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Abstract—The SOM has several beneficial features which make 

it a useful method for data mining. One of the most important 
features is the ability to preserve the topology in the projection. 
There are several measures that can be used to quantify the goodness 
of the map in order to obtain the optimal projection, including the 
average quantization error and many topological errors.  Many 
researches have studied how the topology preservation should be 
measured. One option consists of using the topographic error which 
considers the ratio of data vectors for which the first and second best 
BMUs are not adjacent. In this work we present a study of the 
behaviour of the topographic error in different kinds of maps. We 
have found that this error devaluates the rectangular maps and we 
have studied the reasons why this happens. Finally, we suggest a new 
topological error to improve the deficiency of the topographic error. 
 

Keywords—Map lattice, Self-Organizing Map, topographic 
error, topology preservation.  

I. INTRODUCTION 
HE Self-Organizing Map (SOM) is a neural network 
algorithm that is based on unsupervised learning. It has 

properties of both vector quantization and vector projection 
algorithms. The SOM has proven to be a valuable tool in data 
mining with applications in full-text and financial data 
analysis [1]-[3]. It has also applied successfully in various 
engineering applications in pattern recognition, image 
analysis, process monitoring and fault diagnosis [4], [5].   

The SOM provides a non-linear, ordered, smooth mapping 
of high-dimensional input data manifolds onto the elements of 
a regular, low-dimensional array. The main characteristic of 
the projection provided by the algorithm is the preservation of 
neighbourhood relations; as far as possible, nearby data 
vectors in the input space are mapped onto neighbouring 
locations in the output space [6], [7], [8]. This feature makes 
the Self-Organizing Map very useful in data analysis and data 
visualization where a common goal is to represent data from a 
high-dimensional space in a low-dimensional space so as to 
preserve the internal structure of the data in the input space 
[9], [10], [11]. 

Preserving neighbourhood’s relations in the mapping makes 
possible to see more clearly in the output space the structure 
hidden in the high-dimensional data, such as clusters [12], 
[13]. 

In order to guarantee the correct analysis of the input data 
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we have to be sure the mapping has been correctly chosen. For 
this purpose, there are different measures to quantify the 
goodness of a map. The accuracy of the maps in preserving 
the topology, or neighbourhood relations, of the input space 
has been also measured in various ways.  

In this work, the behaviour of a widely used topological 
error called topographic error is studied. We examine its 
behaviour in detail in many maps and detect a tendency to 
undervalue the rectangular self-organizing maps. Furthermore, 
we suggest an improved version to quantify the 
neighbourhood preservation. 

We start in Section 2 with a brief review of different 
measures to quantify a Self-Organizing Map. In section 3 we 
present a case studied and we analize the behaviour of the 
topographic error. We also suggest an improvement of this 
error. Finally, in Section 4 we present conclusions and further 
studies. 

II. QUANTIFYING THE GOODNESS OF SOM 
The Self-Organizing Map is defined in the training phase. 

During the training, we have to make assumptions about 
several parameters of the map, such as learning parameters, 
map topology and map size. These features influence in the 
final map, thus it is very important to choose these parameters 
carefully in order to reach the appropriate map [6], [14], [15]. 
Once we have tested different choices, we can use some 
measures to evaluate the quality of the map and select the 
optimal one to represent our data. 

Several measures have been used to evaluate the quality of 
a Self-Organizing Map. A widely used measurement is the 
quantization error. This error measures the average distance 
between each data vector and its best matching unit (BMU). 
The quantization error is calculated as shown in formula (1), 
where N is the number of data-vectors and 

ixm r  is the best 

matching prototype of the corresponding ix
r

 data-vector:  
 

∑ −=
ixi mx

N
1qe r

r
                              (1) 

 
This error evaluates the fitting of the neural map to the data. 

Thus, the optimal map is expected to yield the smallest 
average quantization error. The smaller the quantization error, 
the smaller the average of the distance from the vector data to 
the prototypes, and that means, that the data vectors are closer 
to its prototypes. 

But what happens with the topological preservation? It is 
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quite another question whether the quantization error on its 
own describes the topological order of the map: several 
indicators of topological errors have been used in addition to 
quantization error to control the conservation of topology 
[16]. Topology preservation has, however, turned out to be 
quite difficult to define sensibly for a discrete grid. There 
seem to exist two different approaches for measuring the 
degree of topology preservation [9].  

In the first approach the relations between the reference 
vectors and the relations between the corresponding units on 
the map lattice are compared such as the topographic product 
does [17], [18].  

An alternative approach for measuring topology 
preservation is to use input samples to determine how 
continuous the mapping from the input space to the map grid 
is. One of the most extended indices for this purpose is the 
topographic error [19]. It is also one of the errors proposed by 
Kohonen himself [6]. This error measures the proportion of all 
data vectors for which first and second best-matching units 
(BMU) are not adjacent vectors. So the lower the topographic 
error is, the better the Self-Organizing Map preserves the 
topology.   
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The topographic error is calculated as shown above where 

the function ( )ixu
r

 is 1 if ix
r

 data vector's first and second 
BMUs are adjacent and, 0 otherwise. 

III. CASE STUDY 
As we have said above, in the learning phase of a Self-

Organizing Map we have to decide about learning parameters, 
map size and map topology. Then we can quantify the 
goodness of the maps, so that we can get the optimal one. The 
average quantization error and the topographic error are 
measures used for this purpose. In order to study the 
behaviour of the topographic error, we have chosen networks 
with different characteristics, according to their 
dimensionality and topology.  

The lattice type of the output space can be defined to be 
rectangular or hexagonal. And the size has been varied getting 
16 different neural networks. First of all, we have normalized 
each attribute scale such that its variance taken over all the 
items is unity.  We have performed the learning process in the 
same way for every map. We have used the SomToolbox [20] 
package made available by the Helsinky University of 
Technology for all researchers in the net. All maps have been 
trained using the batch-training algorithm (with som_make). 
They have been linearly initialized in the subspace spanned by 
the two eigenvectors with greatest eigenvalues computed from 
the training data. The maps were trained in two phases: a 
rough training with large initial neighbourhood width and a 
fine-tuning phase with small initial neighbourhood width. The 

neighbourhood function was Gaussian. The neural networks 
have been created after normalizing the variables to avoid any 
difference in the variables  

To illustrate the performance of the proposed research, we 
have used a simple and synthetic data set. The variables values 
are between [0,10]. As we work with a simple two-
dimensional-example, we can evaluate the quality of a map 
even without the help of any appropriateness measure. The 
topology preserving quality of the map can be assessed by 
visual inspection by performing a Sammon mapping onto a 
2D space. 

In the next table we show the different maps with its 
corresponding average quantization error and topographic 
error. The average quantization error decreases as the map’s 

size increases. This is obvious because as the number of units 
increases there are more neurons to represent the data, 
therefore each data vector will be closer to its best matching 
unit. Besides this there is no any significative difference with 
respect the topology of the map; rectangular and hexagonal 
maps fit the input data in a similar way.  

On the other hand we have the topographic error. In 
general, as the dimension increases the topographic error also 
increases. This is due to the growing complication to obtain 
the units in order while the number of prototypes increases. In 
addition, we have to remark that there is some difference in 
the topographic error of rectangular and hexagonal maps. As 
we show above, the topographic error considers, for each 
input vector, the distance of the best matching unit and second 
best matching unit on the map: If the units are not neighbours, 
then the topology is not preserved. However it seems that the 
hexagonal maps preserve the topology respect to this error 
better than the rectangular ones. But, is this true? Do the 
rectangular maps preserve the neighborhood relations worse 
that the hexagonal ones?  

As the topographic error gives the proportion of all data 
vectors for which first and second best BMUs are not adjacent 
units, we can calculate precisely the number of data vectors 
that doesn't meet condition. Furthermore, we can even know 
exactly which are the data vectors for which the two first 
BMUs are not adjacent. In order to study this case and to 
make the task easier, we have implemented a function (called 
som_disordered) in matlab that returns the pair of neurons that 
are not adjacent but, happen to be the first and second BMUs 

TABLE I 
AVERAGE QUANTIZATION ERROR AND TOPOGRAPHIC ERROR OF THE SOMS 

Quantization Error Topographic Error 
Map Size 

Rectangular Hexagonal Rectangular Hexagonal 
3x4 1.2016 1.2761 0 0.0169 
4x3 0.8805 1.2521 0.0169 0.0169 
4x4 0.8852 0.9433 0 0 
5x5 0.5999 0.6897 0.0678 0.0169 
7x5 0.4848 0.5296 0.1356 0.0678 
7x6 0.4362 0.4686 0.0847 0.0339 
8x5 0.4596 0.4937 0.1525 0.0508 
8x7 0.3731 0.3939 0.1017 0.0339 
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of some data vector. 
In Table II, we present the pair of neurons which make 

increase the topographic error in our example. We have 
studied which are exactly these pair of neurons and also the 
relations between the pair of units in the rectangular maps.  

As we can see in Table II, the majority of pairs that make 
increase the topographic error are diagonal. The topographic 
error in rectangular maps increases due to nearby diagonal 
units. But those maps actually are not disordered.  

Although the topographic error does not consider the 
diagonal neuron neighbours, it does not really mean that the 
map does not conserve the local relations. It could be said that 
even if diagonal units are not neighbours, they are "special no 
neighbours". It is quite different to be diagonal units or units 
which are far away from each other. But the topographic error 
does not make any difference between different kinds of 
adjacent units. This could be one of the reasons why this error 
devaluates the rectangular maps. It seems that the error does 
not behave in the same way for rectangular and hexagonal 
maps. 

Furthermore we would like to remark the number of 

adjacent units a neuron has in each lattice. A "central unit" in 
a hexagonal map is next to other six units, whereas in a 
rectangular lattice a "central unit" has only four neighbours. 
This means it is much easier, at least with respect to the error 
we are working with, for a hexagonal map to be organized 
rather than for a rectangular one. 

 Consequently, we would like to suggest a new measure for 
rectangular maps to improve the deficiency of the topographic 
error. The new error, called Alfa Error, takes into account 
different kind of no neighbours, the diagonal relations to be 
precise. 

The Alfa Error is based on assigning weights to different 
kind of no neighbours. For instance, in each case we will have 
to decide the weight the diagonal neighbours should take. 
Let's call K the weight we want to give to the diagonal 
relation. This way, when we want the diagonal neighbours to 
be considered as "half-neighbours" K would be equal to two; 
if we want "third-neighbours" K should be equal to three and 
so on. Besides this, if we want the diagonal neighbour to be 
considered as a neighbour then K should be equal to 0. To 
summarize, the Alfa Error gives the opportunity to decide the 
importance the diagonal neighbours have in a rectangular 
map. 

The Alfa Error we propose to quantify the conservation of 
topology is calculated as follows: 
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Depending the relation of diagonal neurons, the function 
( )ix
r

α  is defined in a different way. If we want K to be equal 
to zero, ( )ix

r
α  is going to be 1, if ix

r
 data-vector's first and 

second best matching unit are nor adjacent neither diagonal, 
and 0 otherwise.  

( )
⎩
⎨
⎧

=α
otherwise ,0

diagonalsneither adjacent not  are BMUs second andfirst  if ,1
xi
r

 
If K is equal to any other value ( 0K ≠ ) the function is 

going to be defined as follows:  
 

TABLE II 
TOPOGRAPHIC ERROR OF THE SOMS 

Rectangular Maps 
Map Size Number of 

disordered 
data-vectors 

Disordered 
pair of 

neurons 
Relation 

3x4 0 -- -- 
4x3 1 12 - 7 Diagonal 
4x4 0 -- -- 

5x5 4 

2 - 8 
19 - 25 

3 - 9 
3 -9 

Diagonal 
Diagonal 
Diagonal 
Diagonal 

7x5 8 

2 - 10 
29 - 23 
21 - 27 
16 - 22 
16 - 22 
16 - 22 
6 - 12 
13 - 7 

Diagonal 
Diagonal 
Diagonal 
Diagonal 
Diagonal 
Diagonal 
Diagonal 
Diagonal 

7x6 5 

2 - 10 
36 - 30 
23 - 29 
23 - 29 
23 - 29 

Diagonal 
Diagonal 
Diagonal 
Diagonal 
Diagonal 

8x5 9 

2 - 11 
34 - 27 
26 - 13 
26 - 13 
26 - 13 
26 - 13 
7 - 13 
6 - 13 
7 - 13 

Diagonal 
Diagonal 
Diagonal 
Diagonal 
Diagonal 
Diagonal 

No diagonal 
Diagonal 

No diagonal 

8x7 6 

10 - 11 
49 - 42 
34 - 41 
34 - 41 
34 - 41 
14 - 17 

Diagonal 
Diagonal 
Diagonal 
Diagonal 
Diagonal 
Diagonal 

Pair of neurons that make increase the topographic error. The last column 
contains the relation between pairs of neurons. 

 
TABLE III 

THE ALFA ERROR FOR RECTANGULAR MAPS. 
Rectangular Maps 

Alfa Error Map Size Topographic 
Errorr K=0 K=2 

Hexagonal 
Maps 

3x4 0 0 0 0.0169 
4x3 0.0169 0 0.0085 0.0169 
4x4 0 0 0 0 
5x5 0.0678 0 0.0339 0.0169 
7x5 0.1356 0 0.0678 0.0678 
7x6 0.0847 0 0.0423 0.0339 
8x5 0.1525 0.339 0.0932 0.0508 
8x7 0.1017 0 0.0508 0.0339 
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x K
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In Table III, we show the results obtained using the new 
topological error for rectangular maps. 
 

We have calculated the error considering K=0, which 
means that diagonal neighbours are treated as neighbours. As 
most of the pairs that made increase the topographic error 
were diagonal units, it was obvious that the new error was 
going to decrease.  

When comparing the different lattice maps, we observed 
that according to the new measurement with the rectangular 
networks, better results are obtained.  Remember that when 
considering the diagonal neighbour units, we make a “centric 
neuron” to have 8 neighbours. So now, the rectangular maps 
have more adjacents than the hexagonal ones.  

Furthermore, a way between the two measures would be 
considering K equal to 2. This means the diagonals would be 
counted as half of one no-vicinity. We can observe that in 
these cases the error is more neutral, because we obtain 
similar values for hexagonal and rectangular maps. This seems 
to have more sense because in general, it doesn’t have to exist 
any significative difference between different lattice maps. 

 

IV. CONCLUSION 
The topographic error seems to have a tendency to 

depreciate rectangular maps. This can be due to the smaller 
number of neighbours a "centric neuron" has in a rectangular 
map; to be more precise, a "centric neuron" has 6 neighbours 
in a hexagonal map whereas they only have 4 in rectangular 
ones.  

In addition, in this work we have seen that in many cases 
nearby diagonal neurons are the reason why the topographic 
error increases in rectangular maps. This happens because 
diagonal units represent nearby data although they are not 
neighbours. But this doesn't mean the map is disordered.  

Consequently we suggest a new error called Alfa Error, 
where a special care is given to the diagonal neurons. We 
suggest considering the diagonal units as neighbours as the 
researcher decides. A reasonable value could be K=2 where 
the diaonal units are considered half-neighbours.  

In further studies, we will concentrate to extend the Alfa 
Error's idea considering more kind of different neighbours. 
We also are going to test this errors in a bigger database 
examples.  
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