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Abstract—The Resource-Constrained Project Scheduling 
Problem (RCPSP) is concerned with single-item or small batch 
production where limited resources have to be allocated to dependent 
activities over time. Over the past few decades, a lot of work has 
been made with the use of optimal solution procedures for this basic 
problem type and its extensions. Brucker and Knust[1] discuss, how 
timetabling problems can be modeled as a RCPSP. Authors discuss 
high school timetabling and university course timetabling problem as 
an example. We have formulated two mathematical formulations of 
course timetabling problem in a new way which are the prototype of 
single-mode RCPSP. Our focus is to show, how course timetabling 
problem can be transformed into RCPSP. We solve this 
transformation model with genetic algorithm.  
 

Keywords—Course Timetabling, Integer programming, 
Combinatorial optimizations 

I. INTRODUCTION 
IMETABLING is a complex combinatorial problem. 
Timetabling can be generally defined as the activity of 

assigning, subject to constraints, a number of events to a 
limited number of time periods and locations such that 
desirable objectives are satisfied as nearly as possible [2]. 
Practical cases where such activity arises are, among others, 
educational timetabling, employee timetabling, sport 
timetabling, transport timetabling and communication 
timetabling. Usually, the solution of such problems is 
decomposed into two stages. In stage one, the assignment is 
performed while in the second stage scheduling decisions are 
taken. For railway and airline crew scheduling, in a first stage, 
scheduling problem is solved by fixing the timetable and the 
routing of trains or airplanes. In a second stage tasks are 
derived and the tasks are assigned to crew members. For 
university and school course teacher timetabling, it is 
decomposed in reverse order. In stage one, courses are 
assigned to teachers and in second phase schedule for courses 
is produced. 
 

A. Educational Timetabling 
Educational timetabling can be sub-divided into three main 

classes, which are school timetabling, course timetabling and 
exam timetabling [3]. In university course timetabling, a set of 
lectures must be scheduled into rooms and timeslots subject to 
constraints that are usually divided in two categories, which 
are hard and soft constraints.  
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Hard constraints must be strictly satisfied with no violation 
allowed, while in the case of soft constraints it is desirable, 
but not essential, to minimize violations. Typical of course 
timetabling, with respect to school and exam timetabling, are 
the availability of a limited number of timeslots and the 
requirements , allocating lectures only into suitable rooms, 
having no more than one lecture per room and scheduling 
lectures with common students in different timeslots. The 
timetabling problem, like many others in the area of 
combinatorial optimization, has been approached by several 
well-known techniques of the operational research and the 
computer science fields. Several surveys on course 
timetabling [4], [5], as well as others on more focused aspects 
of the problem, have managed to record this work in a 
systematic way, categorizing thus the different variations of 
the problem and solution approaches. 

 
B. Basic Single-Mode  RCPSP and  course  Timetabling 
Our purpose is to transform educational timetabling 

problem (course timetabling) to resource constrained project 
scheduling problem. There are major six different classes of 
RCPSP: 1. Basic Single-Mode RCPSP  2. Basic Multi-Mode 
RCPSP 3. RCPSP problems with non regular objective 
functions 4. Stochastic RCPSP 5. Bin-packing-related RCPSP 
problems 6. Multi-resource-constrained project scheduling 
problems. But here we shall only discuss and use single mode 
RCPSP because in timetabling problem, courses are assigned 
to teachers in first stage and total duration for each course is 
also predefined. So by using single mode RCPSP, scheduling 
of these courses could be done. In our formulations we use set 
of lessons instead of set of courses to transform problem in 
RCPSP for that purpose we decompose firstly the courses 
durations into set of lessons. One benefit to transform 
timetabling problem in RCPSP is that durations of lessons can 
be set according to choice but normally solvers take lesson 
length uniform for the easiness and the other thing is that if 
there are precedence constraints (i.e lesson i of duration id  

must be taught before lesson j of duration jd ) between 

lessons then this kind of formulations will be more beneficial 
to use than others timetabling formulations. The other aspect 
of attention is a new dimension of thought and beauty of 
mathematical work which can open new rooms for 
researchers. We are working on the idea that how many other 
features of RCPSP and its generalizations can be attached to 
timetabling problems that these problems could be solved by 
using RCPSP solvers or techniques. 

 
C. The Resource Constrained Project Scheduling Problem 

(RCPSP) 
The classical resource constrained project-scheduling 

problem (RCPSP) may be stated as follows.  
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A project consists of a set of n activities numbered 1 to 
_
j , 

where each activity has to be processed without interruption to 
complete the project. One consider additional activities j = 1 

and j = 
_
j  representing the single source and single sink 

activity of the network respectively. The duration of an 
activity j is denoted by jd , where 1d =0 and −

j
d = 0. There 

are R renewable resource types. The availability of each 
resource type r in each time period t is rta  units, r = 1,…,R. 

Each activity j requires jru units of resource r during each 

period of its duration where ru1  = 0, −
jr

u =0, r = 1,…,R. All 

parameters are assumed to be non-negative integer valued.  
There are precedence relations of the finish-start type with a 

zero parameter value (i.e., FS = 0) defined between the 
activities. In other words, activity i precedes activity j if j 
cannot start until i has been completed. The structure of a 
project can be represented by an activity-on-node network G = 
(V,A), where V is the set of activities and A is the set of 
precedence relationships. jF  ( jP ) is the set of successors 

(predecessors) of activity j. It is assumed that 1∈ jP   ,  j = 

2,…, 

_
j  and 

_
j ∈ jF  j =  1,…, 

_
j -1. The objective of the 

RCPSP is to find a schedule S of the activities, i.e., a set of 
starting times ( −

j
ss ,...,1 ), where 01 =s  and the precedence 

and resource constraints are satisfied, such that the schedule 
duration T(S) = −

j
s  is minimised. 

Our problem is based on non preemptive activities but in 
RCPSP activities could be preempted during processing at  
integer points in time,  i.e., the fixed integer processing 
time jd of activity j may be split into j = 1, 2 , …, jd  process 

units. Time windows can be specified for  every activity, [EFj, 
LFj], which denote the earliest and latest finishing time for 
activity  j, and [ESj, LSj]  which denote the earliest and latest 
starting time for activity j. One can use critical path analysis to 
determine these time windows.  

A schedule S  is called feasible if  in each time period t the 
total resource demand is less than or equal to the availability 
of each resource type r, and the given precedence constraints 
are fulfilled. We call a problem of finding a feasible schedule 

with completion times Cj such that Cj ≤ T for j = 2,…,
_
j -1 a 

search problem or feasibility problem. A search problem with 
threshold value T has a solution if and only if a schedule S 
exists such that the makespan  

)(max)(max
1

2

1

2max jj

j

jj

j

j
dsCC +==

−−
−

=

−

=
 is not greater than 

T. The RCPSP is usually formulated as the problem of finding 

a feasible schedule which minimizes the makespan. Other 
important objective functions besides are based on cost 
functions )(tf j  for the activities. One has to find a feasible 

schedule which minimizes the total costs )(
1

2
j

j

j
j Cf∑

−
−

=

.  

 
II. LITERATURE REVIEW 

The timetabling problems were soIved by many authors, 
some used real data of any university, college or high school 
and some for assumed data. Breslaw [6] provided a solution 
for the faculty assignment problem, a problem closely related 
to the timetabling problem, using linear programming models. 
Schimmelpfeng and Helber [7] described an integer 
programming approach which has been implemented at the 
School of Economics and Management at Hannover 
University, Germany, to create the complete timetable of all 
courses for a term and formulation was solved with CPLEX 
solver. 

Daskalaki and Birbas [8] presented integer programming 
formulation for university timetabling problem. The timetable 
for the Electrical and Computer Engineering Department in 
the University of Patras was used as a case study. Bolanda and 
Hughesa [9] applied blocking strategy, in which the classes 
can be partitioned  into sets of classes (or blocks) that will be 
timetabled  in parallel. The problem of constituting the blocks 
and populating the classes, known as the course blocking and 
population problem. This formulation was made for high 
school timetabling and model was implemented in the 
modelling language AMPL, and solved using the ILOG 
package CPLEX 8.0. Birbas et al.[10] presented a 0–1 integer 
programming model for the timetabling problem of Greek 
high schools. In their model, a binary variable indicates 
whether or not a specific lesson to be taught by a given 
teacher is to be held at a specific time of the week. The model 
generates timetables that satisfy all the hard and soft 
constraining. Werra [3] presented some basic models for 
course timetabling problem and these were described with an 
emphasis on graph theoretical models. 

Mingozzi et al. [11] presented a 0-1 linear programming 
formulation that requires an exponential number of variables 
corresponding to all feasible subsets of activities that can be 
simultaneously executed. Francisco Ballestin et al.[12] study 
the case when pre-emption is allowed for processing jobs. The 
generalized case of this problem is m_PRCPSP, which means 
that one  job can be pre-empted at most m times but case 
studied in this paper is 1_PRCPSP, for reason, it is easy and 
also if one pre-empted in more time, objective function 
normally does not improve. 

Sonke Hartmann and Dirk Briskorn [13] give an overview 
over extensions of the RCPSP such as multiple modes, 
minimal and maximal time lags. The extensions are classified 
according to the structure of the RCPSP. They summarize 
generalizations of the activity concept, of the precedence 
relations of the resource constraints and discuss the notations, 
models and classification schemes. 
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Sonke Hartmann and Rainer Kolisch [14] first present a 
literature survey. They discuss about  X-pass method, in 
which they use SGS ( Serial schedule generation scheme). 
Here they present the results and find out the performance of 
many state of the heuristics on some benchmark instances. 
They compare the results and point out the most performing 
procedure. 

[15] Jat and Yang solved a timetabling problem proposed 
by Metaheuristic Network and spon        sored by PATAT and 
they solved the problem with genetic algorithm. This problem 
was a simple problem which has a few constraints. [16] Jain 
and Chande discussed the problem of their university. They 
expressed the problem and proposed a genetic algorithm but 
did not solve any problem to test their algorithm. [17] Salwani 
Abdullah , Hamza Turabieh proposed memetic algorithm 
which hybridises a genetic algorithm with a Tabu Search 
Algorithm. This algorithm uses neighbourhood structures 
during the search process to get   significant improvements in 
solution quality.  They use International timetabling 
competition track curriculum based course timetabling (ITC 
2007: CB-CTT) instances for numerical application. 

 
III. GENERAL FEATURES OF THE MODELS 

In this section we shall define our sets and sub sets, which 
will be used in our formulations. 

- A set of lessons J ={1,…, 
_
j }.  

- A set of types of rooms R= {1,…, r }.  

- A set of rooms Y= {1,…, 
−

y }.  
- A set of time periods T ={1,…, t }. T is a set of time 

periods, which all have same length. 
- A set of classes C={1,…, c }. Class is a set of lessons 

which have common students.  

- A set of teachers P ={1,…, 
_
p }. Each lesson will have a 

teacher previously assigned to it. 
Some additional parameters and sets are defined on the 

basis of previous sets to make easy the presentation of model. 
 rta = Availability of rooms of type r in period t 

jru = Use of room type r per period by job j, which is 

always one 

pJ =Set of lessons taught by teacher p 

rJ = Set of lessons requiring rooms of type r 

rY = Set of rooms of type r 

jd = Duration of lesson j 

jES = Earliest starting time of lesson j 

jLF =  Latest finishing time of lesson j 

jP = Set of lessons which immediately precede lesson j 

jF = Set of lessons which immediately follow lesson j 

Lesson 1 and lesson 
_
j  are dummy lessons, which are 

called generally source and sink. To ease presentation, 
durations and resource usages for these lessons is considered 
zero. Earliest starting and latest finishing times can be 
obtained by a forward and backward pass respectively. 
Starting with 1ES = 1EF = 0, the forward pass calculates 
earliest starting and finishing times as follows.  

 

jES = max{ iEF / i∈ jP } ;  

jEF =  jES + jd  for  j = 2,…, 
_
j . 

The backward pass is performed beginning with −
j

LF = 

−
j

LS = t . This gives latest finishing and starting times 

jLF and jLS  as follows. 

jLF = min{ hLS / h∈ jF } ; jLS = jLF - jd  for  j = 
_
j -

1,…,1 
 
E(t) = {j /J and jES + 1 ≤ t ≤ jLF }. This is a set of 

lessons which are eligible to schedule for a period t. 
 
The latest finishing and earliest starting times correspond to 

time points delimiting periods. So it is important to clear 
difference of time period and time point for better 
understanding of the formulation. Two time points t and t+1 
define the start and the end of period t+1 respectively. If 
earliest starting time of any lesson is jES  then the earliest 

time period for its execution could be 1+jES . 

A. The Mathematical Formulations 
We have formulated timetabling problem in a two different 

ways on the prototype of Resource constrained project 
scheduling problem. The purpose of writing two models was 
to express two different thoughts about same problem. These 
are two logics to demonstrate the same timetabling problem. 
We have used the objective function, which was used in 
classical article of D. de WERRA [3].   
 

B. Mathematical Model 1 
With these variables, this is our first formulation.  
 

{ jtx = 1 if lesson j is scheduled in period t, jtx = 0 

otherwise;} for  j∈J and t∈T 
Max jt

Tt Jj
jt dx∑∑

∈ ∈

      where jtd  is the desirability to 

happen of lesson j in period t.                 

∑
∈Tt

jtx = jd      j∈J                                              (1) 
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The constraint (1) ensure that each lesson is scheduled for 

jd  periods. 

0).(
1

1, ≤−− ∑
+=

+

t

ESq
jttjjtj

j

xxxd          j∈J   and    

t∈[ jES + 1,…,
 

1−jLF ]                    (2) 

The constraint (2) is a non preemption constraint which 
ensures that processing of each lesson is not interrupted. 

0.
1

1

≤− ∑
−

+=

t

ESq
itjti

i

xxd          j∈J ,  i jP∈ ,  

t∈[ jES + 1,…,
 iLF ]                                     (3) 

The constraint (3) shows that a lesson j must not be started 
before all its predecessors have been processed completely. 

rtjt
tEj

jr axu ≤∑
∈

.
)(

 r ∈  R and Tt ∈        (4)                                                       

The constraint (4) proves that the number of lessons 
scheduled in period t requiring rooms of type r will be less 
than or equal to the number of rooms of type r available at 
period t. 

 1≤∑
∈ pJj

jtx     Tt ∈  and Pp ∈          (5)                                                                   

The constraint (5) demonstrates that teacher p cannot teach 
more than one lesson at period t. 

 1≤∑
∈cj

jtx         Tt ∈  and Cc ∈                (6)                                                                   

 The constraint (6) ensures that class c cannot attend more 
than one lesson at period t.  

 
∈jtx  {0,1}                                    j∈J   and   Tt ∈       

 
Where jtd is desirability to schedule lesson j in period t. 

Basically this is preference to teach lecture for teachers in 
time periods because sometimes they are performing some 
other administration duties and some teaching periods are 
more suitable for them than others.  

Objective function can be used according to demand, if one 
wants to schedule these lessons as early as possible, one can 

use Min ∑
−

−

+=

j

n

LF

ESt jt
xt

1
. , which is same as one uses in RCPSP 

(minimize the project completion time). 
 
C. Mathematical model 2 
The second formulation is proposed using these variables. 

This is equivalent to the first formulation. 
{ jytx = 1 if lesson j is scheduled in period t at room y, jtx =  

0 otherwise;}  for  j∈J , y Y∈  and t∈T 

Max jt
Tt Jj

jyt
Yy

dx∑∑∑
∈ ∈∈

                      

 

∑∑
∈∈ Tt

jyt
Yy

x = jd                                        j∈J       (7)                   

 

0).(
1

1, ≤−− ∑∑∑
+=∈

+
∈

t

ESq
jyt

Yy
tjjytj

Yy j

xxxd          j∈J   and    

t∈ [ jES + 1,…,
 

1−jLF ]         (8) 

 

0.
1

1
≤− ∑∑∑

−

+=∈

t

ESq
iyt

yeY
jyti

Yy i

xxd          j∈J ,  i jP∈ , 

t∈[ jES + 1,…,
 iLF ]                          (9) 

rt
Jj Yy

jyt ax
r r

≤∑ ∑
∈ ∈

          r ∈  R and Tt ∈                 (10)                   

 
1≤∑∑

∈∈ pJj
jyt

Yy
x             Tt ∈  and Pp ∈       (11)                   

 
 

1≤∑∑
∈∈ cj

jyt
Yy

x  Tt ∈  and Cc ∈             (12)                   

 
∈jytx  {0,1}                                  y Y∈ ,  j∈J   and   

Tt ∈       
 
The constraints 1 and 7, 2 and 8, 3 and 9, 4 and 10, 5 

and11, 6 and12 are representing the same constraints. 
 

IV. THE GENETIC ALGORITHM 
Genetic algorithms are metaheuristics which mimics the 

process of natural evolution. John Holland’s book 
“Adaptation in natural and artificial systems” as well as De 
Jong’s “Adaptation of the behavior of a class of genetic 
adaptive systems,” both published in 1975, are seen as the 
foundation of Genetic Algorithms (GAs) [18].  

GAs have been used for timetabling since 1990 [19]. Since 
then, there are a number of papers investigating and applying 
GA methods for the Course timetabling problem [20]. 

 
Algorithm: Pseudo code for Genetic Algorithm  
input : A problem instance I 
set the generation counter g := 0 
{initialize a random population} 
while (solution_colony. population_size < n) do 
 create an empty timetable 
    assign the lessons randomly  
 timetable after applying Two step Verification  
    calculate the cost of timetable 
    enter this timetable to the population colony 
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end while 
while the termination condition is not reached do 
 kill costly timetables of the colony 
        while (solution_colony. population_size < n) do 
           choose two parents via Roulette Wheel Selection  
           randomly choose crossover points 
           swap genetic material between two chromosomes. 
           child solution generated by applying  the 

crossover             operator with a cross over rate 
  child solution after mutation with a mutation rate 
Calculate the cost of child solution 
   enter this child timetable to the population colony 
end while 
 g := g + 1 
 end while 
 output : The best achieved solution for the problem 

instance I 
 

     A. Chromosome Representation 
The timetable is a collection of each room timetable, room 

timetable is a two dimensional array. If no lesson is booked in 
any time period, it is called null booking which has value 
zero. Every timetable stores information that which lesson is 
placed in which room at what time on which day of the week, 
each booking is one gene. A time table has many fields to 
store information about its genetics, costs, number of 
violations of constraints. A population is a collection of 
timetables, which also have many fields to store information 
about timetables like less costly timetable, most costly 
timetable, average cost, average number of violations of  
constraints and the total number of  timetables in population. 
Timetables are ordered from least costly to most costly. A two 
stage verification strategy is used which ensures that each 
lesson of a course is scheduled exactly once. It is done in two 
steps, in first step checking each lesson which appear more 
than once altered in such a way that it appear exactly once and 
in second step any lessons which did not appear are booked to 
spare spaces randomly.  

The benefit of this representation is that room must not be 
double booked and every lesson must be scheduled at once. 

A university timetable stores information about what 
classes are booked in each room, at any hour of the day, on 
any day of the week. Each of these bookings (or NULL 
bookings) is one gene. A timetable also has fields which 
describe (decode) some aspect of this genetic information. A 
timetable has a field which stores its cost. It also has fields 
which store the number of breaches of each type of hard 
constraint. 

 
B. Evaluation 
Each timetable is evaluated when considering all 

constraints. 

If M={1,…, 
_
m }is the set of total constraints for problem 

and α  is the total number of violations of constraint m∈  M.  

If iϑ  is the penality of ith violation of constraint m∈  M 
then cost of a chromosome could be determine with this 
formula. 

Fitness value of a timetable = ∑
∈Mm

mP )( , where 

∑
=

=
α

ϑ
1

)(
i

imP   

 
C. Genetic Operators 
1) Roulette wheel Selection 
This genetic operator is used to select potentially useful 

solutions for recombination. We select Time tables with 
Roulette wheel selection from the population for breeding. 

2) Crossover 
We select timetables for breeding with roulette wheel 

selection from population. Unity order based cross over is 
applied on parents to bred a child. In this way each parent has 
an equal chance of providing each gene for child. 

3) Mutation 
Mutation is used to avoid from getting trapped on local 

optima. Probability that a gene will undergo mutation is  2 * 
Mutation rate /1000. 

We have used an elitist natural selection operator for 
timetables eradication because timetables are in ordered link 
list, so its easy to use. We eradicate 50 % of timetables in each 
generation.  

 
V. DATA GENERATION 

We generate data for our algorithm randomly. Total 
numbers of lessons, classes, teachers, rooms, room types, total 
number of periods are fixed.  
1. For each class, number of lessons is randomly generated 

from 4 to 20; a lesson can be part of more than one class. 
2. Each lesson is assigned randomly to a teacher in such a way 

that each teacher must have a minimum two lessons to 
teach. 

3. Every lesson is randomly assigned a room type from a 
given set of room types (laboratory, with computers, 
projector or any other equipment). 

4. Each lesson has 1 to 2 predecessors chosen randomly in 
such a way that they must satisfy the feasibility. 
Infeasibility means that lesson a is preceded by b and b is 
preceded by a. 

5. Each lesson’s duration is randomly chosen between 1 and 
3. 

6. We generate randomly a desirability chart for each size 
problem in such a way that 80 % values of the matrix 
(integer value only) are 1 and remaining others are 0. 
 

VI. EXPERIMENTAL RESULTS 
To check the performance and efficiency of the algorithm, 

we apply the algorithm on randomly generated instances. We 
have generated 6 small, 6 medium and 6 large size problem 
instances for this purpose.  
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The program is coded in C and run on a Intel 2.5 GHz 
RAM 3.5 Go pc. We run algorithm 10 times for each problem 
instance to see its performance in detail. 

For small size problem instances, we take, J=50, P=7, C=4, 
Y=3, R=1, T=40, TD=90, where J is number of lessons, P is 
number of teachers, C is number of classes, Y number of  
rooms, R number of room types, T is number of periods, TD 
is the total duration used by all lessons. After running each 
problem instance 10 times, we have got maximum cost 87 and 
minimum cost 79.  

For medium size problem instances, we take, J=120, P=24, 
C=14, Y=8, R=2, T=40, TD=240. After running each problem 
instance 10 times, we have got maximum cost 235 and 
minimum cost 223. 

For large size problem instances, we take, J=220, P=40, 
C=25, Y=13, R=3, T=40, TD=450. After running each 
problem instance 10 times, we have got maximum cost 438 
and minimum cost 421. 

Our stopping criteria for algorithm is maximum cost 90, 
240, 450 for small, medium, large instances respectively or 
2000 iterations, which comes first. Parameters for genetic 
algorithm are as follows: mutation rate = 6, crossover rate =2, 
population size for small and medium problem = 100, 
population size for large problem 250. Reason behind taking 
big population size for large problem is that it enhances 
diversity and reduces the number of generations. 

 
VII. CONCLUSION AND FUTURE WORK 

An introduction to timetabling and RCPSP is given. We 
have proposed two equivalent mathematical formulations 
which are based on RCPSP.  

The course timetabling problem can be formulated to 
RCPSP by using these models. We use genetic algorithm to 
solve problem. We get promising results but comparison with 
other techniques is difficult.  Because these formulations 
transform timetabling problem into RCPSP but in literature 
most treated timetabling problems have different constraints 
than this problem. Literature timetabling problems focus on 
any real data problem or any generalized problem which have 
a lot of constraints.  

Our purpose for this article is not to deal many constraints 
but is to provide a theoretical foundation for transformation of 
these two famous problems on analogous bases. 

We are working on the university course timetabling 
problem and we would like to add some more features of 
RCPSP and correlate them to timetabling problem. 
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