
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3391

 
Abstract—The competitive learning is an adaptive process in 

which the neurons in a neural network gradually become sensitive to 
different input pattern clusters. The basic idea behind the Kohonen’s 
Self-Organizing Feature Maps (SOFM) is competitive learning. 
SOFM can generate mappings from high-dimensional signal spaces 
to lower dimensional topological structures. The main features of this 
kind of mappings are topology preserving, feature mappings and 
probability distribution approximation of input patterns. To overcome 
some limitations of SOFM, e.g., a fixed number of neural units and a 
topology of fixed dimensionality, Growing Self-Organizing Neural 
Network (GSONN) can be used. GSONN can change its topological 
structure during learning. It grows by learning and shrinks by 
forgetting. To speed up the training and convergence, a new variant 
of GSONN, twin growing cell structures (TGCS) is presented here. 
This paper first gives an introduction to competitive learning, SOFM 
and its variants. Then, we discuss some GSONN with fixed 
dimensionality, which include growing cell structures, its variants 
and the author’s model: TGCS. It is ended with some testing results 
comparison and conclusions. 
 

Keywords—Artificial neural networks, Competitive learning, 
Growing cell structures, Self-organizing feature maps. 

I. INTRODUCTION 

HE learning in ANN is achieved by proper adjustment of 
the interconnection weights between artificial neurons or 

by change of network topologies. The ANN learning 
algorithms can be classified into three main paradigms: 
supervised learning, unsupervised learning and reinforcement 
learning. Most of the competitive learning algorithms are used 
for unsupervised learning in which the input data can be 
categorized or clustered, i.e., similar inputs are classified as 
being in the same category and should activate the same 
output unit which corresponds to a prototype of the category. 
In this case, the output sample is absent or not needed. Based 
on correlations of the inputs, clusters are determined by the 
network itself.  

ANN with unsupervised learning has been widely used in 
clustering tasks, dimensionality reduction, data mining, 
information extraction, density approximation, data 
compression, etc. A basic principle of unsupervised learning is 
based on the competition mechanism, in which the output 
units compete for activation. In some competitive learning 
algorithms only one output neuron is activated at any given 
time, which is realized by means of the so-called  

 
This work is supported by NSFC -- The National Natural Science 

Foundation of China (40572082). 
Authors are with School of Computer Science, Xi’an Shiyou University 

Shaanxi Province, 710065, China 
({gjcheng,tshliu,jxhan,zhwang}@xsyu.edu.cn). 

Winner-Takes-All (WTA) mode (e.g., LBG and K-means) or 
Hard Competitive Learning (HCL). Another widely used 
learning mode is Winner-Takes-More (WTM), i.e., Soft 
Competitive Learning (SCL). The WTM mode is 
characterized by adapting in addition to the winner also some 
other units located at the winner’s neighbors. It can be further 
classified by its topology, WTM without fixed dimensionality 
and WTM with fixed dimensionality [1].  

WTM without fixed dimensionality has no topology of a 
fixed dimensionality that is imposed on the network. The 
dimensionality of the network depends on the local 
dimensionality of the data and may vary within the input space. 
Competitive Hebbian learning, neural gas and growing neural 
gas belong to this type. WTM with fixed dimensionality has 
such an advantage that its network defines a mapping from the 
n-dimensional input space (with n being arbitrarily large) to 
the k-dimensional network structure (with k being 2 or 3). This 
makes it possible to get a low-dimensional representation of 
the input patterns that may be used for data visualization 
purposes. The dimensionality k has to be chosen in advance. 
This kind of models includes Kohonen’s Self-Organizing 
Feature Maps (SOFM) [2] and Fritzke’s Growing Cell 
Structures (GCS) [3]. This paper stresses the GSONN with 
fixed dimensionality. In the following section 2, the SOFM 
and its dynamic topology variants are introduced. In sections 3, 
we present a typical GSONN with fixed dimensionality, GCS 
and its variants. The author’s model, Twin GCS, is presented 
in section 4. Some testing comparisons with different models 
are given in section 5. It is ended with conclusion.  Notes: in 
the context, such concepts as neuron, cell, node, unit, element, 
vertex, etc. have nearly same meaning. 

II. SELF-ORGANIZING FEATURE MAPS AND VARIANTS 
The basic idea behind the SOFM is competitive learning. 

The neurons are presented with the inputs, which calculate 
their weighted sum and neuron with the largest output is 
chosen to receive additional training. Training in SOFM does 
not just affect the one neuron but also its neighbors. Suppose 
that an input pattern has n features and is represented by a 
vector x in an n-dimensional pattern space. The network maps 
the input pattern to an output space. The output space is 
supposed to be a 1-dimensional or 2-dimensional array of 
output nodes. The question is how to train a network so that 
the ordered relationship can be preserved. The cerebral cortex 
of the human brain could be imaged as a 2-dimensional plane 
of neurons and spatial mappings are used to model complex 
inputs. This means that topological relationships in external 
stimuli are preserved and complex high-dimensional data can 
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be represented in a lower dimensional space. Kohonen uses 
2-dimensional networks where the neurons are arranged on a 
flat grid in some regular topology, e.g., hexagonal or 
rectangular. The weights on lateral interconnections from 
neighbors are given by a function which radius decreases with 
time, e.g., the Mexican hat function. In other words, the 
connections from close neighbors should have high (excitatory) 
weighting and those from distant neighbors should have low 
(inhibitory) weighting. Therefore, the SOFM is also called a 
topology-preserving map because it can preserve the 
neighborhood relations.  

Kohonen has also used another learning technique for his 
self-organizing network [2]. He calls this technique Learning 
Vector Quantization (LVQ) [2] and uses it to fine-tune the 
feature map using input vectors of known classification. These 
vectors are presented to the network and a best match 
comparison made at each network cell. The weight vector of 
the winner is modified to reinforce correct classifications or 
correct misclassifications. Based on LVQ, A. Zell represented 
a dynamic extension of LVQ, which is called Dynamic LVQ 
(DLVQ) [4]. Combining the SOFM with a 
counter-propagation network, J. Goppert and W. Rosenstiel 
introduced Interpolation SOM (ISOM) [5]. 

The key advantage of SOFM is the formation of clusters, 
which helps to reduce the input space into representative 
features using a self-organization process. But it has some 
disadvantages. For example, the SOFM uses a fixed network 
architecture in terms of number and arrangement of neural 
processing elements which has to be defined prior to training. 
Obviously, in case of largely unknown input data 
characteristics, it is very difficulty to predetermine a proper 
network architecture that can yield satisfying results. Also, the 
topology of the input space in SOFM has to match the 
topology of the output space to be represented, i.e., the 
property of neighborhood preservation depends on the choice 
of the output space map topology. However, in real world 
datasets, the proper dimensionality required by the input space 
is usually not known a priori, yet the output grid size has to be 
specified prior to learning. To solve this problem, we can use 
an advanced learning scheme, by which it adapts not only the 
weight vectors of the neurons, but also the topology of the 
output space itself. Some examples of such learning 
algorithms include Self-Organizing Surfaces (SOS) [6], 
Evolve Self-Organizing Maps (ESOM) [7], Incremental Grid 
Growing (IGG) [8], Growing Hierarchical Self-Organizing 
Map (GHSOM) [9]. 

III. GROWING CELL STRUCTURES AND VARIANTS 
B. Fritzke has identified some limitations of SOFM, such as: 

(a) The SOFM network has a fixed size and topology which 
must be predetermined; (b) The parameters in the SOFM are 
not constant over time but follow a decay schedule; (c) Some 
cells of the SOFM network are at locations where the 
probability density p(x) of the input vector x is zero; (d) Some 
cells that are direct topological neighbors in the SOFM 
network have rather distant positions in p(x). These limitations 
result in poor performance for pattern clustering in using 

SOFM for some applications. To overcome these limitations, 
B. Fritzke proposed a growing model for SOFM, i.e., Growing 
Cell Structures (GCS) [3]. 

A.  Principle of GCS 
The basic building blocks of the generated topology in GCS 

are hyper-tetrahedrons of a certain dimensionality k chosen in 
advance. In contrast to SOFM, neither the number of cells nor 
the exact topology has to be predefined in GCS. Instead, a 
growth process successively inserts cells and connections. All 
parameters in the model are constant over time. This makes it 
possible to continue the growth process until a specific 
network size is reached or until an application-dependent 
performance criterion is fulfilled. The input data directly guide 
the insertion of new cells. Generally, this leads to network 
structures reflecting the given input distribution better than a 
predefined topology could. The purpose of the GCS is the 
generation of a topology-preserving mapping from the input 
space Rn onto a topological structure A of equal or lower 
dimensionality k. Topology preservation has such meanings as: 
(a) Input vectors that are close in Rn should be mapped onto 
neighboring nodes in A; (b) Neighboring nodes in A should 
have similar input vectors from Rn mapped onto them. 

 
The GCS generates a k-dimensional topological structure 

that can be seen as a projection onto a nonlinear, discretely 
sampled subspace. The GCS starts with a triangle of three 
cells at random positions in p(x), cells are positioned over the 
area of non-zero probability density. The insertion of new cells 
should maintain the triangular connectivity structure. The 
resulting structure is then redistributed through an adaptive 
process which is analogous to SOFM, i.e., input vectors are 
generated according to p(x), then the best matching unit (Vbmu 
or winner) and its direct topological neighbors (Vdtn) move 
closer to this vector. The degree by which the winner and its 
dtn (direct topological neighbor) cells are adapted by constant 
values, ηwin and ηdtn respectively, here ηwin is more greater than 
ηdtn. The result is a network structure which has reached an 
equilibrium state where the cell distribution roughly 
approximates p(x). Fig. 1 shows some stages of a simulation 
for a simple ring-shaped data distribution [1]. 

 

 

 
 

Fig. 1 GCS simulation sequence from initial state to final state for a 
ring-shaped uniform probability distribution 
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B.  GCS Variants 
Dynamic Cell Structure (DCS) was introduced by J. Bruske 

[10]. It belongs to the family of Topology Representing 
Networks (TRN) [11]. DCS employs a modified Kohonen 
learning rule in conjunction with Competitive Hebbian 
Learning. The Kohonen type learning rule serves to adjust the 
synaptic weight vectors while Hebbian learning establishes a 
dynamic lateral connection structure between the cells 
reflecting the topology of the feature manifold. The DCS idea 
applied to the GCS algorithm could lead to an efficient and 
elegant algorithm. 

Based upon hierarchical clustering and GCS, a Tree-based 
GCS (TreeGCS) was proposed by V. Hodge [12]. TreeGCS is 
an unsupervised, growing, self-organizing hierarchy of nodes 
able to form discrete clusters. High dimensional inputs are 
mapped onto a 2-dimensional hierarchy reflecting the 
topological ordering of the input space. The TreeGCS 
algorithm can improve an inconsistency in the GCS algorithm, 
where the network topology is susceptible to the ordering of 
the input vectors.  

A probabilistic version of the GCS algorithm, Probabilistic 
GCS (PGCS), was introduced by N. Vlassis [13] and was also 
applied to a robot configuration. The original GCS is actually 
an adaptive-means clustering algorithm in which new clusters 
are added dynamically to produce a Voronoi tessellation of the 
input space. Under the condition that samples are distributed 
in each cluster according to a multivariate normal probability 
density function, the non-parametric model of the GCS was 
extended into PGCS. By recursively estimating the means and 
the variances of the clusters, and by introducing a new 
criterion for the insertion and deletion of a cluster, the PGCS 
has shown to be more powerful than the original GCS. 

Some new variants and application fields of GCS have been 
presented and it is shown that GCS is an effective and 
promising GSONN. Those examples include: the evolving tree 
model by J. Pakkanen [14], adaptive self-organizing maps by 
Y. Yang [15], adaptive topological tree structure by R. 
Freeman [16]. 

IV. TWIN GROWING CELL STRUCTURES (TGCS) 
In each insertion step of the GCS only one new cell is 

inserted in the middle of the edge connecting MRV (Maximum 
Resource Vertex, some quantitative errors can be used as a 
resource for cell growing) and the most distant node in the 
direct topological neighborhood of MRV. But in the TGCS, 
two new cells are inserted at the same time. The first new cell 
is inserted in the same way as in GCS. Beside that the second 
new cell is inserted between the edge connecting the second 
MRV and its most distant direct topological neighborhood. The 
goal of TGCS is to speed up the convergence of the learning 
process. Another characteristic of the TGCS is that the 
insertion point of the new cells is variable. The exact location 
of their centers of receptive field is calculated according to the 
ratio of the resource values. This gives an estimate of the 
resource values as if the new unit has been in the network 
right from the start. 

A.  TGCS Topology 
The cell growing mechanism of TGCS is nearly the same as 

in GCS. The only difference is that in TGCS two new cells are 
inserted simultaneously instead of only one new cell as in 
GCS. In other words, in each insertion step of GCS only one 
new cell is inserted in the middle of the edge connecting the 
MRV and the most distant node in the direct topological 
neighborhood of MRV. But in TGCS two new cells are 
inserted at the same time. The first new cell is inserted in the 
same way as in GCS. Besides that, another new cell is inserted 
between the edge connecting the second MRV and the most 
distant node in its direct topological neighborhood (see Fig. 2). 
When the second MRV is in the direct topological 
neighborhood of the first MRV, only one new cell is inserted 
between first MRV and second MRV. 

Each vertex Vc in the current network A maintains an error 
counter value Ec over each organizational process. Whenever 
an input vector is mapped onto a vertex, the square of the 
distance between the input vector x and the vertex’s weight 
vector wwin of the winner cell is added to the error value. Large 
cumulative error values occur at vertices that have too many 
input vectors mapped onto them. Their weight vectors fail to 
adequately represent all of the input vectors in that area. 
Therefore, new nodes are added to the areas with high 
cumulative error. 

 

 

 
 

Fig. 2 TGCS network topology. Upper figure: before the insertion of 
new cells. Lower figure: after the insertion of new cells 

 
 

Fig. 2 shows the structure of a 2-dimensional TGCS. Vmax1 
is the first MRV, and Vmax2  is the second. Vmax1 has three direct 
topological neighbors: Vdtn11, Vdtn12 and Vmdn1, Vmax2 also has 
three direct topological neighbors: Vdtn21, Vdtn22 and Vmdn2. 
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Vmdn1 and Vmdn2 are the most distant nodes from Vmax1 and Vmax2 
respectively. Fig. 2 upper shows the situation before the 
insertion of new cells. Fig. 2 lower shows the situation after 
the insertion of new cells. The first new cell Vnew1 is inserted 
between Vmax1 and Vmdn1, the second Vnew2 is inserted between 
Vmax2 and Vmdn2. 

 

B.  TGCS Learning Algorithm 
For 2-dimensions, TGCS performs the Delaunay 

triangulation of input vector space according to an unknown 
input vector density distribution p(x). Unsupervised training of 
TGCS takes place by competitive Hebbian learning or WTA 
mode which can be described as follows: 

1) Start with a random triangle of 3 connected cells. 
2) Load an input pattern x chosen randomly from p(x). 
3) Calculate the Euclidean distance between x and all 

cells. 
4) Find the cell with the shortest distance (i.e., 

“winner”). 
5) Accumulate the squared distance to input vector x in 

a local counter variable Ex. 
6) If the counter (or the error measure, i.e., the resource 

variable) exceeds a threshold:  
(a) split the edge to the first farthest topological 
neighbor and insert the first new cell at the halfway; 
(b) split the edge to the second farthest topological 
neighbor and insert the second new cell at this 
halfway. 

7) If the counter did not change for a certain time, 
remove a cell together with its connections. 

8) Move the winner cell and its topological neighbors 
towards the input pattern x. 

9) Iterate (2) – (8) until some performance measure has 
met or a predefined maximum number of grown 
cells is arrived. 

 
GCS are based on an unsupervised algorithm, but can be 

extended to supervised learning, i.e., Supervised GCS (SGCS) 
[3]. This network combines two families of networks, SOFM 
and Radial Basis Function networks, with the ability to grow 
during training process. It consists of three layers, including 
one hidden layer. The cells of the hidden layer have a 
Gaussian activation function. The weight vector of each cell 
defines the center of the Gaussian function and an additional 
parameter defines its size. In addition, the hidden layer forms 
a topological structure defined through hyper- tetrahedrons, 
which is a special type of neighborhood definition of SOFM. 
The neighborhood also defines the standard deviation of the 
Gaussian activation function by using the mean distance 
between a cell and its neighbors. The output of the network is 
simply computed by a weighted sum of the cell activations in 
the hidden layer.  

Same mechanism in SGCS can be applied to TGCS. The 
training algorithm of the supervised TGCS is based on three 
parts: the first part is concerned with the adaptation of the 
synaptic weights from the input to the hidden layer (input 

weight vectors). The second part performs insertion and 
deletion of cells. The classification error occurring for the 
training data is used to determine where to insert new cells. 
The third part is the adaptation of the weights from the hidden 
to the output layer (output weight vectors). 

V. TESTING RESULTS COMPARISONS 
We use only supervised learning for convenience 

comparison between different GSONN models and some 
traditional ones. The supervised TGCS is tested with two 
neural network benchmarks, the two spirals problem and the 
mines vs. rocks sonar classification, which are from the CMU 
database [17]. 

A.  Test 1 – Two Spirals Problem 
In order to solve the two spirals problem, a 2-dimensional 

TGCS is generated. The classification error on the training set 
dropped to 0 and the accumulated squared output error served 
for resource updating. It took TGCS 96 training epochs (CPU: 
5.59 sec.) and 138 growing cells until the network achieved 
zero classification error. The original SGCS needed 180 
epochs (CPU: about 11.68 sec.) and 145 growing cells.  

Table I gives a detailed comparison between some earlier 
methods and the new approach for the two-spiral problem. As 
it can be seen, the number of epochs and CPU time required 
by the TGCS is about twice smaller than that required by the 
original SGCS or DCS-GCS. 

 

B.  Test 2 – Mines/Rocks Separation with Sonar 
This benchmark is used to test TGCS. In the experiment the 

accumulated squared output error served as resource for 
weight updating. To achieve 92.31% classification rate on the 
test samples, the TGCS network needs only 78 epochs and 147 
grown cells. At the same time, the classification error on the 
training set dropped to 0. By comparison, after 140 epochs the 
SGCS reached 90.38% accuracy for test samples with 141 
grown cells. At the same time, the classification error on the 
training set fell to 3.85% (it is 0 by TGCS). The supervised 
DCS-GCS reached an accuracy of 91.4% in the test samples 
after 95 epochs of training. Table 2 shows the difference 
between SGCS and TGCS for this problem. 

Although the double growing cell mechanism can reduce 
the required number of learning epochs, it can also lead to a 

 
TABLE I 

EPOCHS FOR SUPERVISED LEARNING OF THE TWO-SPIRALS PROBLEM.THE 
FIRST PART OF THE TABLE IS TAKEN FROM J.BRUSKE[10].THE TIME UNIT IS 

SECOND 

Algorithm Epochs CPU 
Time 

Grown 
Cells 

Standard BP 20000   
Cross Entropy BP 10000   
Cascade-Correlation 1700   
DCS-GCS 177   
SGCS 180 10.24 145 
TGCS 96 5.59 138 
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more complex network structure. Simulation results on some 
more neural network benchmarks indicate that, for many 
datasets, when the number of new cells (which are inserted at 
the same time in each insertion step) is two or three, the total 
performance of networks is at the best, but that increasing the 
number of new cells beyond three has very little benefit and 
sometimes degrades performance. 

 

 

VI. CONCLUSIONS 
The main advantage of a GSONN is that it can 

automatically find a network structure and size suitable for a 
given input pattern through cell insertions. GSONN can 
dynamically produce a self-organizing network with smaller 
size and better generalization performance and rapid 
convergence capacity. The main characteristics of GSONN 
can be summarized as: (a) The network structure is determined 
automatically from the input data; (b) The network size need 
not to be predefined. Instead, the growth process can be 
continued until a performance criterion is met; (c) The 
insertion of new units can be influenced such that the 
generated network estimates the probability density of the 
input signals as well as minimizing the quantization error. The 
supervised learning formed by GSONN also has some 
advantages over the traditional neural network models: (a) The 
number, diameter and position of RBF units are determined 
automatically through a growth process; (b) The temporal 
classification error can be used to determine where to insert 
new RBF units; (c) The networks are relatively small and 
generalize very well. 

The final topology of GSONN is a function of the growing 
algorithm, i.e., the learning rate parameters, the growing way 
and the number of new units. An interesting goal would be a 
model with no parameters except the properties of the desired 
classifier. GSONN combined with evolutionary computation 
and fuzzy sets would be an exciting research direction. Based 
on GSONN, we are now focusing on a hybrid soft computing 
platform for intelligence oil & gas exploration data processing 
and reservoir modeling. 
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TABLE II 

COMPARISON BETWEEN TGCS AND SGCS FOR SONAR MINE/ROCK 
SEPARATION PROBLEM. THE FIRST PART OF THE TABLE IS TAKEN FROM 

J.BRUSKE [10].THE TIME UNIT IS SECOND. KNN--K-NEAREST NEIGHBOR 
CLASSIFIER, CR--CLASSIFICATION RATE 

Algorithm Epochs CPU Time Test CR 

KNN   82.7% 
MLP   90.4% 
DCS-GCS 95  91.4% 
SGCS 140 29.45 90.38% 
TGCS 78 17.36 92.31% 

 


