
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:8, 2009

878

 

 

  
Abstract—In this work, thermoelastic damping effect on the 

hemi- spherical shells is investigated. The material is selected silicon, 
and heat conduction equation for thermal flow is solved to obtain the 
temperature profile in which bending approximation with 
inextensional assumption of the model. Using the temperature profile, 
eigen-value analysis is performed to get the natural frequencies of 
hemispherical shells. Effects of mode numbers, radii and radial 
thicknesses of the model on the natural frequencies are analyzed in 
detail. Furthermore, the quality factor (Q-factor) is defined, and 
discussed for the ring and hemispherical shell. 
  

Keywords—Thermoelastic damping, hemispherical shell, quality 
factor. 

I. INTRODUCTION 
EAM, plate and shell structures have been adopted in the 
wide range of application for the advanced engineering 

fields. Thus, there are numerous research works up to now, and 
mechanical systems of a structure should include more accurate 
substructure with special characteristics.  

Hwang[1] reported some experiments on the vibration of a 
hemi -spherical shell.  Both axisymmetrical and asymmetrical 
modes were excited, and the results were compared with the 
analytical results. Chung and Lee[2] considered the vibration 
analysis of a nearly axisym -metric shell structure using a new 
finite ring element, and developed a FEM program to analyze a 
Korean bell as an example. Saunders and Paslan[3] studied the 
inextensional vibration of a sphere-cone shell combination, and 
compared the theoretical results and experimental data of the 
natural frequencies. Lee et al. [4] analyzed the free vibration of 
jointed thin cylindrical-spherical shell structures applying 
Rayleigh -Ritz method, and then the analytical results were 
compared with those of the modal test and FEM results.  

In order to reduce the vibration amplitude of a structure, the 
problem of dissipation energy is an important feature. 
Generally, the damping in metal structures is low relative to the 
non-metal structures. Berthelot et al.[5] deeply summarized 
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damping analysis of composite materials and structures.  Also, 
Sefrani and Berthelot [6] researched the temperature effect on 
the damping properties of unidirectional glass fiber composites 
experimentally. Furthermore, Ganesan and Kadoli[7] studied 
the linear thermoelastic buckling and free vibration of 
geometrically perfect hemispherical shells with cutout using 
semi-analytical method.  

For the advanced modeling of structures, there have been a 
lot of research works on Quality factor(Q-factor) defined as the 
rate for the kinetic and potential energy to some other form of 
converted form of irrecoverable energy by various damping 
mechanisms of micro -structures for thermoelastic damping of 
the structures. Firstly, Zener [8] presented the analytic and 
approximate form of Q-factor for the homogeneous, isotropic 
and uniform beams based on some additional assumptions, 
obtained a result for the important of the fluctuations of 
temperature in a vibrating beam. Lifshitz and Roukes [9] 
studied the refinement of Zener’s previous work for thin beams. 
Using the equations of linear thermoelasticity, the process of 
fundamental dissipation mechanism in micro- and 
nanomechanical systems was examined. Using the flexural 
vibrating beam model, Duwel et al. [10] compared theoretical 
value of Q-factor to experimental result. Khisaeva and 
Ostoja-Starzewski [11] examined the damping in micro- / 
nano-beams considering the finite speed of heat transfer by 
hyperbolic heat conduction equation. Wong et al. [12] applied 
the Zener’s theory to thin silicon rings, and obtained the 
theoretical expression of Q-factor, and the theoretical and 
experimental results show almost equal for practical size of the 
model. Applying a finite element method, Yi [13] studied the 
geometric effects on thermoelastic damping in MEMS 
resonators. To obtain the linear eigenvalue equation, 
perturbation forms of the temperature and displacements are 
used. Additionally, using the Fourier reduction method, the 
order of the problem and computational time can be reduced. 
Nayfeh and Younis [14] acquired the analytical form of quality 
factor for the damping with rectangular microplates. 
Perturbation method was also used to obtain the solution. 
Meanwhile, Lu et al. [15] presented approximate form of 
quality factor for the damping in a cylindrical thin shell. The 
general thermoelastic coupled equations are simplified by using 
Donnell-Mushtari-Vlasov appr- oaches and approximately 
solved by Galerkin’s method. 

In this paper, Q-factor of hemispherical shell is investigated 
in detail. The thermal expansion only in circumferential 
direction is considered as an assumption. Then, the temperature 
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profile obtained from the heat conduction equation is used. 
Finally, the Rayleigh energy method is used for obtaining 
natural frequencies and Q-factors. 

II. FORMULATIONS 
Fig. 1 shows a typical hemispherical thin shell model, where 

,  u v and w  denote the displacements in the directions ofφ , 
θ and r, respectively. 

 
A.  Energy Expressions 
The kinetic energy for thin hemispherical shell is expressed 

as [16]: 
 

 
Fig. 1 Hemispherical shell model 
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The strain energy is expressed as: 
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where T  is the change in the temperature from the ambient 
temperature aT . Further , ,  and hσ ε α  are stress, strain, 
thickness of the shell and the coefficient of thermal expansion, 
respectively. 

The strain of the shell is expressed as: 
 
 0          for      , 1, 2rαβ αβ αβε ε κ α β= + =                                   (3)                                                                     
 
where 0ε , κ  and r stand for membrane strain,  curvature of the 
shell middle surface and local coordinate  in radial direction. 

Based on inextensional theory of shell, the membrane strains 
are assumed to be neglected in Eq. (3).  

The stress-strain relationship is expressed, and thermal effect 
is assumed to be considered in the circumferential direction 
only. 
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Substituting Eq. (3) and (4) to Eq. (2), the strain energy can 

be expressed as: 
 

2 2
11 22 11 222

2 2
12

22

1 { 2
2 1

1 (1 ) } sin
2

sin
2(1 )

EaU

r drd d

Ea T drd d

κ κ μκ κ
μ

μ κ φ θ φ

ε α φ θ φ
μ

= + +
−

+ −

+
−

∫∫∫

∫∫∫

                                             (5) 

                                
where κ, μ, E and r are the curvature of the shell middle surface, 
Poisson’s ratio, the Young’s modulus and radius of the shell, 
res- pectively. 

For the hemispherical shell, the displacement components u, 
v and w are assumed as [3] 
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where n denotes vibration mode number. 
 

The curvature of the shell is expressed as [4] 
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where subscripts denote the partial differentiations with respect 
to the corresponding variables. 

Due to the inextensional assumption of the mode, the mode 
shapes satisfy following relationship. 
 

11 22 0κ κ+ =                                                                                       (8) 

Considering the Eq. (8) into Eq. (5) gives simple expression 
for the strain energy as, 
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The maximum kinetic and strain energy can be obtained by 
substituting Eq. (6) into Eq. (1) and Eq. (9). 

In Eq. (9), natural frequency can be obtained directly by 
using Rayleigh method. 

The Lagrange function of the structure is: 
 

max maxL U K= −                                                                                     (10) 
 
The Rayleigh’s method is applied to Eq. (10) and following 
relation is obtained. 
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D

∂
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                                                                (11) 

 
The natural frequency of the shell can be determined by solving 
Eq. (11) 
 

B.  Thermal Effect 
To obtain the temperature profile, the heat conduction 

equation is used as [12]: 
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where 2 , ,   and v aC Tχ∇  denote the Laplacian operator,  the 
thermal diffusivity of the material,  the heat capacity per unit 
volume and the ambient temperature in Kelvin, respectively.  
 
While ε  stands for the dilatation as: 
 

11 22rrε ε ε ε= + +                      
                                                              (13) 

 
Based on the assumption used in Eq. (4), the dilatation can be 
reduced as: 
 

22ε ε=                                                            (14) 
 
Also, Eq. (12) can be lineralized as in Ref. [12] 
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where EΔ  is the “relaxation strength” of the Young’s modulus 
defined by: 
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  The solution of Eq. (15) can be expressed as: 
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where k is complex value as: 
 

          (18)
  

 
In Eq. (18), k is function of isothermal natural frequency 

( isoω ), and isoω is assumed to be constant for simplicity as in 
Ref. [12] 

The natural frequencies of the shell are determined by 
substituting Eq. (17) into Eq. (9) and applying Rayleigh’s 
energy method. 
 

C.  Quality Factor of Hemispherical Shell 
Substituting Eq. (17) into Eq. (9) yields the thermal strain 

energy expression. Further applying Rayleigh method gives 
complex natural frequency of the shell. 
 
  Then, the Q-factor can be obtained by definition as:  
 

1 Im( )2
Re( )

Q ω
ω

− =
                       

                                                                (19) 

III. NUMERICAL RESULTS AND DISCUSSIONS 
In the first section, isothermal natural frequency of the shell 

is compared with previous results and Q-factor of the circular 
ring is treated. Second, Q-factor of the shell is considered in 
detail. Lastly, Q-factors for circular ring and hemispherical 
shell are compared. 
 

A.  Verifications 
Isothermal natural frequency can be obtained by applying 

Eq. (10) and (11) to Eq. (9) neglecting thermal effect as 
follows: 
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This equation can be solved by numerical calculations, then 

the results are compared with Ref. [17], and the data are almost 
equal to each other as shown in Fig. 2. 
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Fig. 2 Isothermal natural frequency of hemispherical shell 
 

Next, Q-factor of circular ring model is considered. Same 
procedures are applied from Eq. (1) to Eq. (20) with 

setting
2

π
φ =  and neglecting any derivatives with respect toφ . 

Then results can be expressed as: 
 

1 [1 ( )]iso E fω ω ω= + Δ +                                                               (21) 

 
 where the complex function  f( )ω is given by: 
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Eq. (21) is equal to the result in Ref. [12]. 

 
Fig. 3 shows Q-factor of the ring and is exactly same as in Ref. 
[12]. 

 
 

Fig. 3 Q-factor of circular ring for n = 2 mode 
 

B.  Variation of Q-factor with Shell Dimensions  
In this section, the relationships between Q-factor and shell 

dime –nsions are considered.  The Q-factor of the 
hemispherical shell can be expressed as a function of radius a , 
radial thickness h  and mode number n . 

 

TABLE I 
MECHANICAL AND THERMAL PROPERTIES OF SILICON [12] 

Symbol Quantity  

E  Yong’s modulus 165Pa 
ρ  Density  2330 kg 3m−  
α  Thermal expansion 

coefficient 
6 -12.6  10  K−×  

vC  Heat capacity per unit 
volume 

6 -3 11.64  10  J m K −×  

χ  Thermal diffusivity -5 2 28.6  10 m s −×  

 

 
 

Fig. 4 Q-factor of hemispherical shell for n = 2 mode 
 

In general, the temperature changes associated with 
vibration are known to be small, it is reasonable to assume the 
material properties remain constant [12]. 

Fig. 4 presents Q-factor for n = 2 vibration mode of the shell. 
The tendency of Q-factor is strongly dependent on the shell 
dimensions, and separated to two regions of relatively high and 
low Q-factor. 

The regions for larger Q-factor are corresponding to 
hemispherical shells with (i) larger radius and smaller thickness 
and (ii) smaller radius and larger thickness.  

As stated in Ref. [12], Q-factor value can be determined by 
proximity of the natural frequency to the maximum damping 
frequency. 

Figs. 5-7 shows the variation of Q-factor for higher modes as 
n = 3, 4 and 5. With same dimensions, higher modes of 
vibration show higher Q-factors.  
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Fig. 5 Variation of Q-factor for n = 3 mode 

 
The patterns of Q-factor dependence on the shell dimensions 

are similar, however the larger radius and smaller thickness 
region shifts toward back right-hand corner. 

 
 

Fig. 6 Variation of Q-factor for n = 4 mode 

 
Fig. 7 Variation of Q-factor for n = 5 mode 

 
C.  Comparative Study on Q-factors 
Figs. 8-9 present percentage differences of Q-factor between 

circular ring and hemispherical shell.  
The percentage difference is defined by: 
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Q

Q
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= ×                            (23) 

 

 
 

Fig. 8 Difference of Q-factors for n = 2 mode 
 
  Fig. 8 shows the difference of Q-factors with dimensions 

from 1 to 5 mm radius and from 40 to 160 mμ . With these 
dimensions, Q-factor of hemispherical shell is larger within 
almost all regions. 

Fig. 9 is for dimensions from 20mm to 60mm radius and from 
0.5 mm to 3mm thickness. In this case the results can be 
separated to two regions. One of them shows positive 
percentage value and other shows negative value. Q-factor of 
hemispherical shell doesn’t always present larger value than of 
circular ring.    

 
Fig. 9 Difference of Q-factors for n = 2 vibration mode 

 
Thus, geometry of the structure seems to affects the 

magnitude of Q-factor, also the shape of the Q-factor diagram. 
Furthermore, for hemispherical shell and circular ring, the 

natural frequency is the function of radius, thickness and mode 
number. The different form of expression for natural frequency 
corresponding to different geometry results varied shape of 
Q-factor diagrams. 

IV. CONCLUSION 
Analysis of thermoelastic damping and calculating of 

Q-factor is studied by using Rayleigh energy method. The 
procedure can be verified by comparing the results with 
circular ring case.  
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The dependence of Q-factor variation through the shell 
dimensions is investigated, and there are regions with higher 
Q-factor and lower Q-factor. For the natural frequency is the 
function of radius and thickness of the structure, dimensional 
property can be a important factor for determining Q-factor 
Alto the difference of structure geometry can results varied 
tendency of Q-factor diagram. 

Observing the form of expression for the natural frequency 
of the shell, the further study on effects of material properties is 
needed. 
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