
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

410

Abstract—The drastic increase in the usage of SMS technology
has led service providers to seek for a solution that enable users of

mobile devices to access services through SMSs. This has resulted in

the proposal of solutions towards SMS-based service invocation in

service oriented environments. However, the dynamic nature of

service-oriented environments coupled with sudden load peaks

generated by service request, poses performance challenges to

infrastructures for supporting SMS-based service invocation. To

address this problem we adopt load balancing techniques. A load

balancing model with adaptive load balancing and load monitoring

mechanisms as its key constructs is proposed. The load balancing

model then led to realization of Least Loaded Load Balancing

Framework (LLLBF). Evaluation of LLLBF benchmarked with round

robin (RR) scheme on the queuing approach showed LLLBF

outperformed RR in terms of response time and throughput.

However, LLLBF achieved better result in the cost of high

processing power.

Keywords—SMS (Short Message Service), LLLBF (Least
Loaded Load Balancing Framework), Service Oriented Computing

(SOC).

I. INTRODUCTION

MS has long been established as the de facto standard for

sending and receiving text messages on mobile phones [1].

Its popularity has led to its use by service providers as an

alternative means of technology to render services which

allows service consumer (mobile user) to reach services from a

service provider by requesting and retrieving content via SMS.

This is known as SMS-based service invocation in SOC

environments. The SOC environment makes SMS-based

service invocation feasible by enabling mobile users to access

the wealth of applications which were otherwise only

accessible through personal computers. However, SOC

environments are by nature dynamic and composed of

autonomous entities, which makes them unpredictable and

difficult to manage [2]. One of the entities in such

environments is service consumers, which are known to

Mandla Nene is with the Department of Computer Science and Mobile e-

service in the University of Zululand, Private Bag X1001, KwaDlangezwa

3886. South Africa (email:mandlatnene@gmail.com).
Edgar Jembere is with the Department of Computer Science and Mobile

e-service in the University of Zululand, Private Bag X1001, KwaDlangezwa

3886. South Africa (email:ejembere@gmail.com).
Matthew Adigun is with the Department of Computer Science and Mobile

e-service in the University of Zululand, Private Bag X1001, KwaDlangezwa

3886. South Africa (madigun@pan.uzulu.ac.za).

behave unexpectedly in relation to generating traffic. This

implies that service providers may receive very few requests

from service consumers for a given service at one time and

subsequently receive heavy number of requests other times

thereby overloading service provider.

 Load balancing in literature (e.g. [3], [4]) is regarded as

one of the techniques for addressing the sudden load peaks in a

dynamic environment such as SMS-based service invocation.

Load balancing in this work is defined as a process that evenly

distributes traffic amongst computers (i.e. servers) hence

solving overloading so that no single computer is

overwhelmed. Load balancing provides different schemes and

there are traditionally implemented in a mechanism called load

balancer that acts as front end of the service providers’ servers

as depicted in Fig. 1 (a). The load balancer is responsible for

load (i.e. requests) scheduling. The load balancer in this work

is the SMS broker which acts as front end for the service

providers servers that provide the content and services as

shown in the architecture by [6], [7]. This SMS broker deals

with translating SMS requests sent by service consumers to

HTTP requests and direct the requests to a service provider

servers using some load balancing techniques as depicted in

Fig. 1 (b).

Scholars like [5] proposed queuing approach which

implemented store and forward mechanism. The forwarding

mechanism is load distributor that implements simple load

balancing schemes [5] such as the round robin (RR) scheme

that distributes load around service provider servers

iteratively. We argue that using RR which does not consider

any system state information and this may lead to poor load

distribution decisions. Thus, affecting the system performance.

Based on such flaw, the RR then is not appropriate load

balancing technique for such dynamic environments as SMS-

based service invocation.

 Towards a Load Balancing Framework for an

SMS–Based Service Invocation Environment

Mandla T. Nene, Edgar.Jembere, Matthew O. Adigun, Themba Shezi, and Siyabonga

S. Cebekhulu

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

411

Fig. 1 (a) Conventional load balancing

Fig. 1 (b) SMS based service invocation architecture (adopted from

[6])

To address the aforementioned challenge, this paper

proposed a load balancing model made up of adaptive load

handling and load monitoring mechanisms .This model is able

to adapt to change occurring SOC by relying on monitored

system status. Based on specification of the model we crafted

LLLBF that allowed these mechanisms introduced in load

balancing model to work together to try the goal of this work.

The rest of the paper is organized as follows. Section II

discusses literature reviewed. The design considerations of our

load balancing Model that assist to achieve our goal, are

discussed Section III. Section IV presents our proposed load

balancing Model. In Section V presents a load balancing

framework derived from proposed load balancing Model.

Section VI discusses performance evaluation of the model. We

conclude the paper with the discussion of the implications of

our findings and our future work in section VII.

II. RELATED WORK

 A lot of work has been done in distributed environment

related to load balancing. The major goal is to improve

performance of such system. In order to achieve this goal

various load balancing schemes have been introduced at

different levels.

Currently, SMS-based service invocation implements

queuing mechanism that distribute load using simple load

balancing scheme such round robin scheme proposed by [5]

.The RR [8], [9], [10] scheme assigns request load on a

rotational basis between servers. However, the round robin

scheme makes assumption when distributing load i.e. it take

guesses when distributing load because it has less or no

information about the system status hence RR is not

appropriate scheme for dynamic environment. The other flaw

is RR scheme can only serve homogeneous environment while

most of distributed system today are heterogeneous. Based on

RR scheme flaws we explored load balancing schemes that can

better deal with the dynamic nature of distributed

environments. This load balancing approaches are briefly

described below.

More successful and accurate load balancing requires load

balancing strategy to have some notion of the server load in

order adapt the load balancing weight to the current load. This

can be done by monitoring servers’ behaviour .The following

schemes tries to achieve latter requirement. The load sharing

scheme [11], [12], [13] achieves that by balances the load

between servers by checking which ones are heavily or lightly

loaded using load metrics being monitored. The requests are

moved from the heavily loaded server to the lightly loaded

server (offloading) .This is a well-known approach but it

incurs some delay when migrating load.

In [14], [15], [16] presented round-trip scheme assigns

requests to the server that is responding the fastest based on

monitored response times of servers .However, this scheme

provides best effort service. The round-trip scheme is derived

from least loaded approach that distributes requests to a group

of servers, based on which server is currently has lowest load

index [17], [18], [19]. Least loaded achieves this through

monitoring some threshold value or load index metric. The

least loaded scheme has been widely adopted and it has shown

its robustness and flexibility by being applicable in

environments such as networking for load balancing in routing

level [20], [21]. Moreover, this scheme can be combined with

other solutions to achieve a good load balancing solution [21],

[27]. However, the least loaded scheme can have possible

delay depending on the monitoring approach chosen to gather

system current information.

From the foregoing; it is clear that distributed computing

environment such as SMS based service invocation must

support dynamic and adaptive load balancing in order to

handle dynamic requests loads. Therefore in this paper, we

proposed load balancing model that can achieve the latter

objective.

III. DESIGN CRITERIA FOR A LOAD BALANCING FRAMEWORK

As literature suggested that load balancing techniques can

be used to alleviate performance challenges faced by

infrastructure in distributed environment such as SMS based

service invocation. Our work is aimed at modelling the load

balancing solution for the SMS broker in order to enable to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

412

cope with sudden burst loads in a scalable manner. From our

review of literature, we have identified the design criteria to

take into consideration when designing a load balancing model

for SMS invocation of service environment. The design

criteria for crafting the load balancing model include:

A. Adaptive Load Handling Scheme

The environment we are dealing with is dynamic which

implies that such an environment is capable of manifesting

unpredictable behaviour. During SMS invocation of services

in service oriented environment, an abnormal behaviour from

mobile users can lead to unexpected traffic or sudden load

peaks or congestion in the service provider’s servers. In order

to address this issue, the environment needs an adaptive load

handling scheme which adapt to change of the environment

and make decision based on the systems current status being

monitored. This load handling scheme should be able to make

load balancing decisions based on particular situation

occurring in the system which is reflected through monitored

system status information.

B. Provision of Load Monitoring Assistance

The adaptive load handling scheme must be complemented

in terms of making fair load distribution decision by

monitoring the system current state and reporting the load

situation based on load index metrics being monitored

[24].This load monitoring mechanism should supply

information about system status before an adaptive load

handling scheme make load balancing decision.

IV. PROPOSED LOAD BALANCING MODEL

From the design criteria outlined in Section III, a load

balancing model for SMS based service invocation

environments is proposed. The model proposed in this work is

aimed at providing load balancing approach that can improve

performance in dynamic environment such as SMS based

service invocation environment even when there are

overwhelmed with heavy traffic. The model derives from the

idea that a successful and accurate load balancing solution

should be aware of system status whenever distributing load.

Therefore, our load balancing model consists of two parts: an

adaptive load handling mechanism and a load monitoring

mechanism.

A. Adaptive Load Handling Mechanism

Based on the need for an adaptive load handling

requirement, the least loaded scheme was chosen [14], [17]

[18]. This scheme was chosen because of its dynamicity,

adaptiveness and performance when working with stress load

[18]. Moreover, [17] showed that, it outperforms the

Minimum, Threshold, Random, and Round robin approach in

service-oriented environment where Enterprise Service bus

was tested for the best routing scheme that can suit it. The least

loaded load balancing scheme can be adapted to suit any load

balancing environment owing to its flexibility [19], [20].The

least loaded scheme has requests transfer policy which

determines whether a particular service provider’s server is

suitable for receiving requests. This least loaded scheme

transfer policy allows a server or service endpoint to continue

receiving requests if the server currently has least load than the

other servers based on monitored load index metric. The load

index metric is used as a deciding factor to know which server

is the most appropriate to receive requests at that period of

time. In order for that to happen, the least loaded scheme

transfer policy is supported by load information policy which

disseminates information about the status of each service

provider’s servers. The load Information policy is a load

monitoring mechanism that supports least loaded scheme to

make appropriate load distributed decision. The following

section discusses load monitoring mechanism for the purpose

of load balancing.

B. Load Monitoring Mechanism

As literature suggested that promising load balancing

schemes is required to have some notion of the system’s

current status before making load balancing decisions [9],

[23]. This is enabled by having a monitoring mechanism that

collects information about system status using a periodic or an

on-demand approach. In this work an on-demand approach is

preferred over periodic approach because ensures that

collected information is never outdated [26]. The on-demand

load monitoring mechanism collects system status information

only when it is needed for load balancing. That is, the

information is collected dynamically when there is load to be

distributed otherwise if there is no load then there is no need

for collecting the information. The load monitoring mechanism

usually uses the following metrics to support load balancing

decision making: CPU utilization, memory utilization, IO

utilization and Bandwidth occupancy [24], [25]. These load

metrics can be used individually or collectively depending on

the type of load the application or service consumer requests

exert on the system [25]. In our case, we select CPU utilization

as our monitored load metric based on assumption that client

requests are more demanding on computational resources.

Moreover, it is a well-known load index with minimum

overhead [28]. The other reason is that when monitoring load

for any server machine, the calculation used to get load metric

should not be computational expensive [22]. This has been

proven by [28] that CPU load index incurs a minimum

overhead. The CPU load index metric is given by division

CPU utilization (CPUu), CPU capacity (CPUc) and it is

supported by CPU idle time metric. The CPU load index

metric is used for getting the status of service provider’s

servers which is collected by load monitoring mechanism and

published to the adaptive load handling mechanism containing

least loaded scheme so that load is distributed. From the above

presented mechanisms there is need find way to connect them

so that they form part of SMS-based service invocation system

which is discussed in the next section.

V. LEAST LOADED LOAD BALANCING FRAMEWORK

Based on the specification of adaptive load handling and

load monitoring mechanisms mentioned in previous section the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

413

proposed load balancing model has led to Least Loaded Load

Balancing Framework (LLLBF). This LLLBF have

components derived from adaptive load handling and load

monitoring mechanisms .The components are load balancing

decision maker and load monitor as shown in Fig. 2 as result

of crafted LLLBF. The LLLBF employ event based

communication style which contributes to its scalability [29]

because it allows independencies between components thus,

the components communicate with one another having little or

no knowledge of each other. Event based communication style

brings in loose coupling which facilitate scalability in such

way that a system can grow without any effect on other

components. Thus, the LLLBF take in producer/consumer

paradigm which means load balancing decision maker

components acts as consumer while load monitor component

acts as producer. This LLLBF is incorporated in load

dispatching mechanism such SMS broker.

The interactions between components are as follows: the

load balancing decision maker component receives requests

from service consumer. The requests are taken and distributed

among available service provider’s servers based on the least

loaded scheme which implemented and it makes decisions rely

on status information of service provider’s servers published

on-demand by load monitor component this means that load

monitoring (producer) does information dissemination that

assists the load balancing.

.

Fig. 2 Least Loaded Load Balancing Framework

A. Load Balancing Decision Maker Component

The load balancing decision maker component is the

component for managing the distribution of requests. The

actual destination of a request is decided using a load

balancing strategy. This component receives load information

on-demand from load monitor component, and uses the

obtained data to check which service application has the least

amount of load at that time.

The load balancing strategy implemented by load balancing

decision making component is called least loaded scheme

which works as follows: The least loaded scheme distributes

requests to server with the lowest load index and in this case

we used CPU utilization as a load index. The CPU load index

information of service provider servers is pulled by load

monitor on-demand and published in load balancing decision

maker component for load balancing purposes.

B. Load Monitor Component

The Load monitor is responsible for connecting to service

provider’s servers to collect load information. It acts as a

producer for the load balancing decision maker component by

publishing monitored status information which is based CPU

load index metric of service provider’s servers. This status

information is used by load balancing decision component to

decide which service provider’s server to send the load to.

The load monitor component works as follows: The on-

demand approach is used to achieve gathering of system status

information that means status information of each server is

fetched and published to load balancing decision making

component whenever it needed so that load balancing decision

can be made. For the load monitor component to gather CPU

load index for each of the servers it used an Application

Programming Interface (API) which is called Hyper Sigar

[30].

VI. PERFORMANCE EVALUATION

To evaluate the efficacy of the LLLBF, we investigated the

performance of the LLLBF compares with RR which is

currently used in SMS invocation of services. The evaluation

of the LLLBF against RR in this paper presents one of two

parameters which is scalability. Scalability is defined as the

ability of a system to handle growing amounts of work in a

graceful manner or its ability to be enlarged to accommodate

that growth. This section entails the following subsection given

below.

A. Testbed Specification

In developing our testbed the following assumptions were

considered due to the duration of this project and

considerations of the environment where the LLLBF will be

used.

1. We assumed the web services exposed by the service

provider servers are purely computational services. As a

consequence, their execution time is directly proportional

to the amount of service requests sent by service

consumers.
2. We assume that the network delay is constant throughout

the experimentation.

B. Testbed Setup and Environment

The testbed setup consisted of the LLLBF and the RR

scheme that served as a benchmark. We chose RR as our

benchmark because the argument revolved around it. These

load balancing approaches were implemented and incorporated

in a Synapse engine. The synapse engine served as an SMS

broker responsible for scheduling load to service provider

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

414

servers. The Synapse engine comes with a set of transport,

mediator and standard brokering capabilities, such as round-

robin, weighted round robin load balancing scheme and fail-

over. Based on the capabilities of Synapse engine, it is used as

a load balancer where we deployed our own load balancing

approach using the existing pattern.

To mimic the SMS-based service invocation environment,

we used 3 machines running Windows 7 OS, each serving their

own purpose. The first machine was used to simulate clients

via Apache HTTP load generator. For simulation of client’s

requests we chose a machine that is fast so that heavy loads

can be imposed on other machine that acts as servers and we

got inspiration from [18]. To further avoid potential resource

constraints, the Synapse engine was deployed on the same

machine were the client’s simulator (load generator) was

running.

The machine that was used for simulation of client HTTP

requests and hosting the Synapse engine was running on an

Intel Core i5 3.20 GHz PC with a RAM of 3GB and Hyper-

Threading Technology. The second and third machines were

homogeneous servers running on Intel Core2Duo 2.94GHz PC

with RAM of 2GB. Each of these two machines was running

Apache Axis web service engine coordinated by the Apache

Synapse engine running on the first machine. The servers are

used for serving requests coming from the client simulator

machine that generated the web service requests containing.

These requests were distributed among the servers using

Apache Synapse engine containing our LLLBF and RR

scheme for benchmarking purposes. The web service that the

servers were running was a similar pure computationally web

service replicated in both servers. This computational service

finds permutations of 5 elements (i.e. given “abcde”, what are

the possible ways that these characters can be ordered?). All

these machines were connected through our departmental

wired LAN network.

TABLE I

 PRESENTS CHARACTERIZATION OF LLLBF AND THE RR

 LLLBF RR

Nature Dynamic Static

Adaptability More adaptive Less adaptive

Centralized Yes Yes

Load balancing policy Least loaded scheme Round Robin scheme

Overhead More Less

Simplicity Not simple to

implement

Simple to implement

C. Experimental Setup

We use response time and throughput to investigate how

each load balancing scheme scales with increases in the

number of client requests. Response time is measured as the

time taken from when a request is send when a response is

received. Throughput is defined as the maximum number of

requests a load balancing approach can process within a unit

time. For further analysis investigated how does the LLLBF

consume resource such CPU as the workload increases

compared to the RR. The CPU utilization is the amount CPU

time taken to send a request and to receive the response. For

each number of requests 10 runs were carried out and the

above-mentioned metric were observed. The averages of each

metric over the 10 runs for each number of the request were

recorded against their corresponding number of requests. The

metrics at the client side or front end were obtained as shown

in the procedure below .Two overloading variants were

considered for the experiments. For this paper we only

presented which involved overloading server interchangeable

throughout the process of sending requests. This means one

server is overloaded at certain time while the other server is

free and the next moment the free server is overloaded while

the overloaded server is relieved. The experimental procedure

goes as follows;

1. Deploy one computational service replicated in two

Servers(service endpoint)

2. Pass n number of requests to the Synapse engine using

Load generator

3. Record the response time, throughput, and CPU

utilization at each group or bulk requests after processing

completed

D. Experimental Result and Analysis

Fig. 3 shows that the response time is directly proportional

to the number of requests sent. However, we noted LLLBF has

better response time than RR. From this particular experiment

we conclude that LLLBF was able cope increasing amount of

load while providing better system responsiveness compare to

RR. Moreover, Fig. 4 presents inverse of throughput graph and

the reason behind having inverse of throughput graph is that

original throughput graph does allow for asymptotic analysis.

Fig.4 shows that the inverse of throughput increases as number

of requests increase for both LLLBF and RR. Consequently;

we observed that the LLLBF has better inverse throughput

than RR i.e. LLLBF could process more request at certain

period of time. From Fig. 3 and 4 showed the LLLBF and RR

scheme there are both scalable .For furthermore analysis we

investigated computation resource such as CPU to observe

how each of the load balancing solution utilizes this type of

resource, Fig. 5 shows that the CPU utilization increases as the

number of client’s requests increases on both the LLLBF and

RR. From Fig. 6 we observed LLLBF has higher CPU

utilization than RR. We concluded that this is due LLLBF

having more capabilities than RR scheme.

Based on above result we conclude LLLBF provide better

performance than RR in cases where SMS-based service

invocation environment is dealing with traffic or sudden load

peak. LLLBF achieves better performance in trade-off

requiring bit of computational power.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

415

Fig. 3 Response Time vs. Number of requests for Scalability of

LLLBF and RR scheme

Fig. 4 Inverse Throughput vs. Number of requests for Scalability of

LLLBF and RR scheme

Fig. 5 CPU utilization vs. Number of requests for Scalability of

LLLBF and RR scheme

VII. CONCLUSION AND FUTURE WORK

In this work we have proposed a load balancing model

consisting of adaptive load handling mechanism and load

monitoring mechanism. This model led to realization of

LLLBF which is our solution that tries to address the issue of

sudden load peaks in the SMS based service invocation

environment which imposes performance degradation to the

service provider infrastructure. The key to this framework is

the introduction of dynamic and adaptive load balancing

scheme i.e. Least Loaded scheme. This load balancing scheme

attempts to use runtime state information of service provider

servers to more accurate decision in sharing the system load.

We implemented our LLLBF and conducted experiments. Our

main contribution, in this work is that our LLLBF is able to

cope with increasing amount of load in scalable manner while

providing better performance in such environments as SMS

based service invocation. This is shown through scalability

(load testing) experimentations by comparing LLLBF with RR

where LLLBF outperformed RR even though LLLBF incurred

some cost in resources such as CPU .As for future work; we

plan on incorporating awareness mechanism in our LLLBF so

that it can serve clients based on their categories if service

providers has premium and regular client who requires

different service quality.

REFERENCES

[1] Risi, D. and Teófilo, M. 2009. MobileDeck: turning SMS into a rich

user experience. In Proceedings of the 6th international Conference on

Mobile Technology, Application & Systems (Nice, France,September 02

- 04, 2009). Mobility '09. ACM, New York, NY, pp. 1-4.

DOI=http://doi.acm.org/10.1145/1710035.1710068

[2] Papazoglou M.P., Web Services: Principles and Technology,Prentice

Hall, 2007.

[3] Kopparapu, Chandra.” Load balancing servers, firewalls, and caches”.

Wiley Computer Publishing John Wiley & Sons, Inc. 2002

[4] Tony Bourke , Server Load Balancing O'Reilly & Associates, Inc., 2001

[5] Ramana Kumar K,Manesh V Ghatage Jataayu,”Load balancing of

servicers with server initiated connections”,2005.

[6] Brown, J., Shipman, B., and Vetter, R. SMS: The Short Message

Service. Computer 40, 12 (Dec. 2007), 106-110. DOI=

http://dx.doi.org/10.1109/MC.2007.440

[7] Mauricio Tia Ni Gong Lin, Thomaz Philippe Cavalcante Silva, Roberto

Oliveira dos Santos, Andr´e Ferreira da Silva Neto ,”SMBots - An

architecture to manage dynamic services based on SMS “,Nokia

Institute of Technology,2009.

[8] B.A. Shirazi, A.R. Hurson and K.M. Kavi, Editors, “Scheduling and

Load-Balancing in Parallel and Distributed Systems”, IEE CS Press

.1995

[9] Chhabra A. Chhabra, G. Singh, Qualitative Parametric Comparison of

Load Balancing Algorithms in Distributed Computing

Environment,14th International Conference on Advanced Computing

and Communication, July 2006 IEEE, pp 58 – 61.

[10] Hendra Rahmawan, Yudi Satria Gondokaryono , The Simulation of

Static Load Balancing Algorithms ,Electrical Engineering .2009

[11] Cortes A. Cortes, A. Ripoll, M. Senar, and E. Luque, “Performance

Comparison of Dynamic Load-Balancing Strategies for Distributed

Computing,” Proc. 32nd Hawaii Conf. System Sciences, vol. 8,p. 8041,

1999.

[12] Raqabani A. Al-Raqabani, H. Barada, & R. Benlamri, Performance of

probing and coordinated load sharing, Proc. 17th IASTED Int. Conf. on

Parallel and Distributed Computing and Systems, Phoenix, Arizona,

USA, 2005, 66--71.

[13] Alex King Cheung,Hans-Arno Jacobsen,”Dynamic Load balancing in

Distributed Content-Based Publish/Subscribe”,IFIP,2006.

[14] Cardellini CARDELLINI, V., CASALICCHIO, E., COLAJANNI, M.,

AND YU, P. 2002. The state of the art in locally distributed web-server

systems. ACM Comput. Surv. 34, 2 (June), 263–311.

[15] CARDELLINI, V., COLAJANNI, M., AND YU, P. 1999. Dynamic load

balancing on web-server systems.IEEE Internet Comput. 3, 3 (May),

28–39.

[16] C. Yan, M. Zhu, and Y. Shi, “A Response Time based Load Balancing

Algorithm for Service Composition,” in Pervasive Computing and

Applications, 2008. ICPCA 2008. Third International Conference on,

2008, vol. 1, pp. 13 –16.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

416

[17] Aimrudee Jongtaveesataporn ,Shingo Takada. “Enhancing enterprise

service bus capability for load balancing”. Journal WSEAS Transactions

on Computers archive Volume 9 Issue 3, March 2010

[18] J. Balasubramanian, D. C. Schmidt, L. W.Dowdy, O. Othman,

“Evaluating the Performance of Middleware Load Balancing

Strategies”, Proc. of 8th Intl.. Conf. on Enterprise Distributed Object

Computing,2004, pp. 135-146.

[19] Karasum E. Karasam, E. Ayanoglu, Effects of wavelength routing and

selection algorithms on wavelength conversion gain in WDM optical

networks, IEEE/ACM Transactions on Networking 6 (2) (1998)

186±196

[20] Shan G. Shen, S. K. Bose, T. H. Cheng, C. Lu, and T. K. Chai,

“Efficient wavelength assignments for light paths in WDM optical

networks with/without wavelength conversion,” Photon.

Netw.Commun. 2, 349–360 (2000).

[21] Ossama Othman, Jaiganesh Balasubramanian, and Douglas

C.Schmidt.” The Design of an Adaptive Middleware Load Balancing

and Monitoring Service”. In LNCS/LNAI: Proceedings of the Third

International Workshop on Self-Adaptive Software, Heidelberg, June

2003. Springer-Verlag

[22] Grosu D. Grosu, A. T. Chronopoulos, and M. Y. Leung, “Load

balancing in distributed systems: An approach using cooperative

games,” in Proc.IPDPS, 2002, pp. 52–61.

[23] Goyal Sandip Kumar Goyal, Dr. R.B. Patel. Adaptive and Dynamic

Load Balancing Methodologies for Distributed Environment,

International Journal of Engineering Science and Technology (IJEST),

3(3), 1835 - 1840.2011

[24] Qin Xiao Qin, Hong Jiang, Yifeng Zhu, and David R. Swanson,

“Dynamic Load Balancing for I/O-Intensive Tasks on Heterogeneous

Clusters,” in the Proceedings of the 10th International Conference on

High Performance Computing (HiPC 2003), December 17-20, 2003,

Hyderabad, India.

[25] J. Wang, J. Chen, Y. Wang, and D. Zheng, “Intelligent Load Balancing

Strategies for Complex Distributed Simulation Applications,” 2009, pp.

182–186.

[26] N. Arapé, J. A. Colmenares, and N. V. Queipo, “On the Development of

an Enhanced Least Loaded Strategy for the CORBA Load Balancing

and Monitoring Service,” pp. 205–211, 2003.

[27] F. J. L. Rosas and J. C. M. Romo, “Improving Dynamic Load

Balancing Under CORBA with a Genetic Strategy in a Neural

System of Off-line Signature Verification,” presented at the PDPTA,

2007, pp. 510–516.

[28] T. Kunz, “The influence of different workload descriptions on a

heuristic load balancing scheme,” Software Engineering, IEEE

Transactions on, vol. 17, no. 7, pp. 725 –730, Jul. 1991.

[29] G. Mühl, L. Fiege, and P. Pietzuch, Distributed event-based systems.

Springer-Verlag, 2006.

[30] http://support.hyperic.com/display/SIGAR/Home

