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Abstract—The paper deals with a mathematical model for 
fluid dynamic flows on road networks which is based on 
conservation laws. This nonlinear framework is based on the 
conservation of cars. We focus on traffic circle, which is a 
finite number of roads that meet at some junctions. The traffic 
circle with junctions having either one incoming and two 
outgoing or two incoming and one outgoing roads. We 
describe the numerical schemes with the particular boundary 
conditions used to produce approximated solutions of the 
problem.

    Keywords—boundary conditions, conservation laws, finite
difference Schemes, traffic flow.

I. INTRODUCTION

HE main purpose of this paper is to investigate the 
numerical approximation of solutions to some nonlinear
conservation laws. A mathematical model for fluid-

dynamic flows on networks presented and based on Lighthill 
& Whitham and Richards (LWR) traffic flows model, dealing 
with a concave flux. Traffic models are represented by 
minimization of congestions, accidents, pollution, and the 
maximization of safety. Classical simulation models are based 
on stationary assumption, which results inadequate to deal with 
heavily congested traffic circle. Simulation of vehicular traffic 
can be treated in different ways referring to microscopic, 
mesoscopic or macroscopic models.

The main assumption of the car following models is that an 
individual car's motion only depends on the car ahead. The 
idea is to apply analogous concepts to traffic, since the density 
of traffic along a segment of road can vary in time only due to 
more traffic flowing in than out. As traffic jams display sharp 
discontinuities, there is a correspondence between traffic jams 
and shock waves. The drivers arriving at the junction distribute 
on the outgoing roads according to some known 
coefficients.We use the LWR model on the roads with time 
varying traffic distribution coefficients. For heavy incoming 
traffic, we analyze the probability of the junction to get stuck 
in dependence of the various parameters of the problem.

For heavy traffic the right of way parameters of traffic circle 
can be set so to avoid a complete jam. To describe a road 
junction as a finite collection of roads that meet at some 
junctions.
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In order to obtain a unique solution of the Riemann
problem at junctions (problem with constant initial data on
each road), we need to assume some rules, so we can construct 
solutions via wave-front tracking technique. Fluid dynamic 
models for traffic flow seem the most appropriate to detect 
some phenomena as shocks formation and propagation on 
roads, since they can develop discontinuities in a finite time 
even starting from smooth data. The modeling of a traffic 
circle, that is characterized by junctions either with two 
incoming and one outgoing roads or with one incoming and 
two outgoing roads, suggests a suitable use of the rules (A)-(B) 
and (C) at the junctions. The main interest is covered by the 
tuning of the right of way parameters in order to improve the 
performances.                                                            

The paper is organized as follows. In Section II, the model 
for traffic flow on a road network is described. Section III
deals with Traffic circle and Numerical Method use for the 
traffic flow problem. Finally, we discuss the simulation results.

II. FLUID- DYNAMIC MODEL FOR 
TRAFFIC SIMULATION

Consider a road network as a finite number of roads, 
modeled by intervals ,,,.......,1 iii baNI  with one of the 

endpoints that can be infinite. The roads are connected by 
some junctions, and each junction J has a finite number of 
incoming and outgoing roads. On each road the problem 
agrees with equation (1).                                                                               

0)(   fxt
             (1)

where ],0[),( max  tx , 2)t,x(  is the density of 

cars,
max is the maximal density of cars,  )(f is the 

flux and the average velocity. We further assume that is a 
smooth decreasing function of the density  and f is concave.

Such a conservation law describes a fluid-dynamic                                                                                              
approach useful to perform macroscopic phenomena as shock 
waves formation and propagation. Fluid- dynamical
approaches were extended to flows on urban networks based 
on the LWR model. For the junction setting, the simple LWR 
model, [4], [5] is sufficient to describe most of the important 
traffic behaviors features and it is the only one for which a 
fairly complete theory and numerics are available.

We make the following assumptions on the flux function 

  max,0: f is a smooth, strictly concave function, 
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where 
max  is the maximal velocity of cars, which travel along 

the road. Then the flux is given by

                    

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For a single conservation law (1), a Riemann Problem (RP) 
is a Cauchy problem for an initial data piecewise constant with 
only one discontinuity. The solutions are either formed by 
continuous waves (rarefactions) or by traveling discontinuities 
(shocks). The condition at the junctions (Rankine-Hugoniot 
relation) holds:
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where ,.,,.........1, nii  are the incoming densities and 

,.,,.........1, mnnjj  the outgoing ones. It represents a 

different way of writing the conservation of cars: it expresses 
the equality of incoming and outgoing fluxes. Riemann 
Problems at junctions are under- determined even after 
prescribing the conservation of cars. Existence and Uniqueness 
of solution are guarantee by three following rules:                 
                     
(A) There are some fixed coefficients representing the drivers’ 

preferences. These coefficients denote the traffic’s 
distribution from incoming to outgoing roads. For this 
reason, it’s useful to define a traffic distribution matrix:

  ,,....,1,,....,1, nm
ji mnnjniA  

 such that  10 i,j  ,   1




mn

1nj
i,jα                                           

(B) Respecting (A), the drivers choose roads such that the flux 
can be maximized, that is we suppose that no car can stop 
without cross the junction.
(C) Assuming that nm  (m =1 and n = 2), let C be the 

amount of cars that can enter the outgoing road. We fix a right 
of way parameter  max,0 q . Then qC  cars come from the 

first incoming road and (1–qC) cars come from the second 
one.

A. RIEMANN SOLVER
In this section, we construct the Riemann solver at 

Junctions, which satisfy rules (A), (B) and (C). Particularly, 
we treat two case studies: junctions of type (two incoming 
roads and one outgoing road) and (one incoming road and two 
outgoing roads).

Proposition. Let ),........,,( 0,0,20,1 mn be the initial 

densities of a RP at junction and nii ........,,1,max  and be the 

maximum fluxes that can be obtained on incoming roads and 
outgoing ones.  
Then:
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      Fig. 1. A junction with two incoming and one outgoing roads               

    
Consider a junction, a and b are the incoming roads and c is 

the only outgoing road. Considering rule (C), the solution to 
the Riemann problem with initial data ),,( 0,0,0, cba ρρρ is 

constructed in the following way. Since we want to maximize 
the through traffic (rule (B)), we set:

  ,,minˆ maxmaxmax
cbac  

where max
i , i=a, b, is defined as in (2) and 

c̂ as in (3).In fact,

c̂ the maximal through flux, which can respect the Rankine-

Hugoniot condition at the junction, i.e. then conservation of 
cars through the junction.

In this case the matrix A (or rule (A)) is simply given by the 
column vector (1, 1), thus it gives no additional restriction. 
This is due to the fact that there is a single outgoing road, so 
cars must flow to that outgoing road necessarily.
Consider now the space ),( ba  and the line:

  ,γ
q

q
γ ab




1                                           (4)

defined according to the rule (C). Let P be the point of 
intersection of the line (4) with the line 

cba  ˆ  .The final 

fluxes must belong to the region:  
   
       baicbaiiba ,,ˆ0,0:),( max  
There are two different cases:

 P belongs to  ,
 P does not belong to .  
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Fig. 2. First case



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:2, 2009

143

       
max
a

a

max
b
b max

cba 

ab γ
q

q1
γ





Q

Fig. 3. Second case

The two cases are represented in Figures 2 and 3. In the first 
case, we set Pγγ ba )ˆ,ˆ( , while in the second case we 

set Qγγ ba )ˆ,ˆ( , where Q is the point of the closest to the line 

(4). Once we have determined a̂ and b̂  (and c̂ ), we can find 

a unique way .},,{,ˆ cbaiρi  This is gain due to restrictions

on waves velocities.         
Consider the junction with one incoming a and two 

outgoing (b, c) roads.

     
  Fig. 4. A junction with one incoming and two outgoing roads

Road a is the only incoming road while b and c are the 
outgoing roads. No additional rule is needed thus only rules 
(A) and (B) are used. The distribution matrix, of rule (A), takes 
the form

                      ,
1 




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where ]1,0[ and )1(   denotes the percentage of cars 

which, from road a, goes to road b and c, respectively. 
Rule (B), the solution to a RP is:
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Once we have obtained
a̂ ,

b̂ and c̂ , it is possible to find in a 

unique way .},,{ˆ cbai,ρi 

B. GODUNOV’S METHOD

Scalar conservation laws for variable  with flux 

function f , consider piecewise constant data ),( n
n tx at time 

nt  in each cell lies .
2
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Fig. 5.Characteristics for Computing Flux
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is self similar, that is to say
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where
RW depends only on the flux function F and consists of 

the two constant states 
l and

r separated by various waves 

starting from the origin whose speeds are bounded by  
 rl andbetweenF  ,)(max /                          
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III. TRAFFIC CIRCLE
We introduce the traffic regulation problem: given a 

junction with some incoming roads and some outgoing ones, is 
it preferable to regulate the flux via a traffic light or via a 
traffic circle on which the incoming traffic enters 
continuously? Assuming that drivers arriving at the junction 
distribute on the outgoing roads according to some known 
coefficients our purpose is to understand which solution 
performs better from the point of view of total amount of cars 
going through the junction.

In order to treat this problem we need a model that describes 
the above situation and provides an accurate analysis. To this 
aim we consider the fluid dynamic model based on Equation 
(1) and proposed in [4] adapted in a suitable way in order to 
treat the case of traffic circles.

       

1I
2I

3I

4I

RI 4

RI3

RI 2RI1

                        
                       Fig 6.Traffic Circle

   Consider a general network, junctions with having either 
one incoming and two outgoing or two incoming and one 
outgoing roads. Once the solution to Riemann's problems is 
fixed then we can introduce the definition of admissible 
solutions. More precisely, given a set of parameters 

kq  for all 

junctions 
kJ  with two incoming and one outgoing roads, a 

solution  on the road network is admissible if for a.e. t

with )(t of bounded variation the Riemann's problem at each 

junction
kJ  is solved in the correct way corresponding to the 

parameter
kq .

A. SINGLE LANE TRAFFIC CIRCLE WITH LOW TRAFFIC
. In this section a traffic circle assume that there is low traffic, 
in the sense that the number of cars reaching the circle is less 
than the capacity of the circle.

There are four roads, named,
4321 ,,, IIII the first two

incoming in the circle and the other two outgoing. Moreover 
there are four roads  

RRRR IIII 4321 ,,,   that form the circle.

The roads are parameterized by 4,3,2,1,],[ iba ii
, and              

.4,3,2,1,][ , iba iRiR
It is to assign a traffic distribution 

matrix A to describe how traffic coming from roads 

21, II choose to exit to roads ., 43 II The roads of the circle are 

intermediate towards the final destination. Thus we assume to 
have two fixed parameters: ]1,0[, βα   so that:

(C1)  If M  cars reach the circle from road
1I , then α M drive

to road
3I  and M)1(  drive to road 

4I .  

(C2)If M cars reach the circle from road
2I , then M drive to

road 
4I  and (1 - β ) M  drive to road 3I .

Let 1ρ and 2ρ  be constant densities from the roads 
1I and

2I .

222111 ),(,),( ρatρρatρ                                     (5)                        

If the roads
3I  and 

4I can absorb all incoming traffic.

  ,)()()( 21 σfρfρf                                                   (6)                     

If the network is initially empty, the boundary data are given 
by Equation (5), then firstly the cars from road 

1I  and 
2I  reach 

road 
3I and

4I and the coefficients should be simply set as:   

     
αα R 3,1

, ,)1(2,1 αα RR  .)1(, 4,34,3   RRR

B. SINGLE LANE TRAFFIC CIRCLE WITH HEAVY 
TRAFFIC

In this case the condition (6) is violated. Traffic jams is 
possible under one of the following conditions:

)8(,)()()()1(

)7(,)()()1()(

21

21





fff

fff





We set:

)( 1ff l   ,    )( 22 ff                 

  
    )1,4,1(1 RRqq  ,  )3,2,2(2 RRqq 

For the junction )1,4,1( RR  we have

1
max
1 fγ  2

max
4 )1( fR    , .1)(max

4  σfγ R

Then we have ,1)(1̂  σfγ R .ˆ1 σρ R   Depending on the 

value of 1q there are three cases:

,
)(

)1(
1)( 2

1 σf

fβ
qa


 then

21 )1()(ˆ fβσfγ 

       and 
24 )1(ˆ fβγ R  ;

,
)()(

)1(
1)( 1

1 σf

f
q

σf

β
b 


 then )(1̂ σfqγ       and 

        )()1(ˆ4 σfqγ R  ;

,
)(

)( 1
1 σf

F
qc  then 

11̂ fγ   and .)(ˆ 14 fσfγ R 

In case (a) a shock is produced on road 1 and no wave on    
road 4R, in case (c) a shock is produced on road 4R and no 
wave on road 1, finally in case (b) a shock is produced on both 
roads. An analogous analysis can be done for junction 
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.),,( 322 RR III  First we put in case (a) for both junctions

),,( 141 RR III and .),,( 322 RR III , so that rarefactions are 

generated on roads
RI1

 and 
RI3

.We need to assign the 

corresponding distribution coefficients 5.0 , ),( 2,13,1 RRR 
and ),( 4,34,3 RRR   we need to fix a right of way parameter 

.]1,0[q

                 IV. NETWORKS CASE STUDIES
We present some simulations reproducing a simple traffic 

circle composed by 8 roads and 4 junctions. The numerical 
solutions have been generated by finite difference method for 
h = 0.025.
We consider the initial data

       5.0,4.0,25.0 0,40,30,20,1   ,           

  5.0,5.0,5.0,5.0 4321  RRRR 

and, for roads entering the circle, we impose the following 
boundary conditions:

    4.0)(,25.0)( ,2,1  tρtρ bb
             

1I 2I

3I

4I

RI4

RI3

RI2RI1

             Fig. 7. Traffic circle with 65.021 qq
Consider a Traffic circle with two incoming and one 

outgoing roads or one incoming and two outgoing roads. In 
this case we use case (b) and the right way of parameter 

,65.0),,( 1411  RR IIIqq ,65.0),,( 3222  RR IIIqq then

road 
1I is the through respect to road 

RI4
 and road 

2I  is the 

through street respect to .2RI  The distribution coefficients are 

assumed to be constant and all equal to .5.0 Then 

rarefactions are produced on roads 
RI1 RI 3,  and shocks on the 

other roads.
The evolution in time of traffic is reported in above figure. 

At time 5t  shocks are generated on the entering roads .1I

The density on roads 
RR II 42 ,  increases and shocks are 

propagating backwards on roads. Roads 
43 IandI  show a very 

low density of cars at time 5t .Hence, in that case, the 

choice of the right of way parameter determines a situation of 
completely blocked traffic. Roads 

RI1
 and 

RI 3
 maintain the 

same level of density. While rarefaction waves traveling in the 
sense of traffic created on roads .,,, 4334 IIII RR

V.CONCLUSION
In this paper we deal with traffic problems on road network 

according with fluid-dynamic approach that analyzes traffic by 
means of conservation law on each road of networks. Then we 
show some simulations carried out by a simulation prototype.
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