
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1383

Abstract—The Resource-Constrained Project Scheduling
Problem (RCPSP) is concerned with single-item or small batch
production where limited resources have to be allocated to dependent
activities over time. Over the past few decades, a lot of work has
been made with the use of optimal solution procedures for this basic
problem type and its extensions. Brucker and Knust[1] discuss, how
timetabling problems can be modeled as a RCPSP. Authors discuss
high school timetabling and university course timetabling problem as
an example. We have formulated two mathematical formulations of
course timetabling problem in a new way which are the prototype of
single-mode RCPSP. Our focus is to show, how course timetabling
problem can be transformed into RCPSP. We solve this
transformation model with genetic algorithm.

Keywords—Course Timetabling, Integer programming,
Combinatorial optimizations

I. INTRODUCTION
IMETABLING is a complex combinatorial problem.
Timetabling can be generally defined as the activity of

assigning, subject to constraints, a number of events to a
limited number of time periods and locations such that
desirable objectives are satisfied as nearly as possible [2].
Practical cases where such activity arises are, among others,
educational timetabling, employee timetabling, sport
timetabling, transport timetabling and communication
timetabling. Usually, the solution of such problems is
decomposed into two stages. In stage one, the assignment is
performed while in the second stage scheduling decisions are
taken. For railway and airline crew scheduling, in a first stage,
scheduling problem is solved by fixing the timetable and the
routing of trains or airplanes. In a second stage tasks are
derived and the tasks are assigned to crew members. For
university and school course teacher timetabling, it is
decomposed in reverse order. In stage one, courses are
assigned to teachers and in second phase schedule for courses
is produced.

A. Educational Timetabling
Educational timetabling can be sub-divided into three main

classes, which are school timetabling, course timetabling and
exam timetabling [3]. In university course timetabling, a set of
lectures must be scheduled into rooms and timeslots subject to
constraints that are usually divided in two categories, which
are hard and soft constraints.

M. Ahmad, Limos ; Université Blaise Pascal, Campus des Cézeaux-BP

10125, 63173 Aubière, France (phone: 33-473-407443; e-mail: maqsood@
isima.fr).

M. Gourgand, Limos ; Université Blaise Pascal, Campus des Cézeaux-BP
10125, 63173 Aubière, France (e-mail: michel.Gourgand@ isima.fr).

C. Caux, Limos ; Université Blaise Pascal, Campus des Cézeaux-BP
10125, 63173 Aubière, France (e-mail: christophe.caux@ ifma.fr).

Hard constraints must be strictly satisfied with no violation
allowed, while in the case of soft constraints it is desirable,
but not essential, to minimize violations. Typical of course
timetabling, with respect to school and exam timetabling, are
the availability of a limited number of timeslots and the
requirements , allocating lectures only into suitable rooms,
having no more than one lecture per room and scheduling
lectures with common students in different timeslots. The
timetabling problem, like many others in the area of
combinatorial optimization, has been approached by several
well-known techniques of the operational research and the
computer science fields. Several surveys on course
timetabling [4], [5], as well as others on more focused aspects
of the problem, have managed to record this work in a
systematic way, categorizing thus the different variations of
the problem and solution approaches.

B. Basic Single-Mode RCPSP and course Timetabling
Our purpose is to transform educational timetabling

problem (course timetabling) to resource constrained project
scheduling problem. There are major six different classes of
RCPSP: 1. Basic Single-Mode RCPSP 2. Basic Multi-Mode
RCPSP 3. RCPSP problems with non regular objective
functions 4. Stochastic RCPSP 5. Bin-packing-related RCPSP
problems 6. Multi-resource-constrained project scheduling
problems. But here we shall only discuss and use single mode
RCPSP because in timetabling problem, courses are assigned
to teachers in first stage and total duration for each course is
also predefined. So by using single mode RCPSP, scheduling
of these courses could be done. In our formulations we use set
of lessons instead of set of courses to transform problem in
RCPSP for that purpose we decompose firstly the courses
durations into set of lessons. One benefit to transform
timetabling problem in RCPSP is that durations of lessons can
be set according to choice but normally solvers take lesson
length uniform for the easiness and the other thing is that if
there are precedence constraints (i.e lesson i of duration id

must be taught before lesson j of duration jd) between

lessons then this kind of formulations will be more beneficial
to use than others timetabling formulations. The other aspect
of attention is a new dimension of thought and beauty of
mathematical work which can open new rooms for
researchers. We are working on the idea that how many other
features of RCPSP and its generalizations can be attached to
timetabling problems that these problems could be solved by
using RCPSP solvers or techniques.

C. The Resource Constrained Project Scheduling Problem

(RCPSP)
The classical resource constrained project-scheduling

problem (RCPSP) may be stated as follows.

M. Ahmad, M. Gourgand, C. Caux

Transformation of Course Timetablinng
Problem to RCPSP

T

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1384

A project consists of a set of n activities numbered 1 to
_
j ,

where each activity has to be processed without interruption to
complete the project. One consider additional activities j = 1

and j =
_
j representing the single source and single sink

activity of the network respectively. The duration of an
activity j is denoted by jd , where 1d =0 and −

j
d = 0. There

are R renewable resource types. The availability of each
resource type r in each time period t is rta units, r = 1,…,R.

Each activity j requires jru units of resource r during each

period of its duration where ru1 = 0, −
jr

u =0, r = 1,…,R. All

parameters are assumed to be non-negative integer valued.
There are precedence relations of the finish-start type with a

zero parameter value (i.e., FS = 0) defined between the
activities. In other words, activity i precedes activity j if j
cannot start until i has been completed. The structure of a
project can be represented by an activity-on-node network G =
(V,A), where V is the set of activities and A is the set of
precedence relationships. jF (jP) is the set of successors

(predecessors) of activity j. It is assumed that 1∈ jP , j =

2,…,

_
j and

_
j ∈ jF j = 1,…,

_
j -1. The objective of the

RCPSP is to find a schedule S of the activities, i.e., a set of
starting times (−

j
ss ,...,1), where 01 =s and the precedence

and resource constraints are satisfied, such that the schedule
duration T(S) = −

j
s is minimised.

Our problem is based on non preemptive activities but in
RCPSP activities could be preempted during processing at
integer points in time, i.e., the fixed integer processing
time jd of activity j may be split into j = 1, 2 , …, jd process

units. Time windows can be specified for every activity, [EFj,
LFj], which denote the earliest and latest finishing time for
activity j, and [ESj, LSj] which denote the earliest and latest
starting time for activity j. One can use critical path analysis to
determine these time windows.

A schedule S is called feasible if in each time period t the
total resource demand is less than or equal to the availability
of each resource type r, and the given precedence constraints
are fulfilled. We call a problem of finding a feasible schedule

with completion times Cj such that Cj ≤ T for j = 2,…,
_
j -1 a

search problem or feasibility problem. A search problem with
threshold value T has a solution if and only if a schedule S
exists such that the makespan

)(max)(max
1

2

1

2max jj

j

jj

j

j
dsCC +==

−−
−

=

−

=
 is not greater than

T. The RCPSP is usually formulated as the problem of finding

a feasible schedule which minimizes the makespan. Other
important objective functions besides are based on cost
functions)(tf j for the activities. One has to find a feasible

schedule which minimizes the total costs)(
1

2
j

j

j
j Cf∑

−
−

=

.

II. LITERATURE REVIEW

The timetabling problems were soIved by many authors,
some used real data of any university, college or high school
and some for assumed data. Breslaw [6] provided a solution
for the faculty assignment problem, a problem closely related
to the timetabling problem, using linear programming models.
Schimmelpfeng and Helber [7] described an integer
programming approach which has been implemented at the
School of Economics and Management at Hannover
University, Germany, to create the complete timetable of all
courses for a term and formulation was solved with CPLEX
solver.

Daskalaki and Birbas [8] presented integer programming
formulation for university timetabling problem. The timetable
for the Electrical and Computer Engineering Department in
the University of Patras was used as a case study. Bolanda and
Hughesa [9] applied blocking strategy, in which the classes
can be partitioned into sets of classes (or blocks) that will be
timetabled in parallel. The problem of constituting the blocks
and populating the classes, known as the course blocking and
population problem. This formulation was made for high
school timetabling and model was implemented in the
modelling language AMPL, and solved using the ILOG
package CPLEX 8.0. Birbas et al.[10] presented a 0–1 integer
programming model for the timetabling problem of Greek
high schools. In their model, a binary variable indicates
whether or not a specific lesson to be taught by a given
teacher is to be held at a specific time of the week. The model
generates timetables that satisfy all the hard and soft
constraining. Werra [3] presented some basic models for
course timetabling problem and these were described with an
emphasis on graph theoretical models.

Mingozzi et al. [11] presented a 0-1 linear programming
formulation that requires an exponential number of variables
corresponding to all feasible subsets of activities that can be
simultaneously executed. Francisco Ballestin et al.[12] study
the case when pre-emption is allowed for processing jobs. The
generalized case of this problem is m_PRCPSP, which means
that one job can be pre-empted at most m times but case
studied in this paper is 1_PRCPSP, for reason, it is easy and
also if one pre-empted in more time, objective function
normally does not improve.

Sonke Hartmann and Dirk Briskorn [13] give an overview
over extensions of the RCPSP such as multiple modes,
minimal and maximal time lags. The extensions are classified
according to the structure of the RCPSP. They summarize
generalizations of the activity concept, of the precedence
relations of the resource constraints and discuss the notations,
models and classification schemes.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1385

Sonke Hartmann and Rainer Kolisch [14] first present a
literature survey. They discuss about X-pass method, in
which they use SGS (Serial schedule generation scheme).
Here they present the results and find out the performance of
many state of the heuristics on some benchmark instances.
They compare the results and point out the most performing
procedure.

[15] Jat and Yang solved a timetabling problem proposed
by Metaheuristic Network and spon sored by PATAT and
they solved the problem with genetic algorithm. This problem
was a simple problem which has a few constraints. [16] Jain
and Chande discussed the problem of their university. They
expressed the problem and proposed a genetic algorithm but
did not solve any problem to test their algorithm. [17] Salwani
Abdullah , Hamza Turabieh proposed memetic algorithm
which hybridises a genetic algorithm with a Tabu Search
Algorithm. This algorithm uses neighbourhood structures
during the search process to get significant improvements in
solution quality. They use International timetabling
competition track curriculum based course timetabling (ITC
2007: CB-CTT) instances for numerical application.

III. GENERAL FEATURES OF THE MODELS

In this section we shall define our sets and sub sets, which
will be used in our formulations.

- A set of lessons J ={1,…,
_
j }.

- A set of types of rooms R= {1,…, r }.

- A set of rooms Y= {1,…,
−

y }.
- A set of time periods T ={1,…, t }. T is a set of time

periods, which all have same length.
- A set of classes C={1,…, c }. Class is a set of lessons

which have common students.

- A set of teachers P ={1,…,
_
p }. Each lesson will have a

teacher previously assigned to it.
Some additional parameters and sets are defined on the

basis of previous sets to make easy the presentation of model.
 rta = Availability of rooms of type r in period t

jru = Use of room type r per period by job j, which is

always one

pJ =Set of lessons taught by teacher p

rJ = Set of lessons requiring rooms of type r

rY = Set of rooms of type r

jd = Duration of lesson j

jES = Earliest starting time of lesson j

jLF = Latest finishing time of lesson j

jP = Set of lessons which immediately precede lesson j

jF = Set of lessons which immediately follow lesson j

Lesson 1 and lesson
_
j are dummy lessons, which are

called generally source and sink. To ease presentation,
durations and resource usages for these lessons is considered
zero. Earliest starting and latest finishing times can be
obtained by a forward and backward pass respectively.
Starting with 1ES = 1EF = 0, the forward pass calculates
earliest starting and finishing times as follows.

jES = max{ iEF / i∈ jP } ;

jEF = jES + jd for j = 2,…,
_
j .

The backward pass is performed beginning with −
j

LF =

−
j

LS = t . This gives latest finishing and starting times

jLF and jLS as follows.

jLF = min{ hLS / h∈ jF } ; jLS = jLF - jd for j =
_
j -

1,…,1

E(t) = {j /J and jES + 1 ≤ t ≤ jLF }. This is a set of

lessons which are eligible to schedule for a period t.

The latest finishing and earliest starting times correspond to

time points delimiting periods. So it is important to clear
difference of time period and time point for better
understanding of the formulation. Two time points t and t+1
define the start and the end of period t+1 respectively. If
earliest starting time of any lesson is jES then the earliest

time period for its execution could be 1+jES .

A. The Mathematical Formulations
We have formulated timetabling problem in a two different

ways on the prototype of Resource constrained project
scheduling problem. The purpose of writing two models was
to express two different thoughts about same problem. These
are two logics to demonstrate the same timetabling problem.
We have used the objective function, which was used in
classical article of D. de WERRA [3].

B. Mathematical Model 1
With these variables, this is our first formulation.

{ jtx = 1 if lesson j is scheduled in period t, jtx = 0

otherwise;} for j∈J and t∈T
Max jt

Tt Jj
jt dx∑∑

∈ ∈

 where jtd is the desirability to

happen of lesson j in period t.

∑
∈Tt

jtx = jd j∈J (1)

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1386

The constraint (1) ensure that each lesson is scheduled for

jd periods.

0).(
1

1, ≤−− ∑
+=

+

t

ESq
jttjjtj

j

xxxd j∈J and

t∈[jES + 1,…,

1−jLF] (2)

The constraint (2) is a non preemption constraint which
ensures that processing of each lesson is not interrupted.

0.
1

1

≤− ∑
−

+=

t

ESq
itjti

i

xxd j∈J , i jP∈ ,

t∈[jES + 1,…,
 iLF] (3)

The constraint (3) shows that a lesson j must not be started
before all its predecessors have been processed completely.

rtjt
tEj

jr axu ≤∑
∈

.
)(

 r ∈ R and Tt ∈ (4)

The constraint (4) proves that the number of lessons
scheduled in period t requiring rooms of type r will be less
than or equal to the number of rooms of type r available at
period t.

 1≤∑
∈ pJj

jtx Tt ∈ and Pp ∈ (5)

The constraint (5) demonstrates that teacher p cannot teach
more than one lesson at period t.

 1≤∑
∈cj

jtx Tt ∈ and Cc ∈ (6)

 The constraint (6) ensures that class c cannot attend more
than one lesson at period t.

∈jtx {0,1} j∈J and Tt ∈

Where jtd is desirability to schedule lesson j in period t.

Basically this is preference to teach lecture for teachers in
time periods because sometimes they are performing some
other administration duties and some teaching periods are
more suitable for them than others.

Objective function can be used according to demand, if one
wants to schedule these lessons as early as possible, one can

use Min ∑
−

−

+=

j

n

LF

ESt jt
xt

1
. , which is same as one uses in RCPSP

(minimize the project completion time).

C. Mathematical model 2
The second formulation is proposed using these variables.

This is equivalent to the first formulation.
{ jytx = 1 if lesson j is scheduled in period t at room y, jtx =

0 otherwise;} for j∈J , y Y∈ and t∈T

Max jt
Tt Jj

jyt
Yy

dx∑∑∑
∈ ∈∈

∑∑
∈∈ Tt

jyt
Yy

x = jd j∈J (7)

0).(
1

1, ≤−− ∑∑∑
+=∈

+
∈

t

ESq
jyt

Yy
tjjytj

Yy j

xxxd j∈J and

t∈ [jES + 1,…,

1−jLF] (8)

0.
1

1
≤− ∑∑∑

−

+=∈

t

ESq
iyt

yeY
jyti

Yy i

xxd j∈J , i jP∈ ,

t∈[jES + 1,…,
 iLF] (9)

rt
Jj Yy

jyt ax
r r

≤∑ ∑
∈ ∈

 r ∈ R and Tt ∈ (10)

1≤∑∑

∈∈ pJj
jyt

Yy
x Tt ∈ and Pp ∈ (11)

1≤∑∑
∈∈ cj

jyt
Yy

x Tt ∈ and Cc ∈ (12)

∈jytx {0,1} y Y∈ , j∈J and

Tt ∈

The constraints 1 and 7, 2 and 8, 3 and 9, 4 and 10, 5

and11, 6 and12 are representing the same constraints.

IV. THE GENETIC ALGORITHM
Genetic algorithms are metaheuristics which mimics the

process of natural evolution. John Holland’s book
“Adaptation in natural and artificial systems” as well as De
Jong’s “Adaptation of the behavior of a class of genetic
adaptive systems,” both published in 1975, are seen as the
foundation of Genetic Algorithms (GAs) [18].

GAs have been used for timetabling since 1990 [19]. Since
then, there are a number of papers investigating and applying
GA methods for the Course timetabling problem [20].

Algorithm: Pseudo code for Genetic Algorithm
input : A problem instance I
set the generation counter g := 0
{initialize a random population}
while (solution_colony. population_size < n) do
 create an empty timetable
 assign the lessons randomly
 timetable after applying Two step Verification
 calculate the cost of timetable
 enter this timetable to the population colony

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1387

end while
while the termination condition is not reached do
 kill costly timetables of the colony
 while (solution_colony. population_size < n) do
 choose two parents via Roulette Wheel Selection
 randomly choose crossover points
 swap genetic material between two chromosomes.
 child solution generated by applying the

crossover operator with a cross over rate
 child solution after mutation with a mutation rate
Calculate the cost of child solution
 enter this child timetable to the population colony
end while
 g := g + 1
 end while
 output : The best achieved solution for the problem

instance I

 A. Chromosome Representation
The timetable is a collection of each room timetable, room

timetable is a two dimensional array. If no lesson is booked in
any time period, it is called null booking which has value
zero. Every timetable stores information that which lesson is
placed in which room at what time on which day of the week,
each booking is one gene. A time table has many fields to
store information about its genetics, costs, number of
violations of constraints. A population is a collection of
timetables, which also have many fields to store information
about timetables like less costly timetable, most costly
timetable, average cost, average number of violations of
constraints and the total number of timetables in population.
Timetables are ordered from least costly to most costly. A two
stage verification strategy is used which ensures that each
lesson of a course is scheduled exactly once. It is done in two
steps, in first step checking each lesson which appear more
than once altered in such a way that it appear exactly once and
in second step any lessons which did not appear are booked to
spare spaces randomly.

The benefit of this representation is that room must not be
double booked and every lesson must be scheduled at once.

A university timetable stores information about what
classes are booked in each room, at any hour of the day, on
any day of the week. Each of these bookings (or NULL
bookings) is one gene. A timetable also has fields which
describe (decode) some aspect of this genetic information. A
timetable has a field which stores its cost. It also has fields
which store the number of breaches of each type of hard
constraint.

B. Evaluation
Each timetable is evaluated when considering all

constraints.

If M={1,…,
_
m }is the set of total constraints for problem

and α is the total number of violations of constraint m∈ M.

If iϑ is the penality of ith violation of constraint m∈ M
then cost of a chromosome could be determine with this
formula.

Fitness value of a timetable = ∑
∈Mm

mP)(, where

∑
=

=
α

ϑ
1

)(
i

imP

C. Genetic Operators
1) Roulette wheel Selection
This genetic operator is used to select potentially useful

solutions for recombination. We select Time tables with
Roulette wheel selection from the population for breeding.

2) Crossover
We select timetables for breeding with roulette wheel

selection from population. Unity order based cross over is
applied on parents to bred a child. In this way each parent has
an equal chance of providing each gene for child.

3) Mutation
Mutation is used to avoid from getting trapped on local

optima. Probability that a gene will undergo mutation is 2 *
Mutation rate /1000.

We have used an elitist natural selection operator for
timetables eradication because timetables are in ordered link
list, so its easy to use. We eradicate 50 % of timetables in each
generation.

V. DATA GENERATION

We generate data for our algorithm randomly. Total
numbers of lessons, classes, teachers, rooms, room types, total
number of periods are fixed.
1. For each class, number of lessons is randomly generated

from 4 to 20; a lesson can be part of more than one class.
2. Each lesson is assigned randomly to a teacher in such a way

that each teacher must have a minimum two lessons to
teach.

3. Every lesson is randomly assigned a room type from a
given set of room types (laboratory, with computers,
projector or any other equipment).

4. Each lesson has 1 to 2 predecessors chosen randomly in
such a way that they must satisfy the feasibility.
Infeasibility means that lesson a is preceded by b and b is
preceded by a.

5. Each lesson’s duration is randomly chosen between 1 and
3.

6. We generate randomly a desirability chart for each size
problem in such a way that 80 % values of the matrix
(integer value only) are 1 and remaining others are 0.

VI. EXPERIMENTAL RESULTS
To check the performance and efficiency of the algorithm,

we apply the algorithm on randomly generated instances. We
have generated 6 small, 6 medium and 6 large size problem
instances for this purpose.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1388

The program is coded in C and run on a Intel 2.5 GHz
RAM 3.5 Go pc. We run algorithm 10 times for each problem
instance to see its performance in detail.

For small size problem instances, we take, J=50, P=7, C=4,
Y=3, R=1, T=40, TD=90, where J is number of lessons, P is
number of teachers, C is number of classes, Y number of
rooms, R number of room types, T is number of periods, TD
is the total duration used by all lessons. After running each
problem instance 10 times, we have got maximum cost 87 and
minimum cost 79.

For medium size problem instances, we take, J=120, P=24,
C=14, Y=8, R=2, T=40, TD=240. After running each problem
instance 10 times, we have got maximum cost 235 and
minimum cost 223.

For large size problem instances, we take, J=220, P=40,
C=25, Y=13, R=3, T=40, TD=450. After running each
problem instance 10 times, we have got maximum cost 438
and minimum cost 421.

Our stopping criteria for algorithm is maximum cost 90,
240, 450 for small, medium, large instances respectively or
2000 iterations, which comes first. Parameters for genetic
algorithm are as follows: mutation rate = 6, crossover rate =2,
population size for small and medium problem = 100,
population size for large problem 250. Reason behind taking
big population size for large problem is that it enhances
diversity and reduces the number of generations.

VII. CONCLUSION AND FUTURE WORK

An introduction to timetabling and RCPSP is given. We
have proposed two equivalent mathematical formulations
which are based on RCPSP.

The course timetabling problem can be formulated to
RCPSP by using these models. We use genetic algorithm to
solve problem. We get promising results but comparison with
other techniques is difficult. Because these formulations
transform timetabling problem into RCPSP but in literature
most treated timetabling problems have different constraints
than this problem. Literature timetabling problems focus on
any real data problem or any generalized problem which have
a lot of constraints.

Our purpose for this article is not to deal many constraints
but is to provide a theoretical foundation for transformation of
these two famous problems on analogous bases.

We are working on the university course timetabling
problem and we would like to add some more features of
RCPSP and correlate them to timetabling problem.

REFERENCES
[1] P. Brucker and S. Knust. Resource-constrained project scheduling and

timetabling. Burke and Erben (Eds): PATAT 2000, LNCS 2079,
Springer-Verlag Berlin Heidelberg: 277-293, 2001.

[2] A.Wren. Scheduling, timetabling and rostering-A special relationship.
Burke and Ross (eds), Springer-Verlag Berlin Heidelberg, 46-75, 1996.

[3] D.Werra. An introduction to timetabling. European journal of
Operational research, 19: 151-162,1985.

[4] E. K. Burke and S.Petrovic. Recent research directions in automated
timetabling. European Journal of Operational Research, 140: 266-280,
2002.

[5] R.Lewis. A survey of metaheuristic-based techniques for University
Timetabling problems. OR Spectrum, 30:167–190, 2008.

[6] J. A.Breslaw. A linear programming solution to the faculty assignment
problem. Socio-Economic Planning Science, 10: 227-230, 1976.

[7] K. Schimmelpfeng and S.Helber. Application of a real-world university-
course timetabling model solved by integer programming. OR Spectrum,
29:783–803,2007.

[8] S.Daskalaki,T.Birbas and E.Housos. An integer programming
formulation for a case study in university timetabling. European Journal
of Operational Research, 153: 117-135, 2004.

[9] N. Boland, B. D. Hughes, L.T.G. Merlot and P. J. Stuckey. New integer
linear programming approaches for course. Computers & Operations
Research, 35: 2209-2233, 2008.

[10] T. Birbas, S. Daskalaki and E. Housos. Timetabling for Greek high
schools. Journal of the Operational Research Society, 48: 1191–1200,
1997.

[11] A. Mingozzi, V. Maniezzo, S. Ricciardelli and L.Bianco. An exact
algorithm for the resource-constrained project scheduling problem based
on a new mathematical formulation. Management Sci. 44:714–729,1998.

[12] F.Ballestın,V.Valls and S. Quintanilla. Pre-emption in resource-
constrained project scheduling. European Journal of Operational
Research, 189:1136-1152,2008.

[13] S.Hartmann and D. Briskorn. A survey of variants and extensions of the
resource-constrained project scheduling problem. European Journal of
Operational Research, 207: 1–14,2010.

[14] S. Hartmann and R. Kolisch. Experimental evaluation of the state of the
art heuristics for the resource constrained project scheduling problem.
European Journal of Operational Research, 127:394-407, 2000.

[15] S.N.Jat and S.Yang. A Guided Search Genetic Algorithm for the
University Course Timetabling Problem. Multidisciplinary International
Conference on Scheduling : Theory and Applications (MISTA 2009),
Dublin, Ireland, 10-12 August 2009.

[16] A.Jain, S.Jain and P.K. Chande. Formulation of Genetic Algorithm to
Generate Good Quality Course Timetable. International Journal of
Innovation, Management and Technology, Vol. 1, No. 3, ISSN: 2010-
0248, August 2010.

[17] S. Abdullah and H. Turabieh . On the use of multi neighbourhood
structures within a Tabu-based memetic approach to university
timetabling problems. Information Sciences, 191: 146-168, 2012.

[18] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold,
1991.

[19] A. Colorni, M. Dorigo, and V. Maniezzo. Genetic algorithms - A new
approach to the timetable problem. In Akgul et al. (eds.), NATO ASI
Series, Combinatorial Optimization, Lecture Notes in Computer Science,
F(82), pp. 235-239, 1990.

[20] M. W. Carter and G. Laporte. Recent developments in practical course
timetabling. Proc. of the 2nd Int. Conf. on Practice and Theory of
Automated Timetabling, LNCS 1408, pp. 3–19, 1998.

