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Abstract—The purpose of this study is the discrimination of 28 

postmenopausal with osteoporotic femoral fractures from an age-

matched control group of 28 women using texture analysis based on 

fractals. Two pre-processing approaches are applied on radiographic 

images; these techniques are compared to highlight the choice of the 

pre-processing method. Furthermore, the values of the fractal 

dimension are compared to those of the fractal signature in terms of 

the classification of the two populations. In a second analysis, the 

BMD measure at proximal femur was compared to the fractal 

analysis, the latter, which is a non-invasive technique, allowed a 

better discrimination; the results confirm that the fractal analysis of 

texture on calcaneus radiographs is able to discriminate osteoporotic 

patients with femoral fracture from controls. This discrimination was 

efficient compared to that obtained by BMD alone. It was also 

present in comparing subgroups with overlapping values of BMD. 

 

Keywords—Osteoporosis, fractal dimension, fractal signature, 

bone mineral density.  

I. INTRODUCTION 

STEOPOROSIS is a disease characterized by a decline in 

rigidity and mechanical stability of bone, leading to high 

risk in fracture. The most common method of assessing bone 

strength is monitoring the bone mass by the bone mineral 

density (BMD) using quantitative computed tomography 

(QCT), dual energy X-ray absorptiometry (DXA), and 

ultrasonography. The role of trabecular bone structure has 

been increasingly been recognized as significant contributory 

factor [1], [2], however, the invasive character of these 

techniques limits their use in large series of patients. For this 

reason the medical image processing remedies to this problem. 

The objective of this study is to develop a screening tool for 

early detection of osteoporosis in radiographic images based 

on texture analysis methods using fractal metrics. One of the 

simplest approaches for describing visual texture is to use 

moments of the gray-level image histogram, i.e. mean and 

variance. However, this analysis is somewhat limited, since 

spatial organization or periodicity information is not provided 

[3], [4]. Second-order metrics such as fractal dimension and 

fractal signature are able to characterize bone textures and 

provide information about the degree of “roughness “of any 

structure [5], [6]. 

In recent years, fractal analysis of plain radiographs has 

been employed to assess the trabecular structure, but almost 
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all these studies have been focused on the fractal dimension 

evaluation by different approaches (variance method, surface 

area, Fourier transformation….), and just few works have been 

done on the fractal signature analysis. The aim of the present 

work is to discriminate osteoporotic group of patients from a 

control group based on the fractal signature method, and to 

compare its results to those of the fractal dimension method 

using two kind of pre-processing approaches. Results of the 

fractal dimension were also compared to those of the bone 

mineral density. This study was also conducted to classify 

subgroups of osteoporotic cases and controls with overlapping 

BMD values, to demonstrate the performance of our approach 

in discriminating between these groups and evaluate the 

effects of age. 

This paper is organized as follows, in Section II; the image 

acquisition technique is introduced, and the pre-processing 

approaches are detailed. Results and discussion are presented 

in Sections IV and V respectively. Section VII draws some 

conclusions.  

II.  MATERIAL AND METHODS 

A. Image Acquisition 

Twenty eight postmenopausal women with osteoporotic 

femur fractures (65 ± 8.22 years) and an age-matched control 

group of 28 women (65 ± 8.22 years) have been recruited. The 

fractal analysis was compared with the femoral bone mineral 

density analysis. Bone density was measured for all the 

patients by dual-energy X-ray absorptiometry (DXA; Hologic 

QDR 1000/W; Hologic, Waltham, MA). The manufacturer 

recommended to standardize the analysis procedure of the hip 

and was performed on all patients and controls. The Bone 

Mineral density (BMD) at the proximal femur were assessed 

and expressed in grams per square centimetre [7].  

The radiographic images were taken following a highly 

standardized procedure; they are obtained on a Kodak Min R 

screen-film system [8]. The calcanei were placed in contact 

with the film; the distance of 1 m was fixed between the X-ray 

focal source and the film. A 48 kV voltage of the X-ray tube is 

used and exposure parameters were fixed at 18 mA-s for a 

time of 0.08 s. The region of interest (ROI) on the 

radiographic images was located in the trabecular bone at the 

tuber calcanei, and defined by anatomic marks. The ROI was 

digitized with a CCD camera to the format 256 x 256 pixels, 

pixel size being 105 μm (Fig. 1).  

B. Image Pre-Processing 

In the present study, two pre-processing approaches are 

used. The first one is applied to extract the bone. The second 
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type is used for accessing the bone trabecular network. The 

aim of these two methods is to highlight the importance of the 

choice of the pre-processing method providing the most 

accurate results. The image pre-processing provides a binary 

image to separate the bone from the marrow. 

1. Bone Extraction 

To improve the image’s quality and get the bone extraction, 

the clearest regions representing the bone and the darkest 

regions representing the marrow space are highlighted. To 

extract the bone, the median filter [3 x 3] was applied to the 

gray-level intensity images to remove impulse noise, 

thereafter, the dynamics expansion of the images is useful 

since the pixels are unevenly distributed over all pixel and this 

expansion ensures even distribution of gray-levels with respect 

to all pixels. Finally, the bone’s extraction was obtained by 

thresholding the filtered image using Otsu's method [9]; this 

last uses the histogram intensities to provide a binary image 

from a gray-level image (Fig. 2).  

 

  

(a) 
  

     

(b)         (c) 

Fig. 1 Texture images, (a) Typical radiograph of calcaneus with the 

ROI, (b) control case and (c) an osteoporotic patient (of the calcaneus 

after the ROI) 

 

The algorithm uses two classes of pixels to threshold the 

image (e.g. foreground and background), and then estimates 

the optimum threshold separating the two classes so that their 

combined spread (intra-class variance) is minimal. 

 

  

(a)                                          (b) 

Fig. 2 Bone extraction using Otsu’s thresholding method, (a) Control 

case, (b) Osteoporotic patient 

2. Trabecular Segmentation 

As for the bone extraction, the median filter and the 

dynamics expansion of the images are used. For the trabecular 

segmentation process, an edge detection (corresponding to 

trabeculae) using a laplacian of gaussian (Log) filter is used 

[10], [11], this segmentation permit to separate the bone 

trabecular from bone marrow (Fig. 3). The Log filter includes 

both a smoothing filter, which convolutes the image by a 

gaussian filter and a 2
nd

 order derivative filter. The purpose of 

this combined filter addresses the size of the smoothing 

window but also the variance of the convolutive gaussian. The 

Otsu’s method which is used provides a binary image in which 

the dark regions represent the bone marrow and the light 

regions the trabeculae. Finally, an additional pruning step was 

applied to the resulting image based on removing the residual 

small size artefacts (< 4 pixels). 

 

    

(a)                                   (b) 

Fig. 3 Trabecular segmentation using both LOG ([6x6] and σ = 0,5) 

and Otsu’s methods. (a) Control case, (b) Osteoporotic patient. 

III. FRACTAL ANALYSIS 

A. Fractal Dimension 

According to the definition of Mandelbrot [12], a fractal is a 

rough or fragmented object that can be subdivided into parts, 

each of which is (at least approximately) a reduced-size copy 

of the whole. Mathematically, a fractal is a set of points where 

fractal dimension is greater than its topological dimension. 

Fractals are everywhere in nature: the distribution of galaxies 

at large scales, the shape of mountains, rocks, lightning bolts, 

snowflakes, river networks, coastlines, clouds, trees, 

mammalian blood vessels, trabecular bone network, bronchi in 

the lungs, etc. The most useful achievement provided by the 

introduction of fractals is to consider seriously and 

quantitatively complex irregular structures. 

 

 

Fig. 4 The initial unit interval and the first five iterations of the 

construction of the triadic Cantor set are shown from the top to 

bottom 
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Fig. 4 shows the topological dimension of the Cantor set. 

This dimension is dt = 0 since its total measure (length) is 

zero. This notion of dimension is not very useful since it does 

not distinguish between this complex set and a single point, 

which also has a vanishing topological dimension (Fig. 4). To 

cope with this limitation, scientists have introduced different 

concepts of dimensions for quantifying such sets. The 

dimension that generalizes the topological dimension is called 

fractal dimension defined as: 
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The fractal dimension Dc quantifies the rate at which the 

number Nn of observable elements change as the resolution 

1/εn increases. 

One of the widely used methods to calculate fractal 

dimension is the Box counting method, its widespread use is 

due mainly to its ease of calculation and well adapted to 

binary images. The idea is to cover the object S with sets of 

diameter ε. Call Nε the number of such sets needed to cover S. 

The box dimension is then [13]: 
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if the limit converges (otherwise replace lim by lim inf or lim 

sup, respectively the lower and upper box counting 

dimensions). The box dimension is therefore the power law 

behaviour of the measurement of the object at scale ε. The 

number of sets that can cover S is of order ε
-Db(S)

. The previous 

definition remains the same if for Nε we consider the smallest 

number of cubes of diameter ε that can cover S [14], hence the 

name box counting dimension. To obtain an estimate of Db(S), 

it suffices to plot ln Nε versus ln ε. The estimate by the least 

squares method of the slope of the group of dots (-ln (ε), ln (N 

(ε))), gives the estimate of fractal dimension. 

B. Fractal Signature 

Conventional radiographs are used due to their good 

resolution, they can show the fine detailed structural 

organization of bones and this can be quantified by fractal 

signature. Fractal analysis quantifies the roughness and 

complexity of structures within an image. The scientists 

consider self-similar images as “fractal” and have a fractal 

dimension (FD) associated with them [15], [16]. The “fractal 

signature” of an image quantifies the alteration in the fractal 

dimension of the structure, and the size(s) at which those 

changes have occurred [17]. The fractal dimension of 

cancellous bone assesses the structures of the tissue, 

determined by number of trabeculae, spacing and cross-

connectivity [18]. Unlike other methods that calculate a mean 

fractal dimension from the overall appearance of cancellous 

bone [7], the fractal signature analysis techniques measures 

the fractal dimension separately for vertical and horizontal 

trabeculae over a range of scales corresponding to a range of 

trabecular widths, identified as the “fractal signature” [19], 

[20].  

To determine the fractal dimension, the slope of the line 

Log(f(ε)) = f{Log(ε)} is calculated. To find this slope, the 

modeling of set of points (Log(ε), Log(f(ε)) ) by a line using 

least squares method is used. The local slopes for two 

successive values of ε represent the fractal signature S(ε) of 

the curve defined by: 
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The fractal signature is function of the ε scale analysis and 

thus proportional to the number of elements of size ε 

contained in the image. For values of ε far above the average 

size of texture elements, the surface roughness is not 

perceptible anymore. 

IV. RESULTS 

In what follows we present the curves of the fractal analysis 

applied to the images of the two subjects (control and 

osteoporotic) whose images were pre-processed in two 

different ways in order to compare the results, however, the 

results of all the subjects will be illustrated in Figs. 9-11 and in 

Table I. 

 

 

Fig. 5 Fractal dimension calculation, using the box counting method 

applied to the bone images extraction 

 

Fig. 5 illustrates the log-log plot to estimate the fractal 

dimension by the box counting method, the high value of the 

fractal dimension is due to the effect of the fractured bone 

which corresponds to the patient’s osteoporotic image (dashed 

red line) where a high demineralization is found. In 

comparison, a low value of fractal dimension is seen in control 

case (continuous blue line). 

The group of dots shown in Fig. 6 represents the application 

of the least square regression. The fractal dimension calculated 

by the box counting method is approximately the same for 

both trabecular segmented images (osteoporotic patient and 

control case), this reveals the importance of the pre-processing 

step, contrary to the previous pre-processing (bone extraction), 

the fractal dimension’s values were different for both images. 

The number of box on different scales is represented in 

Figs. 5 and 6. The use of fractal dimension is to give an idea 

about the irregularity of the bone images, which gives an 
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indirect information about the porosity. A high value of the 

fractal dimension is noticed for an osteoporotic bone. 

 

 

Fig. 6 Fractal dimension calculation, using the box counting method 

applied to the trabecular images segmentation 

 

 

Fig. 7 Fractal signature for the segmented bone images 

 

Line graph in Fig. 7 shows the fractal signature applied to 

segmented bone images, no overlapping in the curves for both 

patients is noticed, osteoporotic patient’s image (dashed red 

line) and control case’s image (continuous blue line); the 

fractal signature shows the change in “roughness” with 

alterations in spatial scale. 

The results of the fractal signature applied to the trabecular 

segmentation images are worse than those applied to the 

images of the bone extraction, in fact, there is a little 

overlapping of fractal signatures for these images, at certain 

scales, the fractal signature is high in osteoporotic patients, 

however, in other scales it’s greater in control cases (Fig. 8). 

When the pattern of a structure has altered at a particular size 

or sizes so as to be no longer selfsimilar, the “fractal 

signature” of its image quantifies the alteration in the fractal 

dimension of the structure, and the size(s) at which those 

changes have occurred (Fig. 8). 

Fig. 9 shows the rates of higher BMD in control cases, 

proof of more rigid bone structure. In osteoporotic patients 

low values of BMD were found, caused by bone 

demineralization amongst other factors, the latter is influenced 

by age. An overlapping of BMD in some osteoporotic patients 

and control cases, are noticed; this drove the researchers to 

change the definition of the osteoporosis, which was only 

based on the calculation of BMD, the diagnosis of the 

osteoporosis becomes complicated. The calculation of the 

bone mineral density is a good indicator of the osteoporosis, 

but not sufficient. Indeed, other factors influence bone 

strength, this includes the bone turnover rate, bone 

microarchitecture, bone mass distribution, microlesion 

accumulation, bone crystal quality, collagen fiber quality, the 

degree of mineralization, and trabecular microarchitecture 

[21]. 
 

 

Fig. 8 Fractal signature for the trabecular segmentation 

 

 

Fig. 9 The two groups BMD, osteoporotic patients (dashed red line) 

and controls (continuous blue line) 

 

The application of Fractal dimension shows a better result 

in discriminating osteoporotic patients from control cases, a 

negligible overlapping occurs (Figs. 10 and 11), unlike the 

BMD values where an important overlapping between these 

two groups is noticed (Figs. 9 and 11). 

 

 

Fig. 10 Representation of the fractal dimensions for all patients (red) 

and control cases (green) 
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Fig. 11 The bone mineral density versus the fractal dimension 

 
TABLE I 

 FEATURES ± SD OF OSTEOPOROTIC PATIENTS AND CONTROL CASES 

Features Control cases ± SD 
Osteoporotic  
patients ± SD 

Number 

Age (Years) 
Weight (kg) 

Height (cm) 

BMD (g/cm2) 
FD 

FS 

28 

65 ± 8.22 
65.5 ± 12.2 

161 ± 2 

0.669± 0.09 
2.25 ± 0.02 

2.02 ± 0.35 

28 

65 ± 8.22 
64.5 ± 10.6 

160 ± 1 

0.584 ± 0.104  
2.32 ± 0.05 

2.51 ± 0.31 

 

The mean value ± SD of age, weight, height, BMD, fractal 

dimension and fractal signature of control cases and 

osteoporotic patients are given in Table I. The fractal 

dimension and fractal signature values are greater for the 

osteoporotic patients due to high porosity of the bone tissue, 

inversely for the BMD, where the value is lower in this case. 

V. DISCUSSION 

In this study, we highlighted the usefulness of the pre-

processing step at first with its importance expressed in the 

results of fractal dimension and the fractal signature applied to 

radiographic images (Figs. 5-8). The first pre-processing of 

the bone extraction in which a filtering and a thresholding 

were applied with Otsu’s method gave better results than the 

second pre-processing approche using the trabecular 

segmentation in which a Laplacian of Gaussian filter was 

added (Figs. 5 and 6). The use of this filter provide important 

changes in the results of the fractal analysis (Fig. 6); in fact, 

this second pre-processing is well suitable for the bone 

trabeculae detection in order to characterize the bone 

architecture using other methods such as histomorphometry 

(Fig. 3). Furthermore, texture analysis of radiographic images 

using fractal signature solves the limits of the fractal 

dimension. Indeed, the latter provides information about the 

global aspect of a texture; in one hand the fractal signature 

gave more information on roughness of the textured images 

over a range of scales (local aspect). In the other hand, it 

allowed better discrimination of the osteoporotic patients from 

the healthy cases whatever the selected pre-processing (Fig. 

7), unlike the fractal dimension which is confused for these 

two groups in the case of the second pre-processing method 

(Fig. 6). 

During aging bone structure, this undergoes architectural 

changes due to osteoporosis caused by bone demineralization 

amongst other factors (Fig. 9); in fact the control cases 

(healthy) had higher rates of BMD than the subjects with 

osteoporosis, however, the BMD alone is not sufficient to 

predict osteoporosis. Actually, there is an overlapping of 

BMD rates in subjects with and without osteoporosis, in other 

words, in subjects of different ages, same value of BMD can 

be seen, and vice versa, for two subjects of the same age 

different BMD rates can be found. The combination of these 

two parameters allows better discrimination of osteoporotic 

patients from healthy subjects. To solve this problem, the 

fractal analysis brings a solution, in fact, in Fig. 10, on the 

fractal dimensions axis there is a negligible overlapping, 

which proves a better discrimination of the two groups, 

contrary to the BMD rates axis where an important 

overlapping of the two groups is found (Fig. 9). 

Previous works have shown that fractal parameters can be 

evaluated on histological sections, μCT images, and MRI 

scans [21]. As part of a larger study, the Osteodent project, 

[22] investigated if the trabecular pattern on dental 

radiographs can be used to predict BMD and to identify the 

subjects with osteoporosis and increased risk of osteoporotic 

fractures. Another work conducted by [23], they quantified the 

anisotropy in femoral trabecular bone using CT images. 

Our study related to the comparison of the results of the 

fractal analysis (fractal dimension and fractal signature), these 

two methods were applied to radiographic images of calcanei, 

which underwent two types of pre-processings, the goal of all 

that is the discrimination of the groups and sub-groups of 

subjects (control and osteoporotic cases), we showed that the 

fractal analysis discriminates the two subjects better compared 

to the BMD alone. 

We have used conventional radiographs for their high 

resolution; radiological texture analysis can be readily used in 

vast populations. The results are reproducible and correlated 

with biomechanical properties and with a number of 

histological characteristics [21], [24]. 

A texture analysis needs an optimal quality of radiographic 

image. It is very important to standardize all the steps from the 

acquisition to the digitalization. Each parameter must be fixed 

to avoid the variation in result: positioning of the ROI, use the 

same source, the distance focal source, intensity and voltage, 

time exposure, radiologic film, digitalization system… 

The contributions of our study can be summarized as 

following: 

- The importance of pre-processing step. 

- The comparison between the fractal dimension and the 

fractal signature applied to radiographic images. 

- The discrimination of subgroups with overlapping values 

of BMD. 

Further studies will be necessary to provide more 

information on the precise relationship between the BMD, the 

microarchitecture and the fractal analysis, in order to 

understand the exact mechanisms leading to bone fragility and 

find new and more effective therapeutic strategies to face 

consequences of osteoporosis and other metabolic bone 

diseases. 
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VII. CONCLUSION 

The significant increase in fractal dimension of structures in 

the radiographic images was consistent with changes 

associated with early osteoporosis. These changes would 

result in an increase in the number and cross-connectivity of 

fine trabecular structures and also a higher fractal signature 

value due to the increased appearance of 'roughness' of the 

trabecular organization. Fractal analysis quantified significant 

difference in bone structure whereas DXA detected no 

significant difference in BMD for the same ROIs. Therefore, 

for different pre-processing, fractal signature is a more 

sensitive method of measuring differences between 

osteoporotic and non-osteoporotic cancellous bone than fractal 

dimension. The techniques used in this study are non-invasive 

and can provide structural information about bone, beyond 

simple bone densitometry, the overlapping involved in 

measuring BMD is resolved by the fractal analysis. The 

Fractal signature relates the "fractal" dimension with scale by 

an extension of the fractal dimension philosophy. Texturally, 

the Fractal signature is a measure of information at different 

image scales, and thus the strength and spatial size(s) of 

texture. Fractal fractional dimensions and signatures not only 

characterize the object’s topology but also, being related to 

their properties of dynamic systems. 
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