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Throughflow Effects on Thermal Convection in
Variable Viscosity Ferromagnetic Liquids

G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash

Abstract—The problem of thermal convection in temperature and
magnetic field sensitive Newtonian ferromagnetic liquid is studied
in the presence of uniform vertical magnetic field and throughflow.
Using a combination of Galerkin and shooting techniques the critical
eigenvalues are obtained for stationary mode. The effect of Prandtl
number (Pr > 1) on onset is insignificant and nonlinearity of
non-buoyancy magnetic parameter M3 is found to have no influence
on the onset of ferroconvection. The magnetic buoyancy number, M1

and variable viscosity parameter, V have destabilizing influences on
the system. The effect of throughflow Peclet number, Pe is to delay
the onset of ferroconvection and this effect is independent of the
direction of flow.

Keywords—Ferroconvection, throughflow, temperature dependent
viscosity, magnetic field dependent viscosity.

I. INTRODUCTION

FERROCONVECTION in a layer of ferromagnetic liquid

plays a very important role in heat transfer problems.

Finlayson [1] made a detailed study of thermal convection

in a ferromagnetic liquid. The various aspects on the theory

of thermoconvective instability in ferromagnetic liquids has

recieved increasing importance over the years (see [2]-[11]).

The effect of different basic temperature gradients on the

onset of ferroconvection driven by combined surface tension

and buoyancy forces was provided by Shivakumara et al.

[12]. Abraham and Siddheshwar [13] have examined the

thermal instability in a layer of a ferromagnetic liquid when

the boundaries are subjected to synchronous/asynchronous

imposed time-periodic boundary temperatures (ITBT) and

time-periodic body force (TBF) and showed that convection

influence is controlled by (ITBT) and (TBF). The detailed

study of linear and non-linear analyses using the generalized

energy method for the convection problem in a ferromagnetic

liquid with magnetic field dependent (MFD) viscosity was

made by Sunil et al. [14], [15]. The significant contribution

of ferromagnetic liquids in applications is provided by

Rosensweig et al. [16] and Odenbach [17].

To suppress or augment the convection, the mechanisms that

have been used effectively are Coriolis force due to rotation or

external magnetic/electric fields or non-uniform temperature

gradient across the liquid layer. A vertical throughflow has
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a significant influence on the stability of the system. The

modified problem where the boundaries are permeable and

there is injection of liquid through the upper plate and suction

through the lower plate called the throughflow has been studied

extensively by many authors (see [18]-[25]).

Now, we move on to the literature on thermal convection

in liquids with variable viscosity. Siddheshwar et al. [26]

studied the influence of an externally applied magnetic

field on the Rayleigh-Bénard-Marangoni magnetoconvection

with thermorheological effect in a Newtonian liquid for

all possible boundary combinations. The detailed study

on the onset of Rayleigh-Bénard, Bénard-Marangoni and

Rayleigh-Bénard-Marangoni convections in a viscoelastic

liquid with variable viscosity was provided by Sekhar and

Jayalatha [27], [28]. Sekhar et al. [29] have studied the effects

of magnetorheological and thermorheological parameters

on Rayleigh-Bénard-Marangoni convection with non-uniform

basic temperature gradient in ferromagnetic liquids and the

influence of various parameters on the onset of convection

has been analyzed. Various aspects of thermal convection in

liquids with variable viscosity are studied extensively by many

authors (see [30]-[32]).

In the paper, we study the effect of throughflow on the onset

of thermal convection with temperature and magnetic field

dependent viscosity in ferromagnetic liquids for all possible

boundary combinations.

II. MATHEMATICAL FORMULATION

The physical configuration considered here consists of

infinite, horizontal and variable viscosity ferromagnetic liquid

layer of thickness d. The Cartesian co-ordinate system is

taken with the lower plate in the xy-plane and z-axis

vertically upwards. A constant throughflow of magnitude w0

is maintained which is gravity alined or antigravity in its

direction. The uniform magnetic field Hi = (0, 0, H0) is

applied along the vertical direction. The lower and upper plates

are maintained at constant temperatures T0+ΔT at z = 0 and

T0 at z = d respectively (see Fig. 1).

A. Governing Equations

The governing equations which represent the above

physical configuration are:

Continuity equation:

qi,i = 0, (1)
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TABLE I
NOMENCLATURE

a dimensionless wave
number

V variable viscosity
parameter

Bi magnetic induction w0 constant vertical
throughflow

CV H specific heat volume
and magnetic field

Greek symbols

d depth of the liquid
layer

δT , δH small positive
constants

gi gravitational
acceleration (0,
0,-g)

α thermal expansion
coefficient

Hi components of
applied magnetic
field

Δ difference of two
values

H0 applied magnetic field κ thermal conductivity
l,m wave numbers μ(H,T ) variable viscosity
Mi magnetization μ0 magnetic

permeability
M0 mean value of

magnetization
ρ density

M1 buoyancy magnetic
number

ρ0 reference density

M3 non-buoyancy
magnetic number

φ magnetic scalar
potential

p effective pressure ω frequency
Pe throughflow Peclect

number
Subscripts and Superscripts:

Pr Prandtl number b basic state
qi components of

velocty (u,v,w)
c critical quantity

R stationary Rayleigh
number

0 reference value

t time * dimensionless
quantity

T temperature
T0 constant temperature

of the boundary
’ dimensional quantity

Fig. 1 Physical configuration of the problem

Momentum equation:

ρ0

(
∂qi
∂t

+ qjqi,j

)
=μ0(MjHi,j) + [μ(H,T )(qi,j + qj,i)],i

− p,i + ρgi,
(2)

Energy equation is assumed in the form:

ρ0CV H

(
∂T

∂t
+ qjT,j

)
= κT,jj , (3)

Density equation of state:

ρ = ρ0[1− α(T − T0)], (4)

Maxwell’s equations:

Bi,i = 0 and εijkHk,j = 0, (5)

The magnetic induction equation given by

Bi = μ0(Mi +Hi), (6)

Magnetic equation of state:

M = M0 + χm(H −H0) + kl(T − T0). (7)

The pyromagnetic coefficient and magnetic susceptibility are

given by

kl = −
(
∂M

∂T

)
H0,T0

, χm =

(
∂M

∂H

)
H0,T0

.

Effective viscosity μ(H,T ) is assumed as:

μ(H,T ) =
μ0

1 + δT (T − T0)− δH(H −H0)
. (8)

B. Basic State Solution

The solution in the quiescent basic state is given by:

qib = (0, 0, w0),

Tb(z) = T0 +ΔTf(z),

μb(z) =
μ0

1 + δT (T − T0)− δH(H −H0)

=
1

1 + f(z)V
,

ρb(z) = ρ0 [1− αΔTf(z)] ,

Mb(z) = M0 −
(

kl
1 + χm

)
f(z),

Hb(z) = H0 +

(
kl

1 + χm

)
f(z).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

where, f(z) =
1

1− ew0d/κ

(
ew0z/κ − ew0d/κ

)

and V =

(
δT − δHκl

1 + χm

)
ΔT.

On the quiescent basic state finite amplitude perturbations

are super imposed in the following form:

qi = qib + q
′
i, p = pb(z) + p

′
, T = Tb(z) + T

′
,

ρ = ρb(z) + ρ
′
b, Hi = Hib(z) +H

′
, Mi = Mib(z) +M

′

and μ = μb + μ
′
, where, q

′
i = (u

′
, v

′
, w

′
), p

′
, T

′
,

H
′
i = (H

′
x, 0, H

′
z), M

′
i = (M

′
x, 0,M

′
z) and μ

′
are the

perturbed quantities. Under the Boussinesq approximation,

by the classical procedure of linear stability analysis, taking

t
′
= (d2/κ)t∗, q

′
i = (κ/d)q∗i , p

′
= (μκ/d2)p∗, T

′
= (ΔT )T ∗

and φ
′
= (κ(ΔT )d2/1+χm)φ∗, the dimensionless equations

governing perturbations superposed over the quiescent basic

state after dropping the primes and asterisks, can be written

as
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TABLE II
BOUNDARY COMBINATIONS AND CORRESPONDING TRIAL FUNCTIONS FOR RAYLEIGH-BÉNARD FERROCONVECTION

Case Boundary Boundary condition(BC) Acronym Trial functions

1 z = 0 w = Dw = 0 Rigid w1 = 2z4 − 5z3 +
3z2

T = Dφ = 0 Isothermal RIFI T1 = z2 − z
z = 1 w = D2w = 0 Free φ1 = cos(πz)

T = Dφ = 0 Isothermal

2 z = 0 w = D2w = 0 Free w1 = z4 − 2z3 + z
T = Dφ = 0 Isothermal FIFI T1 = z2 − z

z = 1 w = D2w = 0 Free φ1 = cos(πz)
T = Dφ = 0 Isothermal

3 z = 0 w = Dw = 0 Rigid w1 = z4 − 2z3 + z2

T = Dφ = 0 Isothermal RIRI T1 = z2 − z
z = 1 w = Dw = 0 Rigid φ1 = cos(πz)

T = Dφ = 0 Isothermal

4 z = 0 w = Dw = 0 Rigid w1 = 2z4 − 5z3 +
3z2

DT = Dφ − T = 0
Adiabatic

RAFI T1 = z2 − 1

z = 1 w = D2w = 0 Free φ1 =
z2

2
− z

T = Dφ = 0 Isothermal

5 z = 0 w = Dw = 0 Rigid w1 = z4 − 2z3 + z2

T = Dφ = 0 Isothermal RIFA T1 = z2 − 2z

z = 1 w = D2w = 0 Free φ1 =
−z2

2
DT = Dφ − T = 0
Adiabatic

6 z = 0 w = D2w = 0 Free w1 = z4 − 2z3 + z
T = Dφ = 0 Isothermal FIFA T1 = z2 − 1

z = 1 w = D2w = 0 Free φ1 =
z2

2
− z

DT = Dφ − T = 0
Adiabatic

7 z = 0 w = Dw = 0 Rigid w1 = 2z4 − 5z3 +
3z2

T = Dφ = 0 Isothermal RIRA T1 = z2 − 2z

z = 1 w = Dw = 0 Rigid φ1 =
−z2

2
DT = Dφ − T = 0
Adiabatic

8 z = 0 w = D2w = 0 Free w1 = z4 − 2z3 + z
T = Dφ = 0 Isothermal FIRA T1 = z2 − 2z

z = 1 w = Dw = 0 Rigid φ1 =
−z2

2
DT = Dφ − T = 0
Adiabatic

9 z = 0 w = D2w = 0 Free w1 = z4− 3
2
z3+ 1

2
z

DT = Dφ − T = 0
Adiabatic

FARI T1 = z2 − 2z

z = 1 w = Dw = 0 Rigid φ1 =
−z2

2
T = Dφ = 0 Isothermal
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(
1

Pr

∂

∂t
+

Pe

Pr

∂

∂z

)(∇2w
)
= g1(z)∇4w

+ 2
∂

∂z
(g1(z))∇2

(
∂w

∂z

)
+

∂2

∂z2
(g1(z))

(
∂2w

∂z2
−∇2

1w

)

(10)

+RM1
∂

∂z
(f(z))

(
∂

∂z

(∇2
1φ

)−∇2
1T

)
+R∇2

1T

∂T

∂t
+ g2(z)w + Pe

∂T

∂z
= ∇2T (11)

M3∇2
1φ+

∂2φ

∂z2
− ∂T

∂z
= 0 (12)

where,

g1(z) =
1

1 + f(z)V
,

g2(z) =
(Pe)ePez

1− ePe
,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= ∇2

1 +
∂2

∂z2
.

where (w, T, φ) are the dimensionless perturbations of

the velocity, the temperature, and the magnetic potential

respectively. The parameters appearing in (10)-(12) are:

R =
αρ0gΔTd3

μ0κ
(Rayleigh number),

P e =
w0d

κ
(throughflow Peclet number),

P r =
μ0

ρ0κ
(Prandtl number),

M1 =
μ0k

2
l ΔT

ρ0gα(1 + χm)d
(buoyancy magnetic number),

M3 =
(1 +M0/H0)

(1 + χm)
(non-buoyancy magnetic number),

V =

(
δT − δHκl

1 + χm

)
ΔT (variable viscosity parameter).

C. Linear Stability Analysis
The perturbations for stationary convection are assumed to

be periodic waves, employing the normal mode solution for

(10)-(12) in the form:

w(x, y, z, t) = w(z)ei(lx+my),

T (x, y, z, t) = T (z)ei(lx+my),

φ(x, y, z, t) = φ(z)ei(lx+my).

(13)

we get the equations governing w(z), T (z) and φ(z), the

amplitudes of perturbations of velocity, temperature and

magnetic potential respectively. In (13) l and m are horizontal

components of wave numbers in the x and y directions with

a2 = l2 + m2. Using D = d
dz and incorporating (13) in

(10)-(12), we get the following governing equations:(
g1(z)(D

2 − a2)2
)
w +D2g1(z)

(
D2w + a2w

)
+RM1a

2Df(z) (T −Dφ)−Ra2T

+
(
D3 − a2D

)(
2Dg1(z)− Pe

Pr

)
w = 0, (14)

(
D2 − a2

)
T − g2(z)w − PeDT = 0, (15)(

D2 −M3a
2
)
φ−DT = 0. (16)

D. Galerkin Method

The critical value of Rayleigh number as well as the

wave number are computed using a combination of the

Galerkin technique and shooting technique. We first explain

the procedure of single-term Galerkin method for determining

the expression for Rayleigh number explicitly. Towards this

end we select w(z), T (z) and φ(z) in the form:

w(z) = Aw1(z),

T (z) = BT1(z),

φ(z) = Cφ1(z).

(17)

where A, B and C are constants, w1, φ1 and T1 selected

satisfy the respective boundary conditions as per Table II.

The detailed derivation of boundary conditions for the nine

boundary combinations are available in [26], [33]-[35].

The expression for the Rayleigh number is obtained by

integrating (14)-(16) with respect to z between z = 0, z =

1 after multiplying by w, T and φ respectively and using

(17) in the resulting equation and then using the condition for

non-trivial solution of the resulting homogeneous equations in

A, B and C, we get:

R =
N1

(
X9 −M3a

2X10

)
(X7 − PeX81)

(N2N3X8 +M1a2X5X8X11)
. (18)

where

N1 =

(
X1 +X2 +X3 − Pe

Pr
X21

)
,

N2 =
(
M1a

2X4 − a2X6

)
,

N3 =
(
M3a

2X10 −X9

)
,

X1 = 〈g1w1

(
D2 − a2

)2
w1〉,

X2 = 2〈w1

(
D2 − a2

)
Dw1Dg1〉,

X21 = 2〈w1

(
D3 − a2D

)
w1〉,

X3 = 〈w1

(
D2 + a2

)
w1D

2g1〉,
X4 = 〈w1 (Df(z))T1〉,
X5 = 〈w1 (Df(z)) (Dφ1)〉,
X6 = 〈w1T1〉, X7 = 〈T1

(
D2 − a2

)
T1〉,

X8 = 〈g2(z)T1w1〉, X81 = 〈T1DT1〉,
X9 = 〈φ1D

2φ1〉, X10 = 〈φ2
1〉,

X11 = 〈φ1DT1〉.

E. Numerical Solution

The set of coupled equations (14)-(16) subject to the

respective boundary conditions is solved numerically

using the shooting method which is based on the

Runge-Kutta-Fehlberg45 (RKF45) and Newton-Raphson

methods and which gives an accurate eigenvalue. In this

method the system of differential equations is transformed to

a nine first order differential equations. To solve this system
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we require nine initial conditions but we have only four

initial conditions and we need five more initial conditions

to be prescribed. It is more important to choose appropriate

initial conditions which can be improved by Newton-Raphson

method. The solution process is repeated until the desired

degree of accuracy is obtained. The detailed study of shooting

method for eigen boundary value problem in convection is

available in [34], [35].

III. RESULTS AND DISCUSSION

At the onset of thermal convection the effect of vertical

throughflow in temperature and magnetic field sensitive

Newtonian ferromagnetic liquid is studied. Using the

combination of Galerkin and shooting technique the critical

eigenvalues for stationary convection are obtained. It is

observed that the principle of exchange of stabilities is valid.

Figs. 2-13 are the results obtained using shooting technique.

Figs. 2 and 3 are respective plots of Rc and ac versus V for

different values of Pe and M1 for FIFI boundary combination.

From the graph we observe that the effect of increase in the

value of V is to decrease Rc both in absence/presence of

throughflow. This means that the effect of variable viscosity

parameter is to destabilize the system. Also, it is evident from

the graph that ac decreases with increasing V suggesting the

enlargement of the cell size. As M1 increases Rc decreases and

ac increases, meaning that M1 has a destabilizing influence

on the onset of ferroconvection. The effect of nonlinearity

of M3 is found to have no influence on the stability of the

system [1]. Figs. 4 and 5 are respective plots of Rc and ac
versus Pe for different values of V and M1 for FIFI boundary

combination. From the graph we observe that increase in the

value of Pe is to increase Rc and this implies stabilization of

the system. Further, ac increases with increase in Pe. Figs.

6-9 and Figs. 10-13 are respective plots of RIRI and RIRA

boundary combinations that correspond to Figs. 2-5 of FIFI.

The various parameters influence on Rc and ac are identical in

all 3 boundary combination. Similar results are observed for

remaining boundary combinations and not explicitly included

here for want of space. We have also observed that our results

are in good agreement for the limiting case of classical liquids

in the absence of V with no magnetic field and no throughflow

effect (see Table III). From Table IV, we observe that the

Pr has insignificant influence on the onset of ferroconvection.

The parameter V may take both negative and positive values.

Positive values indicate temperature dominance over magnetic

field in their influence on viscosity. Negative values indicate

magnetic field dominance. From Figs. 14 and 15 it is clear

that Rc and ac decrease with increasing V for both negative

and positive values of V .

A. General Results

By comparing the results on critical values, Rc and ac,

on the Rayleigh-Bénard convection in ferromagnetic liquids

with vertical throughflow for respective different boundary

combinations, we observe that the following is true:

M1 = 10 :

RRIRI
c > RRIRA

c > RRIFI
c > RRAFI

c > RRIFA
c > RFIRA

c >

RFIFI
c > RFAFI

c > RFIFA
c .

aRIRI
c > aRIRA

c > aRIFI
c > aFIRA

c > aFIFI
c > aRAFI

c >

aRIFA
c > aFAFI

c > aFIFA
c .

M1 = 20 :

RRIRI
c > RRIRA

c > RRIFI
c > RRIFA

c > RRAFI
c > RFIRA

c >

RFIFI
c > RFAFI

c > RFIFA
c .

aRIRI
c > aRIRA

c > aRIFI
c > aFIRA

c > aRAFI
c > aFIFI

c >

aRIFA
c > aFAFI

c > aFIFA
c .

Fig. 2 Plot of Rc versus V for Different Values of Pe and M1 with
M3 = 1 and Pr = 10 for the Boundary Combination FIFI

Fig. 3 Plot of ac versus V for Different Values of Pe and M1 with
M3 = 1 and Pr = 10 for the Boundary Combination FIFI
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Fig. 4 Plot of Rc versus Pe for different values of V and M1 with
M3 = 1 and Pr = 10 for the boundary combination FIFI

Fig. 5 Plot of ac versus Pe for different values of V and M1 with M3 = 1
and Pr = 10 for the boundary combination FIFI

Fig. 6 Plot of Rc versus V for different values of Pe and M1 with
M3 = 1 and Pr = 10 for the boundary combination RIRI

Fig. 7 Plot of ac versus V for different values of Pe and M1 with M3 = 1
and Pr = 10 for the boundary combination RIRI

Fig. 8 Plot of Rc versus Pe for different values of V and M1 with
M3 = 1 and Pr = 10 for the boundary combination RIRI

Fig. 9 Plot of ac versus Pe for different values of V and M1 with M3 = 1
and Pr = 10 for the boundary combination RIRI
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Fig. 10 Plot of Rc versus V for different values of Pe and M1 with
M3 = 1 and Pr = 10 for the boundary combination RIRA

Fig. 11 Plot of ac versus V for different values of Pe and M1 with
M3 = 1 and Pr = 10 for the boundary combination RIRA

Fig. 12 Plot of Rc versus Pe for different values of V and M1 with
M3 = 1 and Pr = 10 for the boundary combination RIRA

Fig. 13 Plot of ac versus Pe for different values of V and M1 with
M3 = 1 and Pr = 10 for the boundary combination RIRA

Fig. 14 Plot of Rc versus V for different values of Pe with M3 = 1,
M1 = 10 and Pr = 10 for the boundary combination FIFI

Fig. 15 Plot of ac versus V for different values of Pe with M3 = 1,
M1 = 10 and Pr = 10 for the boundary combination FIFI
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TABLE III
COMPARISON OF Rc AND ac OBTAINED BY DIFFERENT RESEARCHERS

WITH THOSE OF PRESENT STUDY FOR THE LIMITING CASE V = 0 IN THE

ABSENCE OF MAGNETIC FIELD AND THROUGH FLOW EFFECTS

BC Platten and Legros
[36]

Nield [18] Present
problem

Rc ac Rc ac Rc ac
RIFI 1100.657 2.68 1138 - 1100.65535 2.68225
RAFA 320 0 320 - 320.0000001 0.00001
RIRA 1295.781 2.55 1452 - 1295.78455 2.55185
RIFA 669.001 2.09 692 - 668.999579 2.08550
RAFI 816.748 2.21 953 - 816.747148 2.21465
FIFA 384.693 1.76 413 - 384.69325 1.7575

TABLE IV
VALUES OF Rc AND ac FOR DIFFERENT VALUES OF Pr, V AND Pe

M3 = 1, M1 = 10 and Pr = 10

V Pe = −1 Pe = 0 Pe = +1
Rc ac Rc ac Rc ac

0 128.752599 2.9966 129.390341 3.00215 141.220796 3.05045
0.1 122.770449 2.9972 123.34098 3.00095 134.225657 3.04955
0.2 117.505829 2.99675 118.018605 3.00065 128.086344 3.04625
0.3 112.824094 2.99705 113.286531 3.00155 122.638902 3.04355

M3 = 1, M1 = 10 and Pr = 20

V Pe = −1 Pe = 0 Pe = +1
Rc ac Rc ac Rc ac

0 128.752131 2.9966 129.390341 3.00215 141.169942 3.0509
0.1 122.768935 2.9972 123.34098 3.00095 134.185338 3.0488
0.2 117.503358 2.99675 118.018605 3.00065 128.055542 3.0464
0.3 112.820691 2.9981 113.286531 3.00155 122.616846 3.0437

IV. CONCLUSION

The effect of V is to destabilize the system in presence

of vertical through flow. The effect of increase in magnetic

buoyancy number, M1 is to destabilize the system. The

nonlinearity of M3 is found to have no influence on the onset

of ferroconvection. The effect of increase in the value of Pr
on the stability of the system is insignificant. The effect of

through flow measured by the Peclet number, Pe is to delay

the onset of ferroconvection and is independent of the direction

of through flow.
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