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Transient Population Dynamics of Phase
Singularities in 2D Beeler-Reuter Model

Hidetoshi Konno and Akio Suzuki

Abstract—The paper presented a transient population dynamics
of phase singularities in 2D Beeler-Reuter model. Two stochastic
modelings are examined: (i) the Master equation approach with the
transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii)
the nonlinear Langevin equation approach with a multiplicative noise.
The exact general solution of the Master equation with arbitrary
time-dependent transition rate is given. Then, the exact solution
of the mean field equation for the nonlinear Langevin equation is
also given. It is demonstrated that transient population dynamics
is successfully identified by the generalized Logistic equation with
fractional higher order nonlinear term. It is also demonstrated the
necessity of introducing time-dependent transition rate in the master
equation approach to incorporate the effect of nonlinearity.

Keywords—Transient population dynamics, Phase singularity,
Birth-death process, Non-stationary Master equation, nonlinear
Langevin equation, generalized Logistic equation.

I. INTRODUCTION

Many researcher’s attentions have been payed for the study
of spiral wave formations and spiral wave turbulence (SWT)
[1] in conjunction with a problem of the ventricular fibrillation
(VF) – an origin of the sudden death. Although large scale 3D
simulations have been performed all over the world, they do
not succeed fully in describing them from the view points of
physics, mathematics and physiology.

In our previous paper [2], the 2D Aliev-Panfilov (AP) model
[3] is studied since the model can exhibit the SWT. Among
many physical state variables in characterizing the SWT, we
choose the phase singularity (PS) as a key quantity to describe
the state of the SWT. The PS is important since it plays as the
wave source even in broken pieces of spiral waves. Actually,
the finite-time local Lyapunov exponent take large value along
the line connecting the PS. It is found [2] that the number of
PSs can be described well by the Gamma process at the steady
state. The stochastic Logistic equation with a multiplicative
noise can mimic the dynamical features of the fluctuation of
the number of PSs at the steady state.

To examine the universality of the result in the AP model,
we have examined [4] the 2D Beeler-Reuter (BR) [5] model
where many ion channels are taken into account [cf. Appendix
A]. With the use of the BR model, one can discuss the
physical and physiological significance of the transitions of
state from the normal to states of heart diseases like VF.
Extensive numerical simulations are performed by changing
the parameters and the system size of the BR model. It is

H. Konno is with the Department of Risk Engineering, Faculty of Informa-
tion and Systems, University of Tsukuba, Tsukuba, Tsukuba, Ibaraki 305-8573

A. Suzuki is with National Institute of Advanced Industrial Science and

found that the fluctuation of the number of PSs in the BR
model [cf. Appendix B for the method of detecting PS] is
subjected to the hyper Gamma process described by [4,6]

d

dt
N = aN − bNm + NF (t) , (1)

where the random force F (t) is assumed to be a Gaussian-
white noise with null mean: 〈F (t)〉 = 0 and 〈F (t)F (t′)〉 =
2Dδ(t − t′), with a fractional nonlinearity m, and a and b
are assumed to be positive constants. The noise correction
is accounted provided that eq.(1) is a Stratonivich type SDE
(a → a + D). At the steady state, the model gives the hyper
Gamma (HG) distribution in the form:

P (X) =
αβ

γ
α

Γ( γ
α )

Xγ−1 exp(−βXα), (2)

where Γ(z) is the Gamma function. The parameters of distri-
bution in eq.(2) and those of the Langevin equation in eq.(1)
are related as

α = m − 1, β =
b

D(m − 1)
and γ =

a

D
. (3)

In this case, there are different parameter regions that the
nonlinearity m change depending on the parameters and the
size of the system.

In spite of the success to mimic the stochastic time evolution
of the number of phase singularities at the steady-state, the
performance of description based on the stochastic hyper
Gamma process is not validated for the non-stationary nature
of initial transient from a single spiral to a state of SWT.

In this paper, two non-stationary birth-death processes are
examined: (a) the Master equation approach and (b) the
Langevin equation approach. The paper is organized as fol-
lows. Section II introduces the Master equation approach
with time-dependent birth-death rates under the fixed initial
condition. The exact analytic solution of it for different birth
and death rates of time-dependent functions is given. The
expressions of the mean and the variance are also given.
Section III introduces the Langevin equation approach with
eq.(1) under the fixed initial condition. Section IV discusses
on the results of two different approaches. The last section is
devoted to summary and remarks.

II. MASTER EQUATION APPROACH

Consider a generalized non-stationary birth-death process in
the form of the Master equation:

d

dt
p(n, t) = λ(n − 1, t)p(n − 1, t) + μ(n + 1, t)p(n + 1, t)
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−[λ(n, t) + μ(n, t)]p(n, t) , (n ≥ 1) (4)

where the transition rates are assumed simply proportional to
the state n (or the number of state)

λ(n, t) = λ(t)n and μ(n, t) = μ(t)n. (5)

λ(t) and μ(t) are arbitrary functions with time. These func-
tions λ(t) and μ(t) represent the memory in the system. For
n = 0, dp(0, t)/dt = μ(1, t)p(1, t). Since the birth and the
death rate in eq.(5) are assumed, the condition n ≥ 1 must
be imposed in eq.(4). Also, the initial condition is assumed to
have p(n, 0) = δn,n0 with n0 ≥ 1.

The generating function g(z, t) defined by g(z, t) =∑∞
n=0 znp(n, t) for eq.(4) with the transition rates in eq.(5)

obeys

d

dt
g(z, t) = (λ(t)z − μ(t))(z − 1)

∂

∂z
g(z, t) . (6)

From the initial condition, g(z, 0) = zn0 . This is a partial
differential equation of the variable coefficients λ(t) and μ(t).
To solve this equation, let us consider the auxiliary equation,

dt

1
= − dz

(λ(t)z − μ(t))(z − 1)
=

dg

0
. (7)

From the first equation, one obtains a nonlinear Riccati equa-
tion,

dz

dt
= −(λ(t)z − μ(t))(z − 1) . (8)

Since z = 1 is one of the solution of the equation, it is readily
seen that the variable transformation ξ = (z − 1)−1 (i.e., z =
1 + ξ−1) leads eq.(8) to

dξ

dt
= (λ(t) − μ(t))ξ + λ(t) . (9)

This is a first order linear differential equation with the variable
coefficients λ(t) and μ(t). The general solution of eq.(9) is
given by

ξ(t) = exp([Λ(t) − M(t)])
(∫ t

0

λ(τ)V (τ) dτ + C

)
, (10)

where

Λ(t) =
∫ t

0

λ(τ) dτ and M(t) =
∫ t

0

μ(τ) dτ , (11)

and
V (t) = exp

{
− [Λ(t) − M(t)]

}
V (0) . (12)

Therefore, the equation (10) is written in the form:

ξ(t)V (t) − W (t) = C , (13)

where

W (t) =
∫ t

0

λ(τ)V (τ) dτ . (14)

It is readily see that the solution of eq.(6) is given by

g(z, t) = f

(
V (t)
z − 1

− W (t)
)

. (15)

Actually, substituting eq.(15) into eq.(6), one obtains the
balancing equations for V (t) and W (t) as V̇ (t) = −(λ(t) −
μ(t))V (t) and Ẇ (t) = λ(t)V (t) with V (0) = 1 and
W (0) = 0.

From the initial condition f

(
1

z−1

)
= zn0 , the form of

f(x) is determined as

f(x) =
(

1 + x

x

)n0

. (16)

The generating function is expressed as

g(z, t) =
{

[1 − W (t)]z + V (t) + W (t) − 1
V (t) + W (t) − W (t)z

}n0

, (17)

=
{

[1 − W (t)]z + V (t) + W (t) − 1
V (t) + W (t)

×
∞∑

n=0

(
W (t)

V (t) + W (t)
z

)n}n0

. (18)

For n0 = 1, one obtains the simple expression of the
probability mass function (pmf) p(n, t) in the form:

p(0, t) = 1 − 1
V (t) + W (t)

(n = 0) (19)

and

p(n, t) =
(W (t))n−1V (t)

(V (t) + W (t))n+1
(n ≥ 1) . (20)

It is easy to show that
∑∞

n=1 p(n, t) = 1/(V (t) + W (t)) and∑∞
n=0 p(n, t) = 1.
When there is no memory, i.e.,

λ(t) = λ and μ(t) = μ , (21)

the probability mass function reduces to

p(0, t) =
μθ

λ
(n = 0) (22)

and
p(n, t) =

1
λ

(1 − θ)(λ − μθ)θn−1 (n ≥ 1) , (23)

where
θ =

λ(exp[(λ − μ)t] − 1)
λ exp[(λ − μ)t] − μ

. (24)

It is easy to show that
∑∞

n=1 p(n, t) = (λ−μθ)
λ and∑∞

n=0 p(n, t) = 1.

The general expressions of the mean, the variance and the
Fano factor (the variance-to-mean ratio) in terms of V (t) and
W (t) in eqs.(13) and (14) are

〈n(t)〉 =
1

V (t)
, (25)

σ2
n(t) =

1
V (t)

[
2W (t) + V (t) − 1

V (t)

]
(26)

B. Generating function

C. Probability Mass function

D. Mean and variance
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and
F (t) =

σ2
n(t)

〈n(t)〉 =
[
2W (t) + V (t) − 1

V (t)

]
. (27)

Since the pmf is classified into the asymmetric time-dependent
function, the third moment is obtained as

〈n(t)3〉 = 6
W (t)2

V (t)3
+ 6

W (t)
V (t)2

− 2
1

V (t)
. (28)

In the case of no memory (i.e, λ and μ are constants) in
eq.(20) , the expressions (24)-(25) reduces to

〈n(t)〉 =
λ − μθ

λ(1 − θ)
(29)

and
σ2

n(t) =
(λ + μ)(λ − μθ)θ

λ2(1 − θ)2
, (30)

where θ is defined in eq.(24). The mean, the variance and the
Fano factor are expressed in the simplified forms:

〈n(t)〉 = exp
{
(λ − μ)t

}
, (31)

σ2
n(t) =

(
λ + μ

λ − μ

)
exp

{
(λ−μ)t

}[
exp

{
(λ−μ)t

}−1
]

(32)

and
F (t) =

(
λ + μ

λ − μ

)[
exp

{
(λ − μ)t

} − 1
]

. (33)

They exhibit the exponential growth for λ > μ for the case of
constant rate ((i) in Table I: Markovian case, the case without
memory).

Some simple mathematical examples of time-dependent
function λ(t) and μ(t) are listed in Table I. These are increas-
ing/decreasing functions of time. The cases of (i) the constant
rate, (ii) the linear time-dependent growth rate, (iii) the expo-
nential growth (γj < 0)/relaxation (γj > 0) (j = λ, μ), (iv) the
inverse power relaxation function, and (v) the power growth
(γj > 1)/relaxation (γj < 1) (j = λ, μ). In the case of the
generalized Polya process [7,8] (a class of the birth process)
in eq.(1), only the time-dependent birth rate λ(t) is accounted.
In this case, the inverse power function (iv) has been used in
the applications to the problems of infectious disease [8] in
the demography and of after shock in the seismology [9].

In the birth-death process in eq.(4), there are various com-
binations of different increasing/decreasing functions of λ(t)
and μ(t) other than Table I.

Table I: Simple functions of λ(t) and μ(t)
λ(t) μ(t)

(i) λ μ
(ii) λt μt
(iii) λ exp(−γλt) μ exp(−γμt)
(iv) λ

1+γλt
μ

1+γμt

(v) λtγλ−1 μtγμ−1

Let us exhibit some simple examples of the mean evolution
〈n(t)〉 provided that γλ = γμ = γ �= 0: e.g.,
(ii) Gaussian growth/decay

〈n(t)〉 = exp
(

1
2
(λ − μ)t2

)
, (34)

(iii) Double exponential function

〈n(t)〉 = exp
(

1
γ

(λ − μ)[1 − exp(−γt)]
)

, (35)

(iv) Power growth/decay

〈n(t)〉 = (1 + γt)(λ−μ) (36)

and
(v) Exponential growth/decay with fractional power of time

〈n(t)〉 = exp
(

1
γ

(λ − μ)tγ
)

. (37)

III. LANGEVIN APPROACH

As is shown in our previous paper [4], it is a convenient
method to characterize the dynamics of ventricular fibrillation
by detecting the number of phase singularity (PS). It is
an interesting observation that the stochastic process of the
number N(t) of PSs in the steady is described well by the
Langevin equation in stead of the above Master equation.
Namely, the environmental fluctuation (i.e., the mutiplicative
noise) is important. We can rewrite the Langevin equation in
eq.(1) into the form:

d

dt
N =

k

r
N

[
1 −

(
N

K

)r]
+ NF (t) . (38)

where k, K and r are positive real constants. It is assumed that
the noise correction is already done in the Langevin equation
in eq.(38). The nonlinear structure is the same as the one (m =
1 + r) involved in the Langevin equation.

In the limit r → 0, the above equation reduces to the
stochastic Gompertz equation with the multiplicative noise
F (t):

d

dt
N = −kN ln(N/K) + NF (t) . (39)

This is an interesting observation that the model gives the log-
normal distribution at the steady state:

Ps(N) =
1√

2πD/kN
exp

(
− (ln(N) − ln(K))

2D/k

)
. (40)

When the mean field approximation is applied to the
Langevin equation in eq.(38), one obtains

d

dt
〈N〉 =

k

r
〈N〉(1 − 〈(N/K)〉r) . (41)

The exact solution of eq.(41) is obtained in the form:

〈N(t)〉 = K

[
1 +

{(
K

N(0)

)
− 1

}
e−kt

]− 1
r

. (42)

In the limit r → 0, this reduces to the solution of the
Gompertz equation:

〈N(t)〉 = K exp
[

ln
(

N(0)
K

)
e−kt

]
. (43)

Let us remind here that the estimated values fractional order
of nonlinearity m (or r) from our numerical experiments for
Beeler-Reuter model are distributed in the range

1.5 < m < 4 (0.5 < r < 3). (44)

E. Simple Mathematical Examples for λ(t) and μ(t)
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Fig. 1. Theoretical evolutions of a generalized Logistic equation with K =
207, k = 3.0 and N(0) = 1 are depicted: (a) long dased-line r = 0, (b)
dash three-dots line r = 0.5, (c) solid line r = 1, (d) dotted line r = 1.5,
(e) dashed line r = 2.0, (f) dash-dot line r = 2.5
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Fig. 2. Theoretical evolutions of a generalized Logistic equation with K =
105, k = 4.7 and N(0) = 1 are depicted: (a) long dased-line r = 0, (b)
dash three-dots line r = 0.5, (c) solid line r = 1, (d) dotted line r = 1.5,
(e) dashed line r = 2.0, (f) dash-dot line r = 2.5
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Fig. 3. Theoretical time evolution of a generalized Logistic equation with
K = 47, k = 5.0 and N(0) = 1 are depicted: (a) long dased-line r = 0, (b)
dash three-dots line r = 0.5, (c) solid line r = 1, (d) dotted line r = 1.5,
(e) dashed line r = 2.0, (f) dash-dot line r = 2.5

Figures 1,2 and 3 show the transient mean time evolutions of
the generalized Logistic equation are depicted in as a function
of the value of the fractional order nonlinearity r for three
values of K, i.e., K = 47, K = 105 and K = 207. The
feature of time evolution in the Gompertz limit (r = 0) is
also displayed. One can understand the r dependence on the
population growth in the generalized Logistic equation.

IV. RESULTS AND DISCUSSIONS

The method of numerical simulation in 2D Beeler-Reuter
model with the parameters are described in detail in our
previous paper [4]. To have fine statistical accuracy, we have
adopted numerical simulation with a larger system size L = 25
cm in a transient situation that is started from a single
spiral to a state of spiral wave turbulence. The number of
phase singularity is counted in each time step in 2D space
as described in our previous paper. The mean evolution is
obtained by averaging over 6 set of sample data. Then, the
population dynamics of phase singularities is identified by
using the exact solution of the generalized Logistic equation.
The time series data for the conductance values gs = 0.03 ,
gs = 0.07 and gs = 0.09 with system size L = 25 cm are
utilized.

Figure 4 shows the mean population dynamics of phase
singularities for gs = 0.03 with the solid line. The dynamics
is identified by the generalized Logistic equation with r = 1
(m = 2) in dash-dot line, which is consistent with the
estimated value (m̂ = 1.88 [4]) at the steady state.

Figure 5 shows the mean population dynamics of phase
singularities for gs = 0.07 with the solid line. The dynamics is
identified by the generalized Logistic equation with r = 1.47
(m = 2.47) in dash-dot line, which is consistent with the
estimated value (m̂ = 1.85 [4]) at the steady state.

Figure 6 shows the mean population dynamics of phase
singularities for gs = 0.09 with the solid line. The dynamics
is identified by the generalized Logistic equation with r = 1.7
(m = 2.7) in dash-dot line, which is consistent with the
estimated value (m̂ = 3.71 [4]) at the steady state.

The successful identifiability with the use of the stochastic
hyper Gamma process in both at (a) transient and (b) steady-
state implies that the order of nonlinearity is physically signif-
icant for the understanding physical mechanism in the system.
The results are summarized in Table II.

Table II: Estimated values of r and k
gs r k
(i) 0.03 1.0 3.0 Fig.4
(ii) 0.07 1.47 4.7 Fig.5
(iii) 0.09 1.7 5.0 Fig.6

Nonlinear dynamics of spiral wave turbulence (SWT) has
been studied extensively in conjunction the ventricular fibrilla-
tion (VF) by using various models of heart [1]. It is expected
from observations of numerical results that the state of SWT

A. Identification by Generalized Logistic Equation

B. Incorporation of Nonlinearity in the Master Equation
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Fig. 4. Time evolution of the mean number of phase singularities for the
conductance gs = 0.03 in the Beeler-Reuter model. Six sets of sample data
are averaged to obtain it. The mean time evolution of a generalized Logistic
equation for r = 1.0 is also shown with dashed line. The dotted line indicates
the result of identification by the non-stationary birth-death process with an
exponential growth of fractional time exp(εtγ) with ε = 3.0 and γ = 0.72.
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Fig. 5. Time evolution of the mean number of phase singularities for the
conductance gs = 0.07 in the Beeler-Reuter model. Six sets of sample data
are averaged to obtain it. The time evolution of a generalized Logistic equation
for r = 1.47 is also shown with dashed-line. The dotted line indicates
the result of identification by the non-stationary birth-death process with an
exponential growth of fractional time exp(εtγ) with ε = 3.0 and γ = 0.9.

(VF) is characterized by the interactions of phase singularities:

2X →k1 X (wave merge) ,

X →k2 2X (wave break) ,

X →k3 0 (death and/or loss from the region)

and
2X →k4 0 (pair extinction).

This interaction scheme is identical with the Schlögl’s first
model in chemical reaction [10]. The model is described in
terms of the Master equation:

d

dt
P (X, t) = k1(X + 1)XP (X + 1, t)

+k2(X − 1)P (X − 1, t) + k3(X + 1)P (X + 1, t)

+k4(X + 2)(X + 1)P (X + 2, t) − k1X(X − 1)P (X, t)
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Fig. 6. Time evolution of the mean number of phase singularities for the
conductance gs = 0.09 in the Beeler-Reuter model. Six sets of sample data
are averaged to obtain it. The time evolution of a generalized Logistic equation
for r = 1.7 is also shown with dashed-line. The dotted line indicates the result
of identification by the non-stationary birth-death process with an exponential
growth of fractional time exp(εtγ) with ε = 3.0 and γ = 0.68.

−(k2 + k3)XP (X, t) − k4X(X − 1)P (X, t) . (45)

The equation of the mean is derived from the Master equation
as

d

dt
〈X〉 = a〈X〉 − b〈X2〉 (46)

with

a = (k1 + k2 − k3 + 2k4) and b = (k1 + 2k4). (47)

Under the mean field approximation 〈X2〉 ≈ 〈X〉2, the Logis-
tic equation is obtained. However, one can not get higher order
nonlinearity within the interaction schemes described above
(cf. the interaction mechanisms discussed in Refs. [11],[12]
and [13]). Also, the origin of the environmental fluctuation
(i.e., the multiplicative noise) can not be derived within the
framework of the Master equation with a single variable X .

However, one can not get higher order nonlinearity within
the interaction schemes described above. Also, the origin of
the environmental fluctuation (i.e., the multiplicative noise)
can not be incorporated within the framework of the Master
equation with a single variable X . Although Gillespie’s algo-
rithm [14] can be utilized to perform direct simulation of the
Master equation is possible, the inverse problem to infer the
reaction rates of interactions is not easy.

As is explained in the previous subsection, the analytical
treatment of the master equation approach with incorporating
nonlinear terms is not easy. Therefore, the phenomenological
treatment with the use of the time-dependent birth-death rate
may be available.

When the Markovian description is adopted, i.e., λ(t) = λ
and μ(t) = μ, the exponential growth is expected as shown
in eq.(31). In this case, the time evolution is shown in the
dotted line in Figs.4, 5 and 6. This simple exponential curve
can reproduce only the curve of our numerical experiment in
the initial part of the transient. To improve the Markovian

C. Identification of time-dependent Birth-Death rates
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description, one must introduce a time-dependent function
among the simple functions listed in Table I. It is easy to
see that an appropriate choice is taking (v) a fractional power
of time like

λ(t) = λtγ−1 and μ(t) = μtγ−1 . (48)

The mean evolution can be improved by an exponential growth
with a fractional power of time:

〈N(t)〉 = exp
(

εtγ
)

, (49)

where ε = (λ − μ)/γ. As is shown with the dashed lines in
Figs. 4, 5 and 6, the feature of evolution is improved from
a simple exponential growth. The results are summarized in
Table III. The introduction of nonlinear suppression is required
for further improvement as shown with the generalized Logis-
tic evolution.

Table III: Estimated values of ε and γ
gs ε γ
(i) 0.03 3.0 0.72 Fig.4
(ii) 0.07 3.0 0.9 Fig.5
(iii) 0.09 3.0 0.68 Fig.6

V. CONCLUSION

The paper presented a transient population dynamics of
phase singularities in 2D Beeler-Reuter model. Two stochastic
birth-death processes are examined based on (i) the Master
equation in eq.(4) with the transition rate (i.e., λ(n, t) = λ(t)n
and μ(n, t) = μ(t)n) and (ii) the Langevin equation in eq.(1)
with a multiplicative noise. The derivation of the exact general
solution of eq.(4) is shown in section II. Then, the exact
solution of the mean field equation for the Langevin equation
in eq.(1) is given in section III. Transient population dynamics
is successfully identified by the generalized Logistic equation
in eq.(38) with fractional higher order nonlinear term in
section IV. Interestingly, the estimated values [4] of the model
parameters form transient population dynamics are consistent
with those at the features of fluctuations at the steady state.

APPENDIX A
BEELER-REUTER MODEL WITH DR MODIFICATION

∂Vm

∂t
= D∇2Vm − Iion − Ist

Cm
, (A1)

where Vm (mV) is transmembrane voltage, D (cm2/ms) is the
diffusion coefficient, Cm (μF/cm2) is membrane capacitance,
Iion (μA/cm2) is the sum of ionic transmembrane currents,
Ist (μA/cm2) is the stimulus current, and ∇2 is the Laplacian
in 2D space. Various modifications can be made for describing
ionic currents. In this paper, the Drouhard-Roberge (DR)
modification of the Beeler-Reuter (BR) cardiac cell model
(BRDR model) is adopted, which is the simplest ionic model
for mammalian ventricular tissue using four ionic currents, five
ionic gates, and intracellular calcium concentration.

Numerical simulations of the BRDR model are performed
in a 2D square domain Ω = [0, L] × [0, L] (L = 25 cm)
with Neumann (zero flux) boundary conditions. To reduce

computation time, numerical integration is performed using
a forward Euler scheme with a time step 0.025 ms. The
Laplacian is discretized using a 9-point difference formula
with a spatial mesh 0.025 cm. Space-time variations of state
variables are stored with a time step of 1.0 ms and a space step
0.05 cm. In our simulations, the values of the two parameters
D = 9.72×10−4 and Cm = 1.0 are kept constant. The BRDR
model parameter values of Ref.[5] are adopted in this study,
except for the values of slow inward current conductance gs

(mS/cm2).

APPENDIX B
METHOD FOR DETECTING PHASE SINGULARITY

The phase singularity (PS) is identified as the local site
where the phase is undefined. The PSs appear at the core of
the rotating waves, and their existence is a necessary (but not
a sufficient) condition for the occurrence of breaking waves.
The position of a PS can be identified from∮

C

∇θ · dr = ±2π, (B1)

where θ is the local phase. The line integral is taken over
r around a closed curve C surrounding a local site. The
sign of Eq.(B1) indicates the chirality; positive and negative
signs correspond to clockwise and counterclockwise rotation,
respectively. A spatial phase map was calculated for each
frame of recorded data, and the phase singularities (PSs) are
detected by checking the equality described above.
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