers. FSVM 
proposed in [12] solve the over-fitting problem by introducing 
the membership degrees for every data. Choosing an 
appropriate fuzzy membership function can be challenging. To 
reduce the effects of noise and outliers we have chosen the 
fuzzy membership is , as a function of mean and radius of each 
class. Let the mean of class 1 (Stable) be m+, the mean of class 
–1 (Unstable) be m-, the radius of class 1 be r+ and the radius 
of class –1 be r-. Then the radii of the two classes are 
expressed by the following equations: 

ixmr max  (xi : y=1)

ixmr max  (xi : y=-1)          (12)

The fuzzy memberships function for any data point ix  from 
the above collected values to be: 

                       
                                               (13)     

Where   is a sufficient smaller value greater than zero to 
ensure         . Since the fuzzy membership is a function of the 
mean and radius of each class, the distance of outliers to their 
corresponding mean is equal to the radius and they are 
regarded as less important in FSVM training such that there is 
a big difference between the hyperplanes of the SVM and 
FSVM. The only free parameter C in SVM controls the trade 
off between the maximization of margin and the amount of 
misclassification. In FSVM the soft margin parameter C can 
be set at a sufficient large value. Based on the value of     the 
influence of C, on the training of SVM can be controlled. If all 
equals 1, it is the same as SVM that the system will get 
narrower margin and allow less misclassifications. A smaller 
value of  is  , makes the corresponding point ix  less 

important in the training. Thus, with different values of  is ,     

the tradeoff of the respective training point ix  in the system 
can be adjusted and hence the number of free parameters in 
FSVM equals the number of training data. 

IV. APPLICATION OF FSVM TO TSA
To illustrate the applicability of FSVM, the New England 

39 bus system [2] is used. The system consists of 46 
transmission lines, 39 buses, 10 generators and 12 
transformers. There the generators are represented by classical 
models and loads are represented as constant impedances.  

A. Data Generation  
The first step in TSA using FSVM is the generation of 

training and testing data. Totally 600 operating states have 
been created by adopting the following:  

3 bolted faults are created at the beginning node of 
transmission lines, one at a time.  
For each fault, the loads on the individual load buses 
are varied randomly between 70 to 150 percentages of 
the base value. 

The three transmission lines, where the three phase short 
circuit faults occurs are namely the transmission lines between 
bus 17 and bus 27, bus 23 and bus 24 and between bus 17 and 
bus 18. All faults occurred near the beginning end of the lines 
and the duration of disturbances are 0.34 seconds for fault at 
line 17-27 and 0.4 seconds for fault at lines 23-24 and 17-
18.Opening the circuit breakers on both ends of the 
transmission line clears the fault. 

 Time domain simulation method is used for generating the 
data. The data generation involves the following procedure.  

1) The load on a load bus is fixed at any one value between 
70 to 150 percentages of the base value keeping the 
other loads at their normal value. 

2) The created operating state is validated by an optimal 
power flow. 

3) One of the contingencies from the contingency list has 
been simulated in time domain.  

4) Based on the relative rotor angles of individual 
generators with respect to the reference generator, the 
given state is classified as stable or unstable.

For a given sample if the relative rotor angle of any one 
machine exceeds 100 degrees then the input state is considered 
as unstable otherwise it is stable. The complete input feature 
set consists of the active and reactive powers of each 
generator, total active and reactive loads of the system at the 
instant of fault, a 3 bit binary code indicating the location of 
disturbance and fuzzy membership value of each training 
point with a total of 25 inputs. The output feature set consists 
of only one output indicating the security class. Out of the 600 
input states generated, 540 datasets are allotted for training 
and 60 for testing purpose. 

B. Generation of Fuzzy membership Value 
In the complete data set, the numbers of data belong to 

positive and negative classes are equal. As described in 
section 3, the mean and radii of each class and then the fuzzy 
membership value of each datum is computed. In calculating 
the fuzzy membership values, the first 22 input variables are 
considered. This is because that the 3 bit binary code is used 
just to indicate the location of fault and it is not a 
representative of the power systems operating point. The 
values of is and )1( is  provide the degree of belongingness 
of the data for the two classes. If a datum belongs to positive  

r
xm i1 if 1iy     

r
xm i1 if 1iy        is

0is

is
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class by 86.7% then it belongs to negative class by 13.3%. In 
conclusion the data belongs to positive class. 

C. Training of Learning Machines 
The SVM and FSVM with Gaussian RBF kernel are 

trained and tested in MATLAB environment. Table I shows the 
training details of both SVM and FSVM. 

TABLE I: TRAINING DETAILS

To illustrate the improvement in training in FSVM compared 
to normal SVM, the number of support vectors obtained by 
both the methods is compared. As can be seen from Table I, 
the number of support vectors yielded by FSVM is lesser than 
standard SVM. By reducing support vectors the training time 
of FSVM classifiers are improved. This clearly indicates the 
usefulness of fuzzification in the feature space. 

D.   Performance Analysis.  
Sensitivity, specificity and Classification accuracy are 

statistical measures of the performance of a binary 
classification test. The sensitivity measures the proportion of 
actual positives which are correctly identified as such (i.e. the 
percentage of stable states that are identified as operating 
stably); and the specificity measures the proportion of 
negatives which are correctly identified (i.e. the percentage of 
unstable states  that are identified as not operating 
stably).Classification accuracy is  the ratio of correctly  
identified operating states to the total number of testing 
states.By denoting the following terms: 
TP - True Positive (Stable states correctly classified as stable) 
TN - True Negative (Unstable states correctly classified as 
unstable) FP - False Positive (Unstable states incorrectly 
classified as stable) FN - False Negative (Stable states 
incorrectly classified as unstable),the Specificity, by means of 
which the learning machine is able to reject false positive 
matches is given by TN/(TN+FP); the Sensitivity, which is the 
ability of the machine to detect true positive matches is given 
by TP/(TP+FN) and the accuracy is given by  
(TP+TN)/(TP+TN+FP+FN). Table II, compares the 
functioning of SVM and FSVM with same values of kernel 
parameter. The SVM have large number of false positive 
states than the false negative states. So the sensitivity is lesser 
than the specificity. Here again the FSVM presents better 
performance. The classification accuracies acquired by the 
two machines are also presented. In Table III, the testing times 
of SVM and FSVM are given. 

TABLE III: TESTING TIME

As can be seen from Tables I-III, the FSVM outperforms 
SVM. During the five folds cross validation in normal SVM, 
there was a lot of variation in the results of different folds and 
this was due to the presence of outliers. The selection of soft 
margin parameter C also causes lot of variation in the results 
even for same kernel function and kernel parameter. Then the 
FSVM with membership function based on the mean of two 
classes was constructed and tested. On the line of expectation, 
the results were higher for FSVM than normal SVM. For all 
cases listed in Table II the overall sensitivity and specificity of 
FSVM was higher than normal SVM and the classification 
accuracies of FSVM presented in Table III are also greater 
than SVM. FSVM achieves this with minimum training and 
testing times. This clearly demonstrates the superiority of the 
proposed FSVM for transient stability investigation.  

Table IV shows the result of FSVM for four randomly 
selected operating states of the test system for each fault. From 
this we know that the result of FSVM coincides with the true 
operating status. Here no preventive control measures are 
needed for the stable cases C11, C21 and C31. The generators 
are scheduled as prescribed by Optimal Power Flow. The 
unstable cases C12, C22, and C32 should undergo the 
following modified generator-rescheduling scheme. 

TABLE IV: RESULTS FROM FSVM CLASSIFIER

Classifier
No. of 

Support 
Vectors

Training Time 
(Sec)

1 504 0.343 
10 267 0.282 SVM

100 066 0.274 
1 264 0.234 
10 240 0.211 FSVM

100 41 0.193 

Classifier
Gaussian RBF 
Kernel ( )

Testing Time 
(Sec)

1 0.034 
10 0.034 SVM
100 0.034 

1 0.019 
10 0.019 FSVM
100 0.019

Faulted
Line 

Case
No Load Level Actual

Status
Results from 

FSVM

C11 Active load at bus 15 
is reduced by 31% Stable +1 (Stable) 

17-27 
C12

Active load at bus 24 
is incr 
eased by 32.23 % 

Un
Stable -1 (Unstable) 

 C21 
Active load at bus 14 
is increased by 15.62 
%

Stable +1 (Stable) 

23-24 

C22

Active load at bus 3 is 
increased by 62.11% 
and Active load at bus 
39 is increased by 
25.36 % 

Un
Stable -1 (Unstable) 

C31 Active load at bus 39 
is reduced by 9.06% Stable +1 (Stable) 

17-18 
C32

Active load at bus 3 is 
increased by 19.53 % 
and Active load at bus 
39 is increased by 
18.11 % 

Un
Stable -1 (Unstable) 
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TABLE II: PERFORMANCE COMPARISON

V. PROPOSED PREVENTIVE CONTROL METHOD
The relative rotor angle of generators with respect to the 

reference generator has been used to detect the system’s 
stability / instability status. When the relative rotor angle of 
any one of generator exceeds 100  it can be considered as an 
unstable case and it is given by equation (14). 

 : jiij   100º                    (14) 

Where ij  -Relative Rotor angle of generator i with 

respect to reference j , i , j  -Rotor angle of most 

advanced generator and reference generator with respect to a 
synchronously rotating reference frame  
      Here ‘i’ refers to the most advanced generator and rests of 
the generator are considered as least advanced. To ensure 
system stability a small amount of real power ( * P ) is to 
be shifted from the most advanced generator to any one of the 
generators in least advanced group. The generator whose 
realpower generation is to be increased is determined based on 
the incremental fuel cost characteristics.  
Let

nk PP .....     -Original real power generation of each unit 
  -Acceleration factor  

P   -Amount of real power to be shifted 

n

n

k

k

dP
dF

dP
dF

........  -Incremental fuel cost for each generator  

      The incremental fuel cost for the least advanced generators 
are calculated for the increase in real power P . The 
acceleration factor ( ) lies between 0.25 and 1.The unit 
having minimum incremental fuel cost (m) has been taken as 
one candidate for rescheduling and the other candidate is the 
most advanced generator (i). Real power generations of the 
units are then given by equation (15). 

PPP
PPP

mmnew

iinew                         (15)  

With these generation values, system stability is checked. 
Even though we considered the system becomes unstable 
when the relative rotor angle of any one of generator exceeds  

100 , by rescheduling generators the relative rotor angle of  

most advanced generator is brought below 90  for the system 
to be stable.   If the system is again unstable acceleration  
factor  is decreased and the procedure is repeated until the 
system become stable. During the process, if the most 
economical generator hit the maximum limit then power is 
transferred to the second most economical generator for 
achieving system stability. Fig.1shows the flowchart of the 
rescheduling scheme.  

For a better understanding of the rescheduling procedure, an 
illustrative example of the generation rescheduling is 
discussed. When the three phase short circuit occurs on the 
transmission line connecting bus 17 and bus 18 near bus 
17,represented as case C32 in table 9 the system becomes 
unstable and the most advanced generator is G38. Fig.2 
represents the unstable swing curves of the generators before 
generator rescheduling. 

Fig. 1 Rescheduling Procedure 

Classifier
No. of 
Testing  
States

True 
Positive
States

False
Positive
States

True 
Negative

States

False
Negative

States

Correctly
Classified

States

Classification
Accuracy Sensitivity Specificity 

1 60 24 6 29 1 53 88.33 0.8000 0.9667 
10 60 26 4 29 1 55 91.67 0.8667 0.9667 SVM

100 60 26 4 30 0 56 93.33 0.8667 0.1000 
1 60 30 1 29 0 59 98.33 0.967 1.000 
10 60 30 0 30 0 60 100 1.000 1.000 FSVM

100 60 30 0 30 0 60 100 1.000 1.000 

Unstable case from FSVM   Classifier

1, 20 MW,dP=

Find the generator (i) having i>100

Calculate 
j

j

dP
dF

   j=1…n,j i

Find the Unit (m) having minimum
dP
dF

Pinew =Pi - 
Pmnew=Pm +

Run Stability Program 

End Decrement Stable N Y
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Fig. 2 Swing Curves-Before Rescheduling 

Applying modified generation rescheduling scheme, the 
generator G33 is found to be the least advanced generator 
having minimum incremental fuel cost and 140 MW of power 
is shifted from most advanced generator (G38) to least 
advanced generator (G33). During the process, G33 reaches its 
maximum limit then the power is transferred to the next most 
economical generator G37.Thus 45 MW of power is shifted 
from G38 to G37.Totally 185 MW of power is shifted from 
G38 and its maximum rotor angle comes to 89.78º. Fig.3 
shows the swing curves after rescheduling. It clearly states 
that the system is dynamically stable.  
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Fig. 3 Swing Curves-After Rescheduling 

Table VI lists the details of rescheduling for all the unstable 
cases. Here PBR represents Power Before Rescheduling; PAR 
means Power After Rescheduling and PS means Power to be 
shifted.  

TABLE VI RESCHEDULING DETAILS

During fault at lines 17-18 and 17-27 the most advanced 
generator is G38 and the most economical generator in the 
least advanced group is G33.When fault is presented in line 
23-24 the most advanced generator is 36 and the least 
advanced generator remains the same In order to obtain a 
stable system, specified amount of real power calculated by 
the rescheduling scheme is transferred from G38 to G33. In 
most of the generator rescheduling procedures, the reference 
generator has been considered as the least advanced generator. 
A cost comparison between the proposed scheme and the 
rescheduling scheme [14] based on reference generator has 
been presented in Table VII.  

TABLE VII COST COMPARISONS

From Table VII, it is inferred that the proposed scheme 
achieves a stable operating point in a most economical way. 

VI. CONCLUSION 
An integrated scheme for power system transient stability 

evaluation and its preventive control is proposed. Main 
requirements for online TSA methodologies are fast 
evaluation time and accuracy of results. The Fuzzy SVM 
presented in this paper achieves highest classification accuracy 
compared to pure SVM with minimum training and testing 
times. Thus it is highly suited for online TSA.  To ensure 
secure operation of power system some preventive control 
actions are required when potential instabilities are detected. A 
modified generation rescheduling scheme is proposed which 
results in a stable and more economic operating state of power 
system. Numerical test demonstrates that the proposed 
approach is effective to assess the status and stabilize the 
unstable states of a multi machine power system. 
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