
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3391

Abstract—The competitive learning is an adaptive process in

which the neurons in a neural network gradually become sensitive to
different input pattern clusters. The basic idea behind the Kohonen’s
Self-Organizing Feature Maps (SOFM) is competitive learning.
SOFM can generate mappings from high-dimensional signal spaces
to lower dimensional topological structures. The main features of this
kind of mappings are topology preserving, feature mappings and
probability distribution approximation of input patterns. To overcome
some limitations of SOFM, e.g., a fixed number of neural units and a
topology of fixed dimensionality, Growing Self-Organizing Neural
Network (GSONN) can be used. GSONN can change its topological
structure during learning. It grows by learning and shrinks by
forgetting. To speed up the training and convergence, a new variant
of GSONN, twin growing cell structures (TGCS) is presented here.
This paper first gives an introduction to competitive learning, SOFM
and its variants. Then, we discuss some GSONN with fixed
dimensionality, which include growing cell structures, its variants
and the author’s model: TGCS. It is ended with some testing results
comparison and conclusions.

Keywords—Artificial neural networks, Competitive learning,
Growing cell structures, Self-organizing feature maps.

I. INTRODUCTION

HE learning in ANN is achieved by proper adjustment of
the interconnection weights between artificial neurons or

by change of network topologies. The ANN learning
algorithms can be classified into three main paradigms:
supervised learning, unsupervised learning and reinforcement
learning. Most of the competitive learning algorithms are used
for unsupervised learning in which the input data can be
categorized or clustered, i.e., similar inputs are classified as
being in the same category and should activate the same
output unit which corresponds to a prototype of the category.
In this case, the output sample is absent or not needed. Based
on correlations of the inputs, clusters are determined by the
network itself.

ANN with unsupervised learning has been widely used in
clustering tasks, dimensionality reduction, data mining,
information extraction, density approximation, data
compression, etc. A basic principle of unsupervised learning is
based on the competition mechanism, in which the output
units compete for activation. In some competitive learning
algorithms only one output neuron is activated at any given
time, which is realized by means of the so-called

This work is supported by NSFC -- The National Natural Science

Foundation of China (40572082).
Authors are with School of Computer Science, Xi’an Shiyou University

Shaanxi Province, 710065, China
({gjcheng,tshliu,jxhan,zhwang}@xsyu.edu.cn).

Winner-Takes-All (WTA) mode (e.g., LBG and K-means) or
Hard Competitive Learning (HCL). Another widely used
learning mode is Winner-Takes-More (WTM), i.e., Soft
Competitive Learning (SCL). The WTM mode is
characterized by adapting in addition to the winner also some
other units located at the winner’s neighbors. It can be further
classified by its topology, WTM without fixed dimensionality
and WTM with fixed dimensionality [1].

WTM without fixed dimensionality has no topology of a
fixed dimensionality that is imposed on the network. The
dimensionality of the network depends on the local
dimensionality of the data and may vary within the input space.
Competitive Hebbian learning, neural gas and growing neural
gas belong to this type. WTM with fixed dimensionality has
such an advantage that its network defines a mapping from the
n-dimensional input space (with n being arbitrarily large) to
the k-dimensional network structure (with k being 2 or 3). This
makes it possible to get a low-dimensional representation of
the input patterns that may be used for data visualization
purposes. The dimensionality k has to be chosen in advance.
This kind of models includes Kohonen’s Self-Organizing
Feature Maps (SOFM) [2] and Fritzke’s Growing Cell
Structures (GCS) [3]. This paper stresses the GSONN with
fixed dimensionality. In the following section 2, the SOFM
and its dynamic topology variants are introduced. In sections 3,
we present a typical GSONN with fixed dimensionality, GCS
and its variants. The author’s model, Twin GCS, is presented
in section 4. Some testing comparisons with different models
are given in section 5. It is ended with conclusion. Notes: in
the context, such concepts as neuron, cell, node, unit, element,
vertex, etc. have nearly same meaning.

II. SELF-ORGANIZING FEATURE MAPS AND VARIANTS
The basic idea behind the SOFM is competitive learning.

The neurons are presented with the inputs, which calculate
their weighted sum and neuron with the largest output is
chosen to receive additional training. Training in SOFM does
not just affect the one neuron but also its neighbors. Suppose
that an input pattern has n features and is represented by a
vector x in an n-dimensional pattern space. The network maps
the input pattern to an output space. The output space is
supposed to be a 1-dimensional or 2-dimensional array of
output nodes. The question is how to train a network so that
the ordered relationship can be preserved. The cerebral cortex
of the human brain could be imaged as a 2-dimensional plane
of neurons and spatial mappings are used to model complex
inputs. This means that topological relationships in external
stimuli are preserved and complex high-dimensional data can

Towards Growing Self-Organizing Neural
Networks with Fixed Dimensionality

Guojian Cheng, Tianshi Liu, Jiaxin Han, and Zheng Wang

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3392

be represented in a lower dimensional space. Kohonen uses
2-dimensional networks where the neurons are arranged on a
flat grid in some regular topology, e.g., hexagonal or
rectangular. The weights on lateral interconnections from
neighbors are given by a function which radius decreases with
time, e.g., the Mexican hat function. In other words, the
connections from close neighbors should have high (excitatory)
weighting and those from distant neighbors should have low
(inhibitory) weighting. Therefore, the SOFM is also called a
topology-preserving map because it can preserve the
neighborhood relations.

Kohonen has also used another learning technique for his
self-organizing network [2]. He calls this technique Learning
Vector Quantization (LVQ) [2] and uses it to fine-tune the
feature map using input vectors of known classification. These
vectors are presented to the network and a best match
comparison made at each network cell. The weight vector of
the winner is modified to reinforce correct classifications or
correct misclassifications. Based on LVQ, A. Zell represented
a dynamic extension of LVQ, which is called Dynamic LVQ
(DLVQ) [4]. Combining the SOFM with a
counter-propagation network, J. Goppert and W. Rosenstiel
introduced Interpolation SOM (ISOM) [5].

The key advantage of SOFM is the formation of clusters,
which helps to reduce the input space into representative
features using a self-organization process. But it has some
disadvantages. For example, the SOFM uses a fixed network
architecture in terms of number and arrangement of neural
processing elements which has to be defined prior to training.
Obviously, in case of largely unknown input data
characteristics, it is very difficulty to predetermine a proper
network architecture that can yield satisfying results. Also, the
topology of the input space in SOFM has to match the
topology of the output space to be represented, i.e., the
property of neighborhood preservation depends on the choice
of the output space map topology. However, in real world
datasets, the proper dimensionality required by the input space
is usually not known a priori, yet the output grid size has to be
specified prior to learning. To solve this problem, we can use
an advanced learning scheme, by which it adapts not only the
weight vectors of the neurons, but also the topology of the
output space itself. Some examples of such learning
algorithms include Self-Organizing Surfaces (SOS) [6],
Evolve Self-Organizing Maps (ESOM) [7], Incremental Grid
Growing (IGG) [8], Growing Hierarchical Self-Organizing
Map (GHSOM) [9].

III. GROWING CELL STRUCTURES AND VARIANTS
B. Fritzke has identified some limitations of SOFM, such as:

(a) The SOFM network has a fixed size and topology which
must be predetermined; (b) The parameters in the SOFM are
not constant over time but follow a decay schedule; (c) Some
cells of the SOFM network are at locations where the
probability density p(x) of the input vector x is zero; (d) Some
cells that are direct topological neighbors in the SOFM
network have rather distant positions in p(x). These limitations
result in poor performance for pattern clustering in using

SOFM for some applications. To overcome these limitations,
B. Fritzke proposed a growing model for SOFM, i.e., Growing
Cell Structures (GCS) [3].

A. Principle of GCS
The basic building blocks of the generated topology in GCS

are hyper-tetrahedrons of a certain dimensionality k chosen in
advance. In contrast to SOFM, neither the number of cells nor
the exact topology has to be predefined in GCS. Instead, a
growth process successively inserts cells and connections. All
parameters in the model are constant over time. This makes it
possible to continue the growth process until a specific
network size is reached or until an application-dependent
performance criterion is fulfilled. The input data directly guide
the insertion of new cells. Generally, this leads to network
structures reflecting the given input distribution better than a
predefined topology could. The purpose of the GCS is the
generation of a topology-preserving mapping from the input
space Rn onto a topological structure A of equal or lower
dimensionality k. Topology preservation has such meanings as:
(a) Input vectors that are close in Rn should be mapped onto
neighboring nodes in A; (b) Neighboring nodes in A should
have similar input vectors from Rn mapped onto them.

The GCS generates a k-dimensional topological structure

that can be seen as a projection onto a nonlinear, discretely
sampled subspace. The GCS starts with a triangle of three
cells at random positions in p(x), cells are positioned over the
area of non-zero probability density. The insertion of new cells
should maintain the triangular connectivity structure. The
resulting structure is then redistributed through an adaptive
process which is analogous to SOFM, i.e., input vectors are
generated according to p(x), then the best matching unit (Vbmu
or winner) and its direct topological neighbors (Vdtn) move
closer to this vector. The degree by which the winner and its
dtn (direct topological neighbor) cells are adapted by constant
values, ηwin and ηdtn respectively, here ηwin is more greater than
ηdtn. The result is a network structure which has reached an
equilibrium state where the cell distribution roughly
approximates p(x). Fig. 1 shows some stages of a simulation
for a simple ring-shaped data distribution [1].

Fig. 1 GCS simulation sequence from initial state to final state for a
ring-shaped uniform probability distribution

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3393

B. GCS Variants
Dynamic Cell Structure (DCS) was introduced by J. Bruske

[10]. It belongs to the family of Topology Representing
Networks (TRN) [11]. DCS employs a modified Kohonen
learning rule in conjunction with Competitive Hebbian
Learning. The Kohonen type learning rule serves to adjust the
synaptic weight vectors while Hebbian learning establishes a
dynamic lateral connection structure between the cells
reflecting the topology of the feature manifold. The DCS idea
applied to the GCS algorithm could lead to an efficient and
elegant algorithm.

Based upon hierarchical clustering and GCS, a Tree-based
GCS (TreeGCS) was proposed by V. Hodge [12]. TreeGCS is
an unsupervised, growing, self-organizing hierarchy of nodes
able to form discrete clusters. High dimensional inputs are
mapped onto a 2-dimensional hierarchy reflecting the
topological ordering of the input space. The TreeGCS
algorithm can improve an inconsistency in the GCS algorithm,
where the network topology is susceptible to the ordering of
the input vectors.

A probabilistic version of the GCS algorithm, Probabilistic
GCS (PGCS), was introduced by N. Vlassis [13] and was also
applied to a robot configuration. The original GCS is actually
an adaptive-means clustering algorithm in which new clusters
are added dynamically to produce a Voronoi tessellation of the
input space. Under the condition that samples are distributed
in each cluster according to a multivariate normal probability
density function, the non-parametric model of the GCS was
extended into PGCS. By recursively estimating the means and
the variances of the clusters, and by introducing a new
criterion for the insertion and deletion of a cluster, the PGCS
has shown to be more powerful than the original GCS.

Some new variants and application fields of GCS have been
presented and it is shown that GCS is an effective and
promising GSONN. Those examples include: the evolving tree
model by J. Pakkanen [14], adaptive self-organizing maps by
Y. Yang [15], adaptive topological tree structure by R.
Freeman [16].

IV. TWIN GROWING CELL STRUCTURES (TGCS)
In each insertion step of the GCS only one new cell is

inserted in the middle of the edge connecting MRV (Maximum
Resource Vertex, some quantitative errors can be used as a
resource for cell growing) and the most distant node in the
direct topological neighborhood of MRV. But in the TGCS,
two new cells are inserted at the same time. The first new cell
is inserted in the same way as in GCS. Beside that the second
new cell is inserted between the edge connecting the second
MRV and its most distant direct topological neighborhood. The
goal of TGCS is to speed up the convergence of the learning
process. Another characteristic of the TGCS is that the
insertion point of the new cells is variable. The exact location
of their centers of receptive field is calculated according to the
ratio of the resource values. This gives an estimate of the
resource values as if the new unit has been in the network
right from the start.

A. TGCS Topology
The cell growing mechanism of TGCS is nearly the same as

in GCS. The only difference is that in TGCS two new cells are
inserted simultaneously instead of only one new cell as in
GCS. In other words, in each insertion step of GCS only one
new cell is inserted in the middle of the edge connecting the
MRV and the most distant node in the direct topological
neighborhood of MRV. But in TGCS two new cells are
inserted at the same time. The first new cell is inserted in the
same way as in GCS. Besides that, another new cell is inserted
between the edge connecting the second MRV and the most
distant node in its direct topological neighborhood (see Fig. 2).
When the second MRV is in the direct topological
neighborhood of the first MRV, only one new cell is inserted
between first MRV and second MRV.

Each vertex Vc in the current network A maintains an error
counter value Ec over each organizational process. Whenever
an input vector is mapped onto a vertex, the square of the
distance between the input vector x and the vertex’s weight
vector wwin of the winner cell is added to the error value. Large
cumulative error values occur at vertices that have too many
input vectors mapped onto them. Their weight vectors fail to
adequately represent all of the input vectors in that area.
Therefore, new nodes are added to the areas with high
cumulative error.

Fig. 2 TGCS network topology. Upper figure: before the insertion of
new cells. Lower figure: after the insertion of new cells

Fig. 2 shows the structure of a 2-dimensional TGCS. Vmax1
is the first MRV, and Vmax2 is the second. Vmax1 has three direct
topological neighbors: Vdtn11, Vdtn12 and Vmdn1, Vmax2 also has
three direct topological neighbors: Vdtn21, Vdtn22 and Vmdn2.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3394

Vmdn1 and Vmdn2 are the most distant nodes from Vmax1 and Vmax2
respectively. Fig. 2 upper shows the situation before the
insertion of new cells. Fig. 2 lower shows the situation after
the insertion of new cells. The first new cell Vnew1 is inserted
between Vmax1 and Vmdn1, the second Vnew2 is inserted between
Vmax2 and Vmdn2.

B. TGCS Learning Algorithm
For 2-dimensions, TGCS performs the Delaunay

triangulation of input vector space according to an unknown
input vector density distribution p(x). Unsupervised training of
TGCS takes place by competitive Hebbian learning or WTA
mode which can be described as follows:

1) Start with a random triangle of 3 connected cells.
2) Load an input pattern x chosen randomly from p(x).
3) Calculate the Euclidean distance between x and all

cells.
4) Find the cell with the shortest distance (i.e.,

“winner”).
5) Accumulate the squared distance to input vector x in

a local counter variable Ex.
6) If the counter (or the error measure, i.e., the resource

variable) exceeds a threshold:
(a) split the edge to the first farthest topological
neighbor and insert the first new cell at the halfway;
(b) split the edge to the second farthest topological
neighbor and insert the second new cell at this
halfway.

7) If the counter did not change for a certain time,
remove a cell together with its connections.

8) Move the winner cell and its topological neighbors
towards the input pattern x.

9) Iterate (2) – (8) until some performance measure has
met or a predefined maximum number of grown
cells is arrived.

GCS are based on an unsupervised algorithm, but can be

extended to supervised learning, i.e., Supervised GCS (SGCS)
[3]. This network combines two families of networks, SOFM
and Radial Basis Function networks, with the ability to grow
during training process. It consists of three layers, including
one hidden layer. The cells of the hidden layer have a
Gaussian activation function. The weight vector of each cell
defines the center of the Gaussian function and an additional
parameter defines its size. In addition, the hidden layer forms
a topological structure defined through hyper- tetrahedrons,
which is a special type of neighborhood definition of SOFM.
The neighborhood also defines the standard deviation of the
Gaussian activation function by using the mean distance
between a cell and its neighbors. The output of the network is
simply computed by a weighted sum of the cell activations in
the hidden layer.

Same mechanism in SGCS can be applied to TGCS. The
training algorithm of the supervised TGCS is based on three
parts: the first part is concerned with the adaptation of the
synaptic weights from the input to the hidden layer (input

weight vectors). The second part performs insertion and
deletion of cells. The classification error occurring for the
training data is used to determine where to insert new cells.
The third part is the adaptation of the weights from the hidden
to the output layer (output weight vectors).

V. TESTING RESULTS COMPARISONS
We use only supervised learning for convenience

comparison between different GSONN models and some
traditional ones. The supervised TGCS is tested with two
neural network benchmarks, the two spirals problem and the
mines vs. rocks sonar classification, which are from the CMU
database [17].

A. Test 1 – Two Spirals Problem
In order to solve the two spirals problem, a 2-dimensional

TGCS is generated. The classification error on the training set
dropped to 0 and the accumulated squared output error served
for resource updating. It took TGCS 96 training epochs (CPU:
5.59 sec.) and 138 growing cells until the network achieved
zero classification error. The original SGCS needed 180
epochs (CPU: about 11.68 sec.) and 145 growing cells.

Table I gives a detailed comparison between some earlier
methods and the new approach for the two-spiral problem. As
it can be seen, the number of epochs and CPU time required
by the TGCS is about twice smaller than that required by the
original SGCS or DCS-GCS.

B. Test 2 – Mines/Rocks Separation with Sonar
This benchmark is used to test TGCS. In the experiment the

accumulated squared output error served as resource for
weight updating. To achieve 92.31% classification rate on the
test samples, the TGCS network needs only 78 epochs and 147
grown cells. At the same time, the classification error on the
training set dropped to 0. By comparison, after 140 epochs the
SGCS reached 90.38% accuracy for test samples with 141
grown cells. At the same time, the classification error on the
training set fell to 3.85% (it is 0 by TGCS). The supervised
DCS-GCS reached an accuracy of 91.4% in the test samples
after 95 epochs of training. Table 2 shows the difference
between SGCS and TGCS for this problem.

Although the double growing cell mechanism can reduce
the required number of learning epochs, it can also lead to a

TABLE I

EPOCHS FOR SUPERVISED LEARNING OF THE TWO-SPIRALS PROBLEM.THE
FIRST PART OF THE TABLE IS TAKEN FROM J.BRUSKE[10].THE TIME UNIT IS

SECOND

Algorithm Epochs CPU
Time

Grown
Cells

Standard BP 20000
Cross Entropy BP 10000
Cascade-Correlation 1700
DCS-GCS 177
SGCS 180 10.24 145
TGCS 96 5.59 138

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3395

more complex network structure. Simulation results on some
more neural network benchmarks indicate that, for many
datasets, when the number of new cells (which are inserted at
the same time in each insertion step) is two or three, the total
performance of networks is at the best, but that increasing the
number of new cells beyond three has very little benefit and
sometimes degrades performance.

VI. CONCLUSIONS
The main advantage of a GSONN is that it can

automatically find a network structure and size suitable for a
given input pattern through cell insertions. GSONN can
dynamically produce a self-organizing network with smaller
size and better generalization performance and rapid
convergence capacity. The main characteristics of GSONN
can be summarized as: (a) The network structure is determined
automatically from the input data; (b) The network size need
not to be predefined. Instead, the growth process can be
continued until a performance criterion is met; (c) The
insertion of new units can be influenced such that the
generated network estimates the probability density of the
input signals as well as minimizing the quantization error. The
supervised learning formed by GSONN also has some
advantages over the traditional neural network models: (a) The
number, diameter and position of RBF units are determined
automatically through a growth process; (b) The temporal
classification error can be used to determine where to insert
new RBF units; (c) The networks are relatively small and
generalize very well.

The final topology of GSONN is a function of the growing
algorithm, i.e., the learning rate parameters, the growing way
and the number of new units. An interesting goal would be a
model with no parameters except the properties of the desired
classifier. GSONN combined with evolutionary computation
and fuzzy sets would be an exciting research direction. Based
on GSONN, we are now focusing on a hybrid soft computing
platform for intelligence oil & gas exploration data processing
and reservoir modeling.

REFERENCES

[1] B. Fritzke, Some competitive learning methods.
http://www.neuroinformatik..ruhr-uni-bochum.de/ini/VDM/research/gsn/
JavaPaper/

[2] T. Kohonen, Self-Organizing Maps. Springer, Berlin, Heidelberg, 2001.
(Third Extended Edition).

[3] Fritzke, Growing cell structures – a self-organizing network for
unsupervised and supervised learning. Neural Networks,
7(9):1441–1460, 1994.

[4] A. Zell, M. Schmalzl, Dynamic LVQ—A fast neural net learning
algorithm. In Proc. ICANN’94, International Conference on Artificial
Neural Networks, volume II, pages 1095–1098, London, UK, 1994.

[5] J. Goppert, W. Rosenstiel, Interpolation in SOM: Improved
generalization by iterative methods. In Proc. ICANN’95, International
Conference on Artificial Neural Networks, pages 69–74, France, 1995.

[6] A. Zell, H. Bayer, H., Bauknecht, Similarity analysis of molecules with
self-organizing surfaces—an extension of the self-organizing map. In
Proc. ICNN’94, International Conference on Neural Networks, pages
719–724, Piscataway, NJ, 1994. IEEE Service Center.

[7] D. Deng, N. Kasabov, On-line pattern analysis by evolving
self-organizing maps Neurocomputing 51: 87-103 (2003)

[8] J. Blackmore, Visualizing high-dimensional structure with the
incremental grid growing neural network. Technical Report AI95-238,
University of Texas, Austin, August 1, 1995.

[9] M. Dittenbach, F. Merkl, A. Rauber, The growing hierarchical
self-organizing map. In S. Amari, C. L. Giles, M. Gori, and V. Puri,
editors, Proc of the International Joint Conference on Neural Networks
(IJCNN 2000), volume VI, pages 15 – 19, Como, Italy, July 24. – 27.
2000. IEEE Computer Society.

[10] J. Bruske, G. Sommer, Dynamic cell structure learns perfectly topology
preserving map. Neural Computation, 7(4):845–865, 1995.

[11] T. Martinetz, Competitive Hebbian learning rule forms perfectly
topology preserving maps. In Stan Gielen and Bert Kappen, editors, Proc.
ICANN’93, Int. Conf. on Artificial Neural Networks, pages 427–434,
London, UK, 1993. Springer.

[12] V. Hodge, J. Austin, Hierarchical growing cell structures: TreeGCS. In
IEEE TKDE Special Issue on Connectionist Models for Learning in
Structured Domains.

[13] N. Vlassis, A. Dimopoulos, G. Papakonstantinou, The probabilistic
growing cell structures algorithm. Lecture Notes in Computer Science,
1327:P649, 1997.

[14] J.Pakkanen, J. Iivarinen, E. Oja, The evolving tree -- a novel
self-organizing network for data analysis. Neural Processing Letters,
20(3):199{211, 2004.

[15] Y. Wang, C. Yang, K. Mathee, G. Narasimhan, Clustering using Adaptive
Self-Organizing Maps (ASOM) and Applications. Proceedings of
International Workshop on Bioinformatics Research and Applications,
p944-951 Atlanta, Georgia, May 2005.

[16] R. Freeman and H. Yin, "Adaptive Topological Tree Structure (ATTS)
for document organization and visualization," Neural Networks, Vol. 17,
pp. 1255-1271, 2004.

[17] M. White, S. Fahlman, CMU repository of neural network benchmarks.
Technical report, The Carnegie Mellon University, 1997.

TABLE II

COMPARISON BETWEEN TGCS AND SGCS FOR SONAR MINE/ROCK
SEPARATION PROBLEM. THE FIRST PART OF THE TABLE IS TAKEN FROM

J.BRUSKE [10].THE TIME UNIT IS SECOND. KNN--K-NEAREST NEIGHBOR
CLASSIFIER, CR--CLASSIFICATION RATE

Algorithm Epochs CPU Time Test CR

KNN 82.7%
MLP 90.4%
DCS-GCS 95 91.4%
SGCS 140 29.45 90.38%
TGCS 78 17.36 92.31%

