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Abstract—In this paper an algorithm based on the adaptive 

neuro-fuzzy controller is provided to enhance the tipover stability of 
mobile manipulators when they are subjected to predefined 
trajectories for the end-effector and the vehicle. The controller 
creates proper configurations for the manipulator to prevent the robot 
from being overturned. The optimal configuration and thus the most 
favorable control are obtained through soft computing approaches 
including a combination of genetic algorithm, neural networks, and 
fuzzy logic. The proposed algorithm, in this paper, is that a look-up 
table is designed by employing the obtained values from the genetic 
algorithm in order to minimize the performance index and by using 
this data base, rule bases are designed for the ANFIS controller and 
will be exerted on the actuators to enhance the tipover stability of the 
mobile manipulator. A numerical example is presented to 
demonstrate the effectiveness of the proposed algorithm. 
 

Keywords—Mobile Manipulator, Tipover Stability 
Enhancement, Adaptive Neuro-Fuzzy Inference Controller System, 
Soft Computing. 

I. INTRODUCTION 
ANY investigations are done in the fields related to 
mobile manipulation systems such as path planning, 

motion planning, trajectory tracking, obstacle avoidance, etc. 
The subject of optimal stability has a significant role in 
autonomous robot systems. In this case, an interface between 
the manipulator and the vehicle plays a vital role in the 
stability investigation. The effect of dynamic interaction on 
the coordinated control of mobile manipulators has been 
studied in [1]. This effect is examined on the tracking of a 
mobile manipulator. A nonlinear feedback controller is 
designed that is capable of fully compensating the dynamic 
interactions. Stability analysis of mobile manipulators is 
considered in [2, 3]. The stability degree and the valid stable 
regions based on the Zero Moment Point (ZMP) criterion are 
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derived. Then a method is presented for coordinating vehicle 
motion planning and manipulator motion planning considering 
platform stability.   

Planning mobile manipulator motions considering vehicle 
dynamic stability constraints is studied by Dubowsky et al. 
[4]. A planning method is presented which insures that 
dynamic disturbances do not exceed the capabilities of a 
vehicle, and comprises its stability, while permitting a mobile 
manipulator to perform its tasks quickly.   

A trajectory planning method for a mobile manipulator with 
the end-effector's specified path is presented in [5]. The 
planning problem is formulated as an optimal control strategy. 
A gradient-based iterative algorithm which synthesizes the 
gradient function in a hierarchical manner based on the order 
of priority is used.  

Das et al. [6] introduced a simple adaptive fuzzy logic 
based controller for tracking control of wheeled mobile 
robots. A Fuzzy Logic System (FLS) is used to estimate the 
nonlinear robot functions with no knowledge of the robot 
parameters. In the proposed controller approach, only 
measuring the position is required.  

In the autonomous mobile robot for the purpose of 
trajectory tracking an adaptive dynamic controller is designed 
by Martins et al. [7]. They have considered a dynamic model 
which their input commands are velocities instead of torques 
used in most of the works. A σ -modification term is 
implemented to make the adaptive controller robust.  

Some works are done on the field of dynamics and 
kinematics design of the wheeled mobile robots [8, 9]. Neuro-
fuzzy control of a mobile robot is investigated by 
approximation of two nonlinear functions in [10]. The test is 
carried out with a standard RBF network and with the fuzzy 
system using both Gaussian and triangular membership 
function. Their learning capabilities are compared and 
discussed. The navigation of Khepera mobile robot is also 
obtained. 

Some other investigations have been examined in designing 
fuzzy logic controllers. Fuzzy logic control of dynamic 
systems: from modeling to design is one of these subjects 
[11]. Chiou et al. [12] presented an adaptive fuzzy controller 
for robot manipulators. A model reference adaptive fuzzy 
sliding controller (MRAFSC) is proposed to control a five 
degree-of-freedom robot. MRAFSC drives the system state 
variables to hit a user-defined sliding surface and then slide 
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along it to approach a reference model and finally parameters 
of the fuzzy control can be initialized to zero. 

Neural-network control of mobile manipulators is studied in 
[13]. A neural network (NN)-based methodology is developed 
for the motion control of mobile manipulators subject to 
kinematic constraints. An online fuzzy logic (FL) self-motion 
planner and a robust adaptive controller are presented in [14] 
to prevent a three-wheeled robot from tipover without 
affecting the end-effector's motion tasks. Intelligent mobile 
manipulator navigation using adaptive neuro-fuzzy systems is 
considered in [15]. This work deals with the problem of 
autonomous and intelligent navigation of mobile manipulator, 
where there is not a complete mathematical model of robot 
systems and certainty of sensor data. A modular fuzzy 
navigation method in changing and dynamic unstructured 
environments has been developed. In addition, an integration 
of robust controller and Modified Elman Neural Network 
(MENN) is presented in order to deal with uncertainties. 

In this paper, the formulation of a mobile manipulator with 
given paths for the end-effector and the vehicle is first 
presented. In order to make it convenient to design a dynamic 
system with an optimal stability index, it is then proposed that 
the manipulator be of a redundant form. For real-time control, 
a neural network with multilayer perceptron has been 
proposed, where its data base is generated by using the genetic 
algorithm in order to minimize a performance index (a 
criterion for measuring the tipover stability (i.e. stability 
against overturning) of the mobile manipulator). In this 
trained neural network, the rule bases for the ANFIS 
controller are designed and exerted on the actuators such that 
by planning the dynamic compensation manipulator motions, 
a condition for the system is created that increases the tipover 
stability of the mobile manipulator. Finally, a numerical 
example for considering the validity of the proposed algorithm 
is presented. 

II. MODELING THE MOBILE MANIPULATOR 
The kinematic equations of a 3 degree-of-freedom mobile 

manipulator may be calculated by using the Denavit-
Hartenberg notation, Table I, [16], and the general 
transformation matrix, Eq. (1). 

Fig. 1 displays a scheme of a redundant 3 degree-of-
freedom planar manipulator. Each joint is assumed a revolute 
one and the center of gravity for each link is assumed at the 
end of that link.  

A general transformation matrix is a matrix which defines 
the frame }{i  with respect to the frame }.1{ −i  Eq. (1) shows 
the form of such matrix: 

1

1 1 1 11

1 1 1 1

0

0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

c s a
s c c c s s d

T
s s c s c c d

θ θ
θ α θ α α α
θ α θ α α α

−

− − − −−

− − − −

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                 (1) 

The index i  denotes the number of the appropriate link and 
terms "c" and "s" are extenuating of cosine and sine, 
respectively. 

 

θ1

θ2

θ3

 
Fig. 1 Schematic diagram of a 3 degrees-of-freedom planar 

manipulator with coordinates attached to the joints 

TABLE I  
DENAVIT-HARTENBERG PARAMETERS AND VARIABLES  

i 
1−iα  

1−ia  
id  

1−iθ  

1 0 a  0 0 

2 0 0 0 
1θ  

3 0 
1L  0 

2θ  

4 0 
2L  0 

3θ  

5 0 
3L  0 0 

 
After forming transformation matrices and multiplying 

them to each other, the kinematics equation can be extracted 
in the following form: 

)cos()cos()cos( 321321211 θθθθθθ ++++++= LLLaPx
                    (2) 

)sin()sin()sin( 321321211 θθθθθθ +++++= LLLPy
                     (3) 

Equations for velocities and accelerations are derived by 
differentiating equations (2) and (3) with respect to time. 
Obviously, there are 9 unknown variables while 6 equations 
are available. Out of these nine unknown variables, three of 
them can be presumed as inputs to a genetic algorithm and can 
be calculated such that a performance index (that a measure 
for determining the tipover stability of the robot and will be 
described afterward) becomes minimum.  

A free body diagram for the vehicle is shown in Fig. 2. The 
vehicle has 4 wheels; two wheels at rear and the two others in 
front. The forces and moments from the manipulator act on 
the first joint attached to the vehicle. The stability depends on 
the difference between the upward forces of tires. It is desired 
that the absolute value of this force be equal to zero [17].   
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Fig. 2 Free body diagram of the vehicle 

 
Considering the interaction between the vehicle and the 

manipulator, the forces and moments from the manipulator 
will exert on the vehicle and consequently affect the tires 
upward forces. Using the Newton's formulation, the governing 
equation will be derived as follows: 

yyyyyy maMgfFFFF =−++++ 4321
                                 (4) 

2 4( ) ( )
2

0
2

y y y y x z

x

bb F F Mg f ma hf M

h ma

+ + − + + − +

− =

                      (5) 

It is assumed that the tracking velocity of the vehicle is 
constant; therefore: 

0=== zyx aaa                                                                      (6) 

The tracking velocity of the end-effector is also constant and 
its trajectory is predefined for some special tasks.   

III. APPLYING SOFT COMPUTING APPROACH FOR TIPOVER 
STABILITY 

In order to enhance the tipover stability of the mobile robot, 
in this paper, the genetic algorithm is used as a useful 
optimization tool to minimize a performance index. The 
performance index, J , is defined as the absolute value of the 
moment in the z direction, zM , acting on the vehicle from the 
manipulator. 

zMJ =                                                                                   (7) 

Noting that this equation denotes tires upward forces are 
affected by .zM  In Eq. (7), 1τ=zM  is the torque from the 
manipulator and is calculated in the form of: 

2 2 2 2
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         (8)                                                                                                                             

The values of 
111 ,, θθθ  are assumed as inputs to the genetic 

algorithm and minimizing the performance index J  is its 
output.  

Although genetic algorithm is a strong optimization tool, it 
is a time-consuming approach such that it is not recommended 

to be applied in real-time control. To overcome this drawback, 
a neural network is implemented.  

In applying a neural network, first, one should determine 
which variables vary and then define the range of their 
variations. By applying the genetic algorithm and changing 
the variables for about all possible configurations of the 
mobile manipulator, a look-up table is obtained containing the 
optimal values of 

111 ,, θθθ . Now, a neural network is trained 
with these inputs and their proper outputs.  

IV. NUMERICAL EXAMPLE 
For some reason the task of the mobile manipulator may be 

defined as painting a surface or carrying a light load from one 
point to another point in space while there are some obstacles 
on the ground that the vehicle is ought to avoid of contact 
while in motion. This matter may enforce both the end-
effector and the vehicle to follow some predefined 
trajectories. A numerical example is presented to show the 
validity of the proposed optimal stability algorithm. 
Furthermore, it is assumed that the vehicle and the end-
effector must track a predefined trajectory with a constant 
speed. The specifications of the mobile manipulator are given 
in Table II. 

 
TABLE II  

SPECIFICATIONS OF A MOBILE MANIPULATOR  
Value Parameter 

10 (Kg) Base Mass 
1 (Kg) Link 1 Mass 
1 (Kg) Link 2 Mass 
1 (Kg) Link 3 Mass 
0.7 (m) L1 

0.7 (m) L2 

0.7 (m) L3 

0.5 (m) b  
0.5 (rad) α  
1 (m/s) Base velocity 

1/14 (m/s) End-effector tracking velocity 

The trajectory of the end-effector is assumed as an inclined 
line with a constant slope α  as shown in Fig. 3.  

 
Fig. 3 The end-effector and the vehicle trajectories 

 
Parameters in Table III are inputs to the neural network and 

optimal values of 
111 ,, θθθ  are outputs of that network that 

must minimize the performance index .J  The look-up table 
consists of 2,352 data. This table shows the quantities for 
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velocity v  of the vehicle, angle ,α  vertical distance ,b  and 
vertical position of the end-effector ,yP  respectively.  

 
TABLE III 

VARIABLE INCREMENT FOR TRAINING 
Variables Variation Range Increment 

)/( smv  0.5 – 1.4 0.15 
)(radα  0.1 – 1.1 0.2 

)(mb  0 – 0.6 0.1 
)(mPy

 0 – 2.1 0.3 

 
The specifications of the neural network after 800 epochs 

are shown in Table IV.  
 

TABLE IV 
SPECIFICATIONS OF THE TRAINED NEURAL NETWORK 

Network Type Feed-Forward Back-Propagation 
Adaptation learning 

function 
Gradient Descent with Momentum 

(learngdm) 
Performance function Mean Square Error (MSE) 

Number of Layers 3 

Layer 1 25 neurons, 
Transfer function: Tansig 

Layer 2 20 neurons, 
Transfer function: Tansig 

Layer 3 3 neurons, 
Transfer function: Purelin 

Epochs 800 
 

The purpose of using the genetic algorithm here is to 
evolving a solution to satisfy a set of criteria after several 
generations [18, 19, and 20]. By manipulation a pool of 
individuals through a set of operators (reproduction, 
crossover, and mutation) a solution for a specific problem will 
be found. Each individual is represented by a chromosome 
which contains the characteristics of that individual and after 
every generation each individual creates variables that are the 
corresponding solution of the problem. The three principle 
operations in the evolution are reproduction, crossover and 
mutation. Reproduction options manage how the genetic 
algorithm produces the next generation. Crossover rules 
merge two parents (from the individuals) to form children for 
the next generation while mutation rate utilizes casual changes 
to form children for the new generation. 

Here are the genetic algorithm specifications; 
Number of chromosomes: 100 
Number of iteration: 200 
Number of values: 3 
Precision of the values: 20 
Crossover rate: 0.8 
Mutation rate: 0.01-0.05 

V. STABILITY CRITERION FUNCTION FOR FLC SYSTEMS 
Conventionally, the design of a fuzzy logic controller relies 

on the knowledge of expert operators and needs sufficient 
experiences. Many works have been done to help the 
designers how to choose proper data bases and rule bases. In 
reference [21] a method is presented in order to evaluate the 
regions of the data base and the related rules that are 
undesirable from the stability point of view. In order to 

evaluate the stability of the closed-loop fuzzy logic control 
system, a dual SISO linear system with linear PD-controller is 
first defined, where the input to the PD-controller is e  and its 
output is u . The relation between u  and e  at each instant is 
given by: 

i p i d iu k e k e= +                                                                          (9) 

For each element of the I-O set, one should ask the following 
question in its dual linear system with linear PD-controller: 
Is it possible to determine real positive parameters 

pK  and 
dK  

in Eq. (9) such that for a given element of the I-O set, (i.e. 
,i ie e  and ),( iii eeu Φ= ) the closed loop system with linear 

PD-controller be stable? 
If the answer is positive then it can be concluded that the 
given element of I-O set does not decline the stability of 
neither the fuzzy logic closed loop system nor its dual system. 
Therefore, such an element [

ii ee , , and 
iu ] is a "stable I-O 

element". Contrary to the above statement, an "unstable I-O 
element" is defined when the answer to the mentioned 
question is negative.  
A function ( , )s e e is defined to show the stability of the fuzzy 
logic controller.  

1 [ , , ]
( , )

2 [ , , ]
if e e u is a stable I O element

s e e
if e e u is an unstable I O element

−⎧
= ⎨ −⎩

                 (10) 

This function may be drawn with respect to ,e e in a 3-
dimensional coordinate. This function is called "Stability 
Criterion Function". By using this function, we must redesign 
the rule base of FLC for the undesirable regions when the 
stability criterion function is 2.   
This approach is used in designing the rule base of the 
adaptive neuro-fuzzy inference controller system. There are 
two inputs as ,i ie e  which are the differences between the state 
variables at each time increment. The output is the control 
action 

i iu T=  where 1,2,3i = . These quantities are the proper 
applied torques on the joints. 

A linear Sugeno fuzzy-model based controller is employed 
in planning the ANFIS structure with a triangular membership 
function. The coefficients of the fuzzy reasoning (i.e. 1 2,i ic c ) 
in Eq. (11) are initially set equal to zero. 

0 1 1 2 2i i i iy c c x c x= + +                                                        (11) 
After training, these values are adjusted to their proper 
quantities according to the mentioned stability criterion (i.e. 
the performance index J  as the stability measure of the 
mobile manipulator is minimized). Regarding the stability 
criterion for the ANFIS controller (i.e. Eq. (10)), a rule base is 
acceptable if a pair of 

pK  and 
dK in Eq. (9) will be found in 

such a way the closed-loop system with the PD-controller be 
stable. Based on this criterion, the rule bases are designed and 
are shown in Tables V, VI, and VII. A fuzzy set assumed here 
including 7 fuzzy variables. These linguistic descriptions are 
as: NVL (Negative Very Large), NL (Negative Large), 
Negative Small (NS), Z (Zero), PS (Positive Small), PL 
(Positive Large), and PVL (Positive Very Large).   

Notice that an important property of the neuro-fuzzy 
controllers is their application to nonlinear systems, and also 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1074

 

 

noting that these controllers are robust to both noise and 
parameter deteriorations. 

 
TABLE V 

RULE BASE FOR 1e , 1e  AND 1u  

PVL PL Z NL NVL PL 
PVL PL Z NL NVL PS 
PVL PS Z NL NVL Z 
PVL PL Z NS NVL NS 
PVL PL Z NL NVL NL 
PL PS Z NS NL  

 
 

1e  

1e   

 
TABLE VI 

RULE BASE FOR 2e , 2e  AND 2u  

PVL PL Z NL NVL PL 
PVL PL Z NL NVL PS 
PVL PS Z NL NVL Z 
PVL PL Z NS NVL NS 
PVL PL Z NL NVL NL 
PL PS Z NS NL  

 
 

2e  

2e   

 
TABLE VII 

RULE BASE FOR 3e , 3e  AND 3u  

PVL PL Z NL NVL PL 
PVL PL Z NL NVL PS 
PVL PS Z NL NVL Z 
PVL PL Z NS NVL NS 
PVL PL Z NL NVL NL 
PL PS Z NS NL  

 
 

3e  

3e   

 
A flowchart of the control algorithm for this system is 

shown in Fig. 4. The inputs are obtained from sensors. The 
inputs enter into the neural network unit which cooperates 
with the genetic algorithm in order to provide a data base and 
minimizes the performance index. According to the 
appropriate values of the input, error, changes of error and 
consequently the control action (which is the exerted torque) 
the rule bases are defined and generated for the ANFIS 
controller in the next step. Finally, these values will be sent to 
the actuators as electrical or voltage signals. 

 

 
Fig. 4 Flowchart of soft computing algorithm applied for a mobile 

manipulator 

VI. SIMULATION RESULTS 
The range of [-5, 5] is assumed for the error and change of 

error to cover a wide space of inputs. The 3-dimensional 
surfaces of ,i ie e  and , ( 1,2,3)iu i =  before training are shown in 
Fig. 5. 

This figure depicts that the outputs (
1 2 3, ,T T T ) are more 

sensitive to the error than to the change of error. The 
coefficients of the fuzzy reasoning, ijc , in Eq. (11), are trained 

and are then used in the ANFIS structure. In addition, the 3-
dimensional surfaces are obtained after training in right 
column of Fig. 5.  
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Fig. 5 3-dimensional surfaces of ,, ii ee and 3,2,1, =iu i

 before 
training (left column) and after training (right column)  

 
A linear relation is governing between inputs and output. 

For checking the validity of the designed ANFIS controller, 
the closed-loop response of the system is shown in Figs. 6 and 
7. Actuators apply the suitable torques achieved from the 
controller to their related joints and each joint is led to the 
appropriate value which is given by the look-up table. In this 
case an appropriate configuration for the manipulator is 
created that enhances the tipover stability of the system. The 
ANFIS toolbox of MATLAB is used for designing the 
controller of this system. The program is run for 30 epochs 
until the training error leads to a very small value ( 4102 −×≈ ). 
Fig. 6 indicates that for x=1 meter, each joint is reached to its 
optimal configuration after about 0.15 second. Fig. 7 shows 
the same results for x=2.4 (m). 
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Fig. 6 Performance of the designed ANFIS controller in taking the 

appropriate configuration of the manipulator (for enhancing the 
tipover stability of the mobile manipulator when x=1(m)) 
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Fig. 7 Performance of the designed ANFIS controller in taking the 

appropriate configuration of the manipulator (for enhancing the 
tipover stability of the mobile manipulator when x=2.4(m)) 

 
 

Upward forces of tires 1 and 2 (i.e. 
1 1 2 2,y yF F F F= = ) are 

presented in Fig. 8. The differences between the values of 
these forces are very small such that the maximum difference 
is about 2 N.  

These forces directly affect the performance index J . As 
illustrated in Fig. 9, the value of performance index is always 
less than 1 (N-m). It is obviously realized from this system 
that if the dynamic interaction between the vehicle and the 
manipulator would not exist, the tires upward forces could be 
exactly equal to each other. In the case of existence of this 
interaction, it can be inferred that the system has a safe 
moving without overturning.  
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Fig. 8 Upward forces of tires number 1, 2 
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Fig. 9 The minimized performance index 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1076

 

 

To examine the proposed algorithm, the tracked trajectory 
by the end-effector is compared with the desired trajectory 
that is expected to be tracked by the end-effector as shown in 
Fig. 10. This figure demonstrates that the end-effector is able 
to track the predefined path significantly while the tipover 
stability of the mobile manipulator is simultaneously 
guaranteed in an optimal way for this case. A comparison 
between this work and some previous works reveals that the 
combination of the proposed algorithm for the optimal 
stability and implemented adaptive neuro-fuzzy controller in 
this paper are more simple and fast enough for the stability 
enhancement of mobile manipulators while robust against 
disturbances exerting on the system.   

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

X (m)

Py
 (m

)

 

 

____________ Desired End-Effector Trajectory

- - - - - - - - - - -  Tracked End-Effector Trajectory

 
Fig. 10 Comparison between the desired and tracked trajectory by the 

end-effector 

VII. CONCLUSION 
When the paths of the end-effector and the vehicle of a 

mobile manipulator are predefined, an extra degree-of-
freedom is proposed.  

In this paper, an algorithm for designing an ANFIS 
controller-based for enhancing the tipover stability of mobile 
manipulators is presented. For real-time control, a neural 
network is applied such that its data base is generated by using 
the genetic algorithm approach to minimize the performance 
index. With regards to this trained neural network, the rule 
bases for the ANFIS controller are also designed and exerted 
on the corresponding actuators such that by dynamic 
compensation of manipulator motions, a situation for the 
system is created that increases the tipover stability of the 
mobile manipulator. The validity of the proposed controller is 
considered by a numerical example and the results give 
evidence that the controller is able to compensate the 
manipulator in a significant manner for the desired purpose. 
The results of the robust stability are revealed by considering 
the values of the performance index such that the end-effector 
is able to follow the desired trajectory significantly. 
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