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 
Abstract—A solution methodology without using integral 

transformation is proposed to develop analytical solutions for 
transient heat conduction in nonuniform hollow cylinders with 
time-dependent boundary condition at the outer surface. It is shown 
that if the thermal conductivity and the specific heat of the medium 
are in arbitrary polynomial function forms, the closed solutions of the 
system can be developed. The influence of physical properties on the 
temperature distribution of the system is studied. A numerical 
example is given to illustrate the efficiency and the accuracy of the 
solution methodology. 

 
Keywords—Analytical solution, nonuniform hollow cylinder, 

time-dependent boundary condition, transient heat conduction. 

I. INTRODUCTION 
HE applications of heat conduction in nonuniform hollow 
cylinders with time-dependent boundary conditions can be 

widely found in numerous engineering fields, such as barrel of 
cannon, tube in heat exchanger, time variation heating on 
walls of circular structure and heat treatment on hollow 
cylinders. Therefore, an accurate solution methodology is very 
helpful for relevant developments. 

It is well-known that the problem of heat conduction with 
time-dependent boundary conditions cannot be solved directly 
by the separation of variables method. In most of the analyses, 
the integral transformation method has been used to remove 
the time-dependent term; however, taking the inverse integral 
transformation is always tedious. Moreover, for the problem 
of heat conduction in uniform hollow cylinders with 
time-dependent boundary conditions, the associated governing 
differential equation is a second-order Bessel differential 
equation with constant coefficients. After conducting a 
Laplace transformation, the analytical solution can be found in 
[1].  

When the structure is a functionally graded hollow cylinder, 
i.e., the cylinder is a nonuniform medium, the associated 
governing differential equation is a second-order regular 
singular differential equation with variable coefficients. For 
problems with time-independent boundary conditions, only 
numerical methods, such as: the perturbation method [2], the 
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finite difference method [3], and the finite element method [4] 
can be found. Later, Jabbari, Sohrabpour, and Eslami derived 
analytical solutions for thermal stresses of functionally graded 
hollow cylinders whose material properties vary with the 
power product form of the radial coordinate variable due to 
radially symmetric loads [5] and non-axisymmetric loads [6]. 
By using the Laplace transformation and a series expansion of 
Bessel functions, [7] analyzed a one-dimensional transient 
thermo elastic problem with the material properties varying 
with the power-law form of the radial coordinate variable. 
Zhao, Ai, Li, and Zhou [8] analyzed the temperature change 
when the thermal and thermo elastic properties are assumed to 
vary exponentially in the radial direction. And further, [9] 
considered the material properties to be nonlinear with a 
power law distribution through the thickness, while the 
temperature distribution was derived analytically using the 
Bessel functions. 

The study of heat conduction in functionally graded hollow 
cylinders with time-dependent boundary conditions is quite 
limited. Shao and Ma [10] employed Laplace transform 
technique and the series solving method to study thermo 
mechanical stresses in functionally graded hollow cylinders 
with linearly increasing boundary temperatures. Wang and Liu 
[11] used the method of separation variables to develop the 
analytical solution of transient temperature fields for 
two-dimensional transient heat conduction in a 
fiber-reinforced multilayer cylindrical composite. Recently, 
for problems with time-dependent temperatures at boundaries, 
[12] developed exact solutions for heat conduction of a hollow 
cylinder with thermal conductivity and specific heat in power 
functions with different orders. However, their solution 
methodology is not applicable to problems with 
time-dependent heat flux boundary conditions. 

From the literature, it can be seen that the exact solutions 
for heat conduction in nonuniform hollow cylinders with 
variable time-dependent boundary conditions have not yet 
been developed. In this paper, the shifting function method 
[12]-[14] is modified and extended to the problem of heat 
conduction in nonuniform hollow cylinders with 
time-dependent heat flux boundary condition at the outer 
surface. When the thermal conductivity and the specific heat 
of the medium are in polynomial function forms, the exact 
solution of the system can be developed. The proposed 
solution methodology is simple and free of Laplace 
transformation. Finally, the numerical analysis is given to 
depict the procedure of the solution methodology. 
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Fig. 1 A hollow cylinder with time-dependent boundary condition at 
outer surface 

II. MATHEMATICAL MODELING 

Consider the transient heat conduction in a nonuniform 
hollow cylinder with time-dependent boundary condition at 
the outer surface, as shown in Fig. 1. No heat is generated 
within the hollow cylinder. The governing differential 
equation, boundary conditions, and the initial condition of the 
boundary value problem are: 
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Here, r is the space variable, )(rk is the thermal conductivity 

function, ),( trT  is the temperature function,  is the mass 

density, )(rc is the specific heat function, t is the time variable, 

and ba,  are inner and outer radii, respectively. 
1k and 

2k , 

along with 1h and 2h  are the thermal conductivities and the 

heat transfer coefficients at the inner and outer surfaces, 
respectively. )(tF  is the time-dependent heat flux function at 

the outer surface and )(0 rT  is the initial temperature function. 

In terms of the following dimensionless quantities: 
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the boundary value problem now becomes 
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where 

rT  is a reference temperature. 

III. THE SOLUTION METHODOLOGY 

A. Change of Variable 

To find the solution for the second-order differential 
equation with a non-homogeneous boundary condition, the 
shifting function method developed by [12]-[14] was extended, 
by taking: 

 

)()(),(),(  fgv  ,         (10) 
 

where ),( v  is the transformed function and )(g  is a 

shifting function to be specified. 
Substituting (10) into (6-9) yields the following partial 

differential equation along with the boundary conditions and 
initial condition: 
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where ),( F  is defined as: 
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B. The Shifting Function 

To simplify the analysis, the shifting function is specifically 
chosen such that it satisfies the following differential 
equations: 
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Here, the shifting function given by [12] is modified and set in 
the following form 
 

2
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Hence, two constants in the shifting function can be easily 
determined as: 
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C. Reduced Homogeneous Problem 

With the shifting function, (18), the two boundary 
conditions, (12), (13), are reduced to homogeneous ones: 
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Here the transformed initial condition now is: 
 

)()0()()()0,( 00  vfgv  .              (23) 

D. Solution of Transformed Function 

To find the solution, ),( v , we use the series expansion 

theorem and assume the solution to be in the form 
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The dimensionless space variable )(  satisfies the 

following equations: 
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and the separation equation for the dimensionless time 
variable )(q  is: 
  

)(
)( 2 




q
d

dq


,               (28) 

where  ’s denote the corresponding eigenvalues. Now, let 

2,1),( iXi   be the two linearly independent fundamental 

solutions of the boundary value problem; then, the solution of 
(25) can be written as: 
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where 1C  and 2C  are constants to be determined from the 

homogeneous boundary conditions, (26), (27). 
After substituting solutions, (29), into the boundary 

conditions, (26), (27), we will obtain the following 
characteristic equation: 
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Consequently, the eigenvalues ),3,2,1( nn can be 

determined. The associated n -th eigenfunction )(n
 is 

determined as: 
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where )(1, nX  and )(2, nX  are respectively defined as: 
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In terms of eigenfunctions, the transformed function ),( v  
can be expressed as: 
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Substituting solution from (35) into differential (11), 
multiplying it by )()(  mC and integrating   from r  

to 1, the resulting differential equation becomes: 
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As a result, the solution for )(nq  in (36) is: 
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where )0(nq  is determined from the initial condition as: 
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After substituting the solution of the transformed function 

(35) and the shifting function (18) back into (10), the exact 
solution for the system is obtained. 

E. Fundamental Solutions 

In general, the closed-form fundamental solutions of a 
regular singular second-order differential with variable 
coefficients are not available. However, if the physical 
properties of the system can be expressed in arbitrary 
polynomial function forms, then a power series representation 
of the fundamental solutions can be constructed via the 
Frobenius method. 

IV. VERIFICATION AND AN EXAMPLE 

To illustrate the previous analysis and the accuracy of the 
solution methodology, one examines the following example. 
Consider the heat conduction in a non-uniform medium with 

the exponentially time-dependent heat flux at the outer 
surface, 
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where   and   are two parameters. The coefficients of 

thermal conductivity and the specific heat functions are 
chosen as: 
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The boundary value problem of the heat conduction in 
dimensionless form is: 
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Now, ),( F  can be calculated as: 
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The eigenvalues n  and the associated eigenfunctions )( n
 

are obtained from (30), (31) by numerical analysis. The two 
coefficients in (37), (38) are derived as: 
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Consequently, the exact solution for the system can be derived 
as: 
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For convenience in the numerical analysis, we chose the 

parameters, 10  and 4 , and set 111  HK  at the 

inner surface of the hollow cylinder. The temperatures of the 
nonuniform hollow cylinder along the radial direction from 

8.0  to 0.1  at the time 2.0  is investigated and 

shown in Table I. In the case, the thermal conductivity 
function and the specific heat function are chosen 
as 4321)()(   CK . We found that the trend 

of the temperature distribution is all the same in different 2K  

and 
2H . Moreover, it can be observed that the temperature of 

the medium increases as the thermal conductivity 
2K  

increases for the same heat transfer coefficient 
2H . 
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TABLE I 
 TEMPERATURES OF A NONUNIFORM HOLLOW CYLINDER WITH A 

TIME-DEPENDENT HEAT FLUX BOUNDARY CONDITION 

[ 4321)()(   CK , 111  HK , 10 , 4 , 

2.0 ] 

2K  2H  
  

0.80  0.85  0.90  0.95  1.00  

1 1 1.258  0.855  0.648  0.826  0.616  

2 1 1.317  0.893  0.676  0.867  0.648  

3 1 1.385  0.937  0.709  0.916  0.686  

1 2 1.465  0.987  0.746  0.973  0.731  

1 3 1.559  1.046  0.789  1.040  0.783  

 
The influence of the heat transfer coefficient 

2H  at the 

outer surface on the temperature of a nonuniform hollow 
cylinder is shown in Fig. 2. When 12 K  and 9.0 , the 

temperature of the medium decreases as the heat transfer 
coefficient 

2H  increases. The temperatures in all cases reach 

the steady state as time goes to infinite. 
 

 
Fig. 2 Influence of heat transfer coefficient 

2H  on the temperature 

of a nonuniform hollow cylinder 
[ 4321)()(   CK , 

1211  KHK , 10 , 4 , 9.0 ] 

 
Table II offers the temperature variations of various 

nonuniform hollow cylinders at the position, 9.0 . The 

thermal conductivity function )(K and specific heat function 

)(C  are specified by the same polynomial function, and we 

set 122  HK . When )(K and )(C  of the medium are 

increased, the temperature of the medium will increase except 
for 5.0 . From Table II, one can find that the system 
reaches to the steady state as 10 . 

V. CONCLUSION 

The shifting function method was proposed to develop 
exact solutions for the transient heat conduction in nonuniform 
hollow cylinders with time-dependent heat flux boundary 
condition at one surface. This work sets the thermal 
conductivity and the specific heat of the medium in 

polynomial function forms, therefore, the exact solutions of 
the system can be explicitly developed. The influence of 
physical properties on the temperature field of the heat 
conduction system was also investigated. Numerical analysis 
showed the efficiency of the proposed solution methodology. 

 
TABLE II  

TEMPERATURE VARIATIONS OF VARIOUS NONUNIFORM HOLLOW CYLINDERS 
[ 12211  HKHK , 10 , 4 , 9.0 ] 

  
)()(  CK   

4321   321    21   1 1 

0 0 0 0 0 0 

0.02 0.027  0.025  0.020  0.036 0.030 

0.05 0.175  0.166  0.136  0.205 0.174 

0.08 0.397  0.377  0.315  0.444 0.382 

0.1 0.564  0.537  0.453  0.617 0.536 

0.2 1.385  1.322  1.163  1.390 1.252 

0.5 2.514  2.411  2.285  2.212 2.107 

1 2.706  2.599  2.545  2.294 2.215 

10 2.711  2.604  2.558  2.295 2.217 

20 2.711  2.604  2.558  2.295 2.217 
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