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Thermo-mechanical deformation behavior of
functionally graded rectangular plates subjected

to various boundary conditions and loadings
Mohammad Talha and B N Singh

Abstract—This paper deals with the thermo-mechanical defor-
mation behavior of shear deformable functionally graded ceramic-
metal (FGM) plates. Theoretical formulations are based on higher
order shear deformation theory with a considerable amendment in
the transverse displacement using finite element method (FEM). The
mechanical properties of the plate are assumed to be temperature-
dependent and graded in the thickness direction according to a power-
law distribution in terms of the volume fractions of the constituents.
The temperature field is supposed to be a uniform distribution over the
plate surface (XY plane) and varied in the thickness direction only.
The fundamental equations for the FGM plates are obtained using
variational approach by considering traction free boundary conditions
on the top and bottom faces of the plate. A C0 continuous isopara-
metric Lagrangian finite element with thirteen degrees of freedom per
node have been employed to accomplish the results. Convergence
and comparison studies have been performed to demonstrate the
efficiency of the present model. The numerical results are obtained
for different thickness ratios, aspect ratios, volume fraction index
and temperature rise with different loading and boundary conditions.
Numerical results for the FGM plates are provided in dimensionless
tabular and graphical forms. The results proclaim that the temperature
field and the gradient in the material properties have significant role
on the thermo-mechanical deformation behavior of the FGM plates.

Keywords—Functionally graded material, higher order shear de-
formation theory, finite element method, independent field variables.

I. INTRODUCTION

An advanced composite materials known as functionally
graded material (FGM) have received an appreciable consid-
eration in structural engineering design, especially when the
materials are subjected to extremely high thermal loading. The
material property of the FGM can be tailored to accomplish
the specific demands in different engineering utilization to
achieve the advantage of the properties of individual material.
This is possible due to the material composition of the FGM
changes sequentially in a preferred direction. The applicability
of this material is that it eliminates the interface problem
due to proficient and continuous change of material properties
from one surface to the other [1] [2]. The thermo-mechanical
deformation of FGM structures have attracted the attention of
many researchers in the past few years in different engineering
applications which include design of aerospace structures, heat
engine components and nuclear power plants etc.

Mohammad Talha, PhD Student, is with the Department of Aerospace
Engineering, Indian Institute of Technology (IIT), Kharagpur, INDIA, 721
302, e-mail: rsmtalha@aero.iitkgp.ernet.in

B N Singh, Associate Professor, is with the Department of Aerospace
Engineering, Indian Institute of Technology (IIT), Kharagpur, INDIA, 721
302, e-mail: bnsingh@aero.iitkgp.ernet.in

The assessment of thermo-mechanical deformation behavior
of functionally graded plate structures considerably depends
on the plate model kinematics. A number of plate theories
are available to analyze the deformations of composite plates.
The foremost constraint of using the classical Kirchhoff plate
theory (CLPT) is that it ignores transverse shear effects
and consequently provides reasonable results for relatively
thin plates [24]. To abstain the said complication, an earlier
attempts were made by Reissner [3] and Mindlin [4]. However,
a shear-correction factor is needed to eliminate the problem of
a constant transverse shear stress distribution. This correction
factor was obtained by comparing the results with an exact
elasticity solution and generally it depends on various param-
eters such as boundary conditions, geometric parameters, and
loading conditions. This classical Kirchhoff plate theory seems
to be unreliable for analysis of the FGM plates, in which
volume fractions of two or more constituent varies smoothly
and continuously as a function of position in a pre-defined
specifications. Due to the continuous variation of material
properties in a preferred direction, the first order shear de-
formation theory (FSDT) and higher order shear deformation
theory (HSDT) may be efficiently utilized in the analysis.
However, many HSDT kinematics were proposed, notable
among them are [5], [6], [7], [8]. The higher order theories
assumes the in-plane displacements as a cubic expression of
the thickness coordinate and the out-of-plane displacement to
be constant.

Several authors have used FSDT and HSDT kinematics to
analyze the deformation characteristics of FGM plates. For
example, Reddy [9] presented the mathematical formulation
in conjunction with finite element model, based on third order
shear deformation theory for static and dynamic analysis of
the FGM plates. Abrate [10] analyzed the problems of free
vibrations, buckling, and static deflections of the FGM plates
using CLPT, FSDT, and HSDT kinematics. Sang and Hwan
[11] Investigated vibration and thermal postbuckling behaviors
of the functionally graded plates with nonlinear temperature
distribution. Lanhe [12] applied FSDT kinematics to derive
the equilibrium and stability equations of a moderately thick
FGM rectangular plate under thermal loads, with two types of
thermal loading, uniform temperature rise and gradient through
the thickness. Saidi and Jomehhzadeh [13] presented a new
analytical method for bendingstretching analysis of thick FGM
plates based on the FSDT or Mindlin plate theory. Sheng and
Wang [14] investigated the effect of thermal load on vibration,
buckling and dynamic stability of FGM cylindrical shells em-
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bedded in an elastic medium, based on FSDT by considering
rotary inertia and the transverse shear strains. Ferreira et al.
[15] used FSDT and multiquadric radial basis functions to
analyze the static deformations of a simply supported FGM
plates. They derived the effective properties of the composite
either by rule of mixtures or by the Mori-Tanaka scheme. Yang
and Shen [16] analyzed the free and forced vibration analyses
for initially stressed FGM plates in thermal environment with
temperature dependent material properties. The formulations
are based on Reddy’s higher order shear deformation theory
which includes the thermal effects due to uniform temperature
variation. Qian et al. [17] analyzed the static and dynamic
response of a simply supported square FGM plate by using
compatible higher order shear and normal deformable plate
theory and a meshless Petrov-Galerkin method. Efraim and
Eisenberger [18] derived the equations of motion for annular
plates by employing FSDT which includes the effect of shear
deformations to accomplish vibration frequencies and modes
for various combinations of boundary conditions.

Naei et al. [19] presented the buckling analysis of radially-
loaded circular FGM plate with variable thickness. The finite-
element method is used to determine the critical buckling load
and the effects of thickness variation and Poisson’s ratio are
investigated by calculating the buckling load. Navazi and Had-
dadpour [20] analytically investigated the aero−thermoelastic
stability margins of FGM panels in thermal environment by
employing piston theory of aerodynamics to model quasi-
steady aerodynamic loading. Reddy and Cheng [21] studied
the harmonic vibration problem of FGM plates in terms of
transfer matrix by means of a three-dimensional asymptotic
approach. Nguyen et al. [22] proposed the FSDT model for
modelling structures made of FGM materials using energy
equivalence methods. Liew et al. [23] presented a continuum
three dimensional Ritz formulation for the vibration analysis
of homogeneous thick rectangular plate with arbitrary combi-
nations of boundary conditions.

With the enhanced utility of these materials in many
diversified engineering applications, it is essential to know
the thermo-mechanical deformation behavior of functionally
graded ceramic-metal plates under various loading and bound-
ary conditions. Considering the above said viewpoint in mind,
the objective of this investigation is to present a higher
order shear deformation theory with a cubically varying in-
plane displacements over the entire thickness and quadratically
varying transverse displacement to ensure the effects of normal
strain and its derivative in calculation of transverse shear
strains. The material properties of the FGM plates are graded
continuously in the thickness direction. The variation of the
properties follows according to a simple power-law distribu-
tion in terms of the volume fractions of the constituent. The
implementation of this theory is executed by using a suitable
C0 continuous isoparametric finite element, and the governing
equations are obtained using the variational approach. The
thermo-mechanical deformations behavior of the FGM plates
are examined for different thickness ratios, the aspect ratios,
temperature rise, for different volume fraction indices, loading
and boundary conditions. The present accomplished results are
compared with those available in the literature. The obtained

results are presented in the form of tables and figures to show
the parametric effect such as material properties, thickness ra-
tios, aspect ratios, temperature fields, the loading and boundary
conditions, which can be treated as a benchmark for further
advanced research. These furnished results are significant from
the point of view in the designing of thermal barrier materials.

II. PROBLEM FORMULATION

A. Governing equations

A schematic diagram of the problem studied and the rect-
angular cartesian coordinate system used describe the thermo-
mechanical deformations of the FGM plate are shown in Fig.
1. It is assumed that the material properties of FGM plate
varies in the thickness direction only, such that the top surface
(z = h/2) of the plate is ceramic rich, whereas the bottom
surface (z = −h/2) is metal rich. The effective material
properties at an arbitrary point within the structural domain,
like Young’s modulus E, Poisson’s ratio ν, mass density ρ,
thermal expansion coefficient α, of the functionally graded
plate are the effective material properties P . These properties
are position dependent and can be expressed as,

P = PtVt(z) + PbVb(z) (1)

where Pt and Pb represents the temperature dependent
properties of the top and bottom faces of the plate, respectively,
and can be expressed as a function of temperature [25].

P = P0(P−1T
−1 + 1 + P1T

1 + P2T
2 + P3T

3) (2)

where P0, P−1, P1, P2, and P3 are the coefficients of
temperature T (K) and are exclusive to the constituent ma-
terials. Vt(z) and Vb(z) are defined as the volume fractions
of the constituent of the top and bottom faces of the plates,
respectively, and are related by

Vt(z) + Vb(z) = 1 (3)

The effective properties of functionally graded material

Ceramic 

Metal

h

x

y
z

a
b

Fig. 1. Schematic diagram and dimensions of the plate.

are obtained according to a simple power−law. The volume
fractions of the constituent of the top surface of the plate
follows a simple power−law as,

Vt(z) =
(

2z + h

2h

)n

(4)

where n is the non-negative volume fraction index which
prescribes the material variation profile through the thickness
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of the plate and may be adjusted to obtain the optimum
distribution of the constituent material. It is ascertained that
the effective Young’s modulus E and thermal expansion co-
efficient α are the temperature dependent. However, the mass
density ρ and the thermal conductivity κ are independent of
the temperature. Poisson’s ratio ν is assumed to be constant as
it weakly depends on the temperature changes. From Eqs. (1)
and (4), the effective material properties with two constituents
for graded plates can be expressed as,

E(z, T ) = [Et(T ) − Eb(T )]
(

2z+h
2h

)n
+ Eb(T )

α(z, T ) = [αt(T ) − αb(T )]
(

2z+h
2h

)n
+ αb(T )

ρ(z) = (ρt − ρb)
(

2z+h
2h

)n
+ ρb

κ(z) = (κt − κb)
(

2z+h
2h

)n
+ κb

(5)

Throughout the analysis the temperature field is applied in
the thickness direction only and one-dimensional temperature
field is assumed to be constant in the XY plane of the plate. In
order to obtain the temperature distribution along the thickness
a steady-state heat transfer equation is solved, and can be
represented as

− d

dz

[
κ(z)

dT

dz

]
= 0 (6)

This equation is solved by prescribing boundary condition
of T = Tt at z = h/2 and T = Tb at z = −h/2. It can
be seen from Eqs. (5) and (7) that Et, Eb, αt and αb are all
functions of position and temperature dependent. The linear
thermo-mechanical constitutive relations are,

⎧⎪⎪⎪⎪⎪⎪⎨
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(7)

where σxx, σyy, σzz, σxz, σyz, σxy are the stress components,
εxx, εyy, εzz, εxz, εyz, εxy are the strain components. Qij are
the stiffness coefficients, with Q11 = Q22 = Q33 =
E(z,T )(1−ν2)
(1−3ν2−2ν3) , Q12 = Q13 = Q23 = E(z,T )ν(1+ν)

(1−3ν2−2ν3) , Q44 =

Q55 = Q66 = E(z,T )
2(1+ν) .

The linear strains corresponding to the displacements (ū, v̄,
w̄) at any point along the (x, y, z) axes, respectively can be

expressed as,
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⎧⎨
⎩

ū
v̄
w̄

⎫⎬
⎭ (8)

To incorporate the transverse shear effects in proposed
HSDT kinematics, the displacement field is expressed in terms
of mid-plane displacements u, v and w, perpendicular to mid-
plane z, and the rotation of the normal ψx and ψy about
the y and x-axis, respectively. In order to ensure the field
variables to be continuous within the element for C0 finite
element modelling, the out of plane derivatives are considered
as independent degrees of freedom, see [27] and the resulting
modified displacement field is represented as,

ū = u0 + f1(z)ψx + f2(z)αx + f3(z)βx + f4(z)θx

v̄ = v0 + f1(z)ψy + f2(z)αy + f3(z)βy + f4(z)θy

w̄ = w0 + f5(z)ψz + f6(z)αz (9)

where f1(z) = C1z−C2z
3, f2(z) = −C3z

2, f3(z) = −C4z
3,

f4(z) = −C5z
3,f5 = C1z, f6 = C1z

2, C1 = 1, C2 = C4 =
4/3h2, C3 = 1/2, C5 = 1/3 and ξz = αz . The basic field
variables from the above equation is represented as:

{q} = {u, v, w, ψx, ψy, ψz, αx, αy, αz, βx, βy, θx, θy}T

(10)
where, {q} is named as displacement vector.

The strain vector terms in terms of mid-plane strain vector
can be written as,⎧⎪⎪⎪⎪⎪⎪⎨
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(11)
where,

ε0
1 = ∂u0

∂x , ε0
2 = ∂v0

∂y , ε0
3 = ψz, ε0

4 = ψy + ∂w0
∂y , ε0

5 = ψx + ∂w0
∂x ,

ε0
6 = ∂u0

∂y + ∂v0
∂x k1

1 = ∂ψx

∂x , k1
2 = ∂ψy

∂y , k1
3 = 2αz,

k1
4 = ∂ψz

∂y − αy, k1
5 = ∂ψz

∂x − αx, k1
6 = ∂ψx

∂y + ∂ψy

∂x

k2
1 = −C3

∂ψx

∂x , k2
2 = −C3

∂αy

∂y , k2
4 = ∂αz

∂y − θy − 3C2(ψy + βy),

k2
5 = ∂αz

∂x − θx − 3C2(ψx + βx)k2
6 = −C3

(
∂αx

∂y + ∂αy

∂x

)
,

k3
1 = −C2

(
∂ψx

∂x + ∂βx

∂x

)
− C5

∂θx

∂x , k3
2 = −C2

(
∂ψy

∂y + ∂βy

∂y

)

−C5
∂θy

∂y k3
6 = −C2

(
∂ψx

∂y + ∂ψy

∂x + ∂βx

∂y + ∂βy

∂x

)
− C5

(
∂θx

∂y + ∂θy

∂x

)

In the above expressions, the terms having superscripts ‘0′,
‘1′ and ‘2 − 3′ are membrane, curvature and higher order
strain terms, respectively. The modulus E, thermal expansion
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coefficient α and the elastic coefficients Qij vary through the
plate thickness according to the Eqs.(4) and (5). The total
in-plane force resultants, moments and higher order moments
produced due to temperature rise are defined as,

{NT } =

⎧⎨
⎩

Nxx

Nyy

Nxy

⎫⎬
⎭ =

h/2∫

−h/2

⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭dz,

{MT } =

⎧⎨
⎩

Mxx

Myy

Mxy

⎫⎬
⎭ =

h/2∫

−h/2

⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭zdz

and

{PT } =

⎧⎨
⎩

Pxx

Pyy

Pxy

⎫⎬
⎭ =

h/2∫

−h/2

⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭ z3dz (12)

The thermal force {NT }, {MT } and moment resultants {PT }
can also be represented as,

{NT } =
h/2∫

−h/2

{β}ΔT dz

{MT } =
h/2∫

−h/2

{β}ΔTz dz

{PT } =
h/2∫

−h/2

{β}ΔTz3 dz

(13)

where,

{β} = [Q]{α} =

⎧⎨
⎩

(Q11 + Q12)α
(Q12 + Q22)α

0

⎫⎬
⎭ (14)

As the plate is exposed to thermal environment, and
subsequently produces in-plane stress resultants (Nxx Nyy

and Nxy). Therefore, the work done by the in-plane forces
produced due to temperature change produces out of plane
displacement ‘w′ by using small deformation theory as,

Wth =
1
2

∫
A

{
w, x
w, y

}[
Nxx Nxy

Nxy Nyy

]{
w, x
w, y

}
dA (15)

B. Strain energy

The strain energy of the FGM plate is given by,

U =
1
2

∫
v

{ε}T
i {σ}idV (16)

The global displacement field model as given by Eq.(8) may
be represented as,

{ū} = [N̄ ]{q} (17)

where {q} is as defined in Eq. (10) and the function of
thickness co-ordinate [N̄ ] is defined as,

[N̄ ] =

⎡
⎣ 1 0 0 f1(z) 0 0 f2(z) 0 0 f3(z) 0 f4(z) 0

0 1 0 0 f1(z) 0 0 f2(z) 0 0 f3(z) 0 f4(z)
0 0 1 0 0 f5(z) 0 0 f6(z) 0 0 0 0

⎤
⎦
(18)

C. Work done due to external transverse load

The external work done due to the distributed transverse
static load p0(x, y) can be expressed as,

Wext =
1
2

∫

A

p0(x, y)wdA. (19)

III. SOLUTION METHODOLOGY

A. Finite element model

A nine noded isoparametric element is employed for finite
element modeling. In the FEM the domain is discretized
into a set of finite elements. Over each of the elements, the
displacement vector and element geometry of the model is
expressed by

{q} =
NN∑
i=1

Ni{q}i ; x =
NN∑
i=1

Nixi ; y =
NN∑
i=1

Niyi (20)

where Ni is the interpolation function (shape function) for
the ith node, {q}i is the vector of unknown displacements for
the ith node, NN is the number of nodes per element and xi

and yi are Cartesian coordinate of the ith node.
1) Strain energy of the plate: The strain energy of the FGM

plate is given by,

U =
NE∑
e=1

U (e) (21)

here NE is number of elements used for messing the plate
U (e) is the elemental strain energy which can be obtained
using Eqs. (16) and (20) and expressed as,

U =
1
2

NE∑
e=1

{q}T (e)
[K](e) {q}(e) (22)

here [K](e) and {q}(e) are defined as linear stiffness matrix and
displacement vector for the eth element, respectively. Using
finite element model (Eq.(15)), Eq.(20) may also be written
as,

Wth =
NE∑
e=1

W (e) =
NE∑
e=1

{q}T (e) [Kg]
(e) {q}(e)

dA, (23)

where, [Kg]
(e) is defined as the elemental geometric stiffness

matrix for the eth element.
2) Work done due to external transverse load: The work

done by external mechanical load p0(x, y) is given by

V = Wext =
1
2

∫

A

p0(x, y)wdA. (24)

Using the finite element notation model, Eq. (19) may be
written as,

V =
NE∑
e=1

V (e) (25)

where, V (e) =
∫

A(e)

{q}T {P}dA = {q}(e)T {P}(e)

with {P}(e) = (0 0 p0 0 0 0 0 0 0 0 0 0 0)T (e)
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TABLE I
TEMPERATURE-DEPENDENT MATERIAL COEFFICIENTS FOR METAL AND CERAMICS, FROM REF. [26].

Materials Properties P0 P−1 P1 P2 P3 P (T=300K)
ZrO2 E(Pa) 244.27e+9 0 -1.371e-3 1.214e-6 -3.681e-10 168.063e+9

α(1/K) 12.766e-6 0 -1.491e-3 1.006e-5 -6.788e-11 18.591e-6
Ti-6Al-4V E(Pa) 122.56e+9 0 -4.586e-4 0 0 105.698e+9

α(1/K) 7.75788e-6 0 6.638e-4 -3.147e-6 0 6.941e-6
Si3N4 E(Pa) 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 322.02715e+9

α(1/K) 5.8723e-6 0 9.095e-4 0 0 7.474e-6
SUS304 E(Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0 207.7877e+9

α(1/K) 12.330e-6 0 8.086e-4 0 0 15.321e-6

B. Governing Equation

The governing equation for thermo-mechanical deforma-
tions of the FGM plate can be derived using variational
principle as:

[K̄]{q} = {F} (26)

with, [K̄] = [K + γKc] − [Kg].
where, [K], [Kc], [Kg], {q}, and {F} are global linear

stiffness matrix, global linear stiffness matrix arises due to
constraints, global geometric stiffness matrix due to thermal
load, global displacement vector, and force vector, respec-
tively.

IV. NUMERICAL EXAMPLES AND DISCUSSION

The numerical results for thermo-mechanical deformations
of the FGMs plate are computed using the proposed mathemat-
ical model in conjunction with FEM. A computer programme
has been developed in MATLAB 7.5.0 (R2007b) environment.
The validation and efficacy of the proposed algorithm is
examined by comparing the results with those available in
the literature. A nine noded Lagrange isoparametric element,
with 13 degrees of freedom (DOFs) per node for the present
HSDT model has been used for discretizing the plate. For
the computation of results full integration schemes (3x3) are
used for thick plates and selective integration schemes (2x2)
for thin plates. Table 1 shows the temperature dependent
properties of the FGMs constituents which have been used
for the computation of the results throughout the study, unless
specified otherwise. Fig. 2 shows the volume fraction of
the ceramic phase through the dimensionless thickness. It is
assumed that the materials are perfectly elastic throughout the
deformation.

The boundary conditions used in the present analysis are as
follows:
Simply supported:(SSSS)
u0 = w0 = ψy = αx = αz = βy = θx = 0, at x = 0 and a.
v0 = w0 = ψx = αy = αz = βx = θy = 0, at y = 0 and b.
Clamped:(CCCC)
u0 = v0 = w0 = ψx = ψy = ψz = αx = αy = αz = βx =
βy = θx = θy = 0, at x = 0, a and y = 0, b.
Clamped-Free: (CFCF)
u0 = v0 = w0 = ψx = ψy = ψz = αx = αy = αz = βx =
βy = θx = θy = 0, at x = 0, and y = 0.
u0 �= v0 �= w0 �= ψx �= ψy �= ψz �= αx �= αy �= αz �= βx �=
βy �= θx �= θy �= 0, at x = a and y = b.
Simply supported-clamped: (SCSC)

u0 = w0 = ψy = αx = αz = βy = θx = 0, at x = 0 and
y = 0.
u0 = v0 = w0 = ψx = ψy = ψz = αx = αy = αz = βx =
βy = θx = θy = 0, at x = a, y = b.
Hinged: (HHHH)
u0 = v0 = w0 = ψy = αy = βy = θy = 0, at x = 0 and a.
u0 = v0 = w0 = ψx = αx = βx = θx = 0, at y = 0, and
y = b.
Clamped-Hinged: (CHCH)
u0 = v0 = w0 = ψx = ψy = ψz = αx = αy = αz = βx =
βy = θx = θy = 0, at x = 0, and y = 0.
u0 = v0 = w0 = ψy = αy = βy = θy = 0, at x = a and
y = b
here, a and b refers the length and with of the plate, respec-
tively.

A. Convergence and Comparison study

To make certain the accuracy and proficiency of the present
finite element formulation, two test examples have been ana-
lyzed for thermo-mechanical deformations of the FGM plates.
Example 1. We first consider the accuracy of the present
finite element formulation by comparing the results with those
given by Ferreira et. al. [15] which is based on the third
order deformation plate theory and a meshless method. In this
example, the analysis is performed on a square functionally
graded plate simply supported at all its edges (SSSS) for
side to thickness ratio a/h = 5, volume fraction index
n = 0, 0.5, 1.0, 2, and ∞ with aspect ratio a/b = 1. Where h is
the thickness of the plate as defined earlier. The top face of the
plate is ceramic-rich, whereas the bottom face is metal-rich.
The plate is comprised of metal (Aluminium) and Ceramic.
The material properties are taken as Eb = 70 × 109 N/m2

and νb = 0.3 for Aluminium, and Et = 151 × 109 N/m2

and νt = 0.3 for ceramic. The transverse displacement w, the
thickness coordinate z and the pressure q applied on the top
surface have been non-dimensionalized as follows: w̄ = w/h,
z̄ = z/h and p̄ = p/Ech

4. The comparison of present results
with Ferreira et. al. [15] are presented in Table 2 which
shows the agreement between the two results is excellent.
The results clearly show that the performance of the present
formulation is very good in terms of solution accuracy and the
rate of convergence with mesh refinement. Therefore, based
on the convergence study, it is concluded that (5 × 5) mesh
is acceptable for thermo-mechanical deformation behavior of
the FGM plate.
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TABLE II
COMPARISON OF THE PRESENT RESULTS WITH REF. [15] FOR A SIMPLY

SUPPORTED (SSSS) SQUARE FGM PLATE SUBJECTED TO UNIFORM
DISTRIBUTED LOAD.

Volume fraction index, n
Mesh size ceramic 0.5 1 2 metal

Present(2 × 2) 0.0239 0.0300 0.0330 0.0358 0.0500
Present(3 × 3) 0.0274 0.0345 0.0381 0.0414 0.0573
Present(4 × 4) 0.0218 0.0264 0.0303 0.0329 0.0455
Present(5 × 5) 0.0201 0.0256 0.0287 0.0312 0.0431
Present(6 × 6) 0.0201 0.0256 0.0286 0.0312 0.0431

Ferreira et al. [15] 0.0205 0.0262 0.0294 0.0323 0.0443
% Difference 1.99 2.34 2.43 3.52 2.78

Example 2. In this example we consider the static defor-
mations of thick FGM plate made of Aluminium (Al) and
Silicon Carbide (SiC) by using higher-order shear and normal
deformable plate theory and meshless local Petrov-Galerkin
method given by Qian et. al. [17]. The top surface of the plate
is assumed to be ceramic-rich, whereas the bottom surface is
metal rich. The thickness to side ration (a/h) is taken as 0.2.
The top surface of the plate is loaded by a normal pressure
obtained by q0 sin πx/a sin πy/a and the bottom surface of the
plate is assumed to be traction free. The material properties
for Al and SiC are as follows:

Al: Eb = 70 GPa, νb = 0.3, ρb = 2702 kg/m3,
SiC: Et = 427 GPa, νt = 0.17, ρt = 3100 kg/m3.

In this example the transverse displacement w and thick-
ness coordinate z have been non-dimensionalized as: w̄ =

100Emh3

12a4(1−ν2
m)q0

w, z̄ = 2z
h . The plate is simply supported (SSSS)

at all its edges. The nondimensional centre deflections with
volume fraction index n along with the figure layout are
preferred as used in Ref. [17] for direct comparison. Again, a
good agreement is observed between the two results as shown
in Fig.3.

Fig. 2. Comparison of the present computed central deflection of an Al/SiC
FGM plate with Qian et. al. [17].

These two comparison studies show that the present results
matches well with the established one.

V. PARAMETRIC STUDIES

Based on the established approach and analyses of foregoing
sections it is acknowledged that (5× 5) mesh has been found

to give good convergence for the FGM plates as mentioned
earlier. These have been used for accomplishing the results,
unless it is stated otherwise.

Table 3 shows the nondimensional central deflection of
ZrO2/Ti-6Al-4V square FGM plate in thermal environment.
The analysis is performed for different values of volume
fraction index n. The poisson’s ratio for both the material
is taken as 0.3 for simplicity and the side to thickness ratio
is i.e., a/h=5. The top surface of the FGM plate is estimated
to be ceramic-rich, whereas the bottom surface is metal rich.
The various non-dimensionalized parameters used are: centre
deflection, w/h; load parameter, P = p0a

4/(Ebh
4); and thick-

ness coordinate, z̄ = z/h. Here, p0 denotes the intensity of the
applied mechanical load, a, the side length of the plate, and h,
the plate thickness. The isotropic ZrO2 and Ti-6Al-4V cases
resembles to a fully ceramic plate and a fully metallic plate,
respectively, whereas the other cases (n = 0.5, 1, 10) are for the
graded plates with two constituent materials. The temperature
field is assumed to vary in the thickness direction only and
is determined by the steady-state heat conduction equation
along with the boundary conditions across the thickness of
the plate. All plates are subjected to a uniform lateral pressure
combined with a temperature rise ΔT = 100K. It is found
that, the isotropic ceramic plate has the lowest deflection for
all the boundary conditions considered here, and the isotropic
metallic has the largest deflection. Moreover, the deflections
become higher with increasing n. This is due to the reality that
the bending stiffness is the maximum for ceramic plate, while
minimum for metallic plate, and degrades continuously as n
increases. It is also found that the maximum deflection occurs
for clamped-free (CFCF) boundary conditions and minimum
for clamped (CCCC) boundary condition for all the cases
considered here.

TABLE III
EFFECT OF VOLUME FRACTION INDEX n ON NONDIMENSIONAL CENTRAL

DEFLECTION OF ZRO2 /TI-6AL-4V SQUARE FGM PLATE (A/H=5)
SUBJECTED TO UNIFORM PRESSURE IN THERMAL ENVIRONMENT.

p0 n Boundary condition’s
SSSS CCCC SCSC CFCF HHHH CHCH

0 0.3689 0.1521 0.2240 0.9778 0.3778 0.2318
0.5 0.4273 0.1753 0.2588 1.1345 0.4372 0.2676

10 1 0.4547 0.1876 0.2765 1.2110 0.4655 0.2860
10 0.5277 0.2209 0.3235 1.4016 0.5420 0.3354
∞ 0.5652 0.2334 0.3436 1.4982 0.5788 0.3556
0 0.7378 0.3041 0.4481 1.9556 0.7555 0.4636

0.5 0.8546 0.3507 0.5177 2.2691 0.8744 0.5353
20 1 0.9094 0.3753 0.5531 2.4219 0.9311 0.5720

10 1.0554 0.4417 0.6471 2.8032 1.0840 0.6707
∞ 1.1304 0.4669 0.6873 2.9964 1.1576 0.7112
0 1.4755 0.6083 0.8961 3.9112 1.5110 0.9273

0.5 1.7092 0.7013 1.0354 4.5382 1.7489 1.0705
40 1 1.8187 0.7506 1.1061 4.8438 1.8622 1.1440

10 2.1108 0.8835 1.2942 5.6064 2.1679 1.3415
∞ 2.2607 0.9338 1.3745 5.9927 2.3153 1.4224
0 3.6888 1.5207 2.2403 9.7781 3.7776 2.3182

0.5 4.2730 1.7533 2.5885 11.3454 4.3722 2.6763
100 1 4.5468 1.8764 2.7653 12.1096 4.6555 2.8599

10 5.2770 2.2087 3.2354 14.0160 5.4198 3.3536
∞ 5.6518 2.3344 3.4363 14.9818 5.7882 3.5560

Table 4 represents the nondimensional central deflection of
ZrO2/Ti-6Al-4V square FGM plate subjected to a uniform lat-
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TABLE IV
EFFECT OF VOLUME FRACTION INDEX n ON NONDIMENSIONAL CENTRAL

DEFLECTION OF ZRO2 /TI-6AL-4V SQUARE FGM PLATE (A/H=10)
SUBJECTED TO UNIFORM PRESSURE IN THERMAL ENVIRONMENT.

p0 n Boundary condition’s
SSSS CCCC SCSC CFCF HHHH CHCH

0 0.3109 0.1030 0.1658 0.8127 0.3232 0.1721
0.5 0.3616 0.1196 0.1928 0.9465 0.3755 0.1999

10 1 0.3839 0.1276 0.2054 1.0085 0.3988 0.2130
10 0.4409 0.1472 0.2363 1.1551 0.4595 0.2456
∞ 0.4758 0.1577 0.2538 1.2435 0.4946 0.2635
0 0.6219 0.2060 0.3316 1.6253 0.6464 0.3442

0.5 0.7232 0.2393 0.3855 1.8931 0.7509 0.3999
20 1 0.7679 0.2552 0.4107 2.0171 0.7976 0.4261

10 0.8817 0.2944 0.4725 2.3101 0.9190 0.4913
∞ 0.9515 0.3154 0.5076 2.4871 0.9892 0.5270
0 1.2438 0.4120 0.6633 3.2506 1.2929 0.6885

0.5 1.4463 0.4785 0.7711 3.7862 1.5018 0.7998
40 1 1.5358 0.5104 0.8214 4.0341 1.5951 0.8521

10 1.7634 0.5889 0.9451 4.6203 1.8380 0.9825
∞ 1.9031 0.6308 1.0152 4.9741 1.9785 1.0539
0 3.1094 1.0300 1.6582 8.1266 3.2322 1.7212

0.5 3.6158 1.1963 1.9277 9.4654 3.7546 1.9994
100 1 3.8394 1.2760 2.0536 10.0853 3.9878 2.1303

10 4.4086 1.4722 2.3627 11.5507 4.5950 2.4564
∞ 4.7577 1.5771 2.5381 12.4353 4.9462 2.6348

eral pressure combined with a uniform temperature rise ΔT =
100K. The various non-dimensionalized parameters used are:
centre deflection, w/h; load parameter, P = p0a

4/(Ebh
4);

and thickness coordinate, z̄ = z/h. The side to thickness
ratio is (a/h) is taken as 10 and the uniform lateral pressure is
ranging from q0 = 10 to q0 = 100. The nondimensional central
deflection increases as the volume fraction index n increases
in all type of boundary conditions considered here. This is
expected, because a larger volume fraction index means that
the plate has a smaller ceramic component, and that its stiff-
ness is thus reduced. The variation of nondimensional central
deflection of ZrO2/Ti-6Al-4V rectangular FGM plate subjected
to a uniform lateral pressure combined with a temperature
rise ΔT = 100K is described in Tables 5 and 6 for a/h =
5 and 10, respectively. The thermo-mechanical deformation
characteristics shown in these two tables are similar to those
in tables 3 and 4. It is also evident that the rectangular plates
deflected more than the square plates.

Table 7 shows the nondimensional central deflection of
ZrO2/Ti-6Al-4V FGM plate subjected to a sinusoidal load
given by q0 sin πx/a sin πy/a combined with a temperature
rise ΔT = 100K for various boundary conditions considered
here. The side to thickness ratio (a/h) = 5 and the plate aspect
ratio (b/a) is taken as 1 and 2, respectively. The transverse
displacement w and thickness coordinate z have been non-
dimensionalized as: w̄ = 100Emh3

12a4(1−ν2
m)q0

w, z̄ = 2z
h . The mass

density and thermal conductivity are: ρ = 2370 kg/m3, κ =
1.8W/mK for ZrO2; ρ = 4429 kg/m3, κ = 7.82W/mK for Ti-
6Al-4V. Young’s modulus and thermal expansion coefficient of
theses materials are assumed to be temperature-dependent as
given in Table 1. The load parameter p0 is taken as unity.
It is noticed that in the case of square plate (b/a=1) the
maximum center deflection is found for simply supported
(SSSS) boundary conditions and least for clamped (CCCC)

TABLE V
EFFECT OF VOLUME FRACTION INDEX n ON NONDIMENSIONAL CENTRAL
DEFLECTION OF ZRO2 /TI-6AL-4V RECTANGULAR (b = a) FGM PLATE

(A/H=5) SUBJECTED TO UNIFORM PRESSURE IN THERMAL ENVIRONMENT.

p0 n Boundary condition’s
SSSS CCCC SCSC CFCF HHHH CHCH

0 0.8417 0.2798 0.4497 2.5293 0.8796 0.4676
0.5 0.9764 0.3229 0.5204 2.9409 1.0195 0.5408

10 1 1.0376 0.3454 0.5555 3.1356 1.0841 0.5774
10 1.1986 0.4051 0.6465 3.6066 1.2560 0.6735
∞ 1.2882 0.4290 0.6889 3.8707 1.3463 0.7165
0 1.6835 0.5595 0.8993 5.0587 1.7591 0.9352

0.5 1.9528 0.6458 1.0408 5.8818 2.0390 1.0816
20 1 2.0751 0.6908 1.1110 6.2712 2.1682 1.1548

10 2.3972 0.8101 1.2931 7.2131 2.5121 1.3469
∞ 2.5764 0.8581 1.3777 7.7415 2.6925 1.4329
0 3.3670 1.1190 1.7986 10.1173 3.5182 1.8704

0.5 3.9057 1.2917 2.0816 11.7637 4.0779 2.1632
40 1 4.1502 1.3815 2.2219 12.5424 4.3364 2.3097

10 4.7945 1.6202 2.5862 14.4263 5.0241 2.6938
∞ 5.1527 1.7162 2.7554 15.4830 5.3851 2.8659
0 8.4175 2.7976 4.4965 25.2934 8.7956 4.6760

0.5 9.7642 3.2292 5.2041 29.4092 10.1948 5.4081
100 1 10.3756 3.4538 5.5548 31.3560 10.8411 5.7742

10 11.9861 4.0506 6.4654 36.0657 12.5604 6.7345
∞ 12.8818 4.2904 6.8886 38.7075 13.4627 7.1647

TABLE VI
EFFECT OF VOLUME FRACTION INDEX n ON NONDIMENSIONAL CENTRAL
DEFLECTION OF ZRO2 /TI-6AL-4V RECTANGULAR (b = a) FGM PLATE

(A/H=10) SUBJECTED TO UNIFORM PRESSURE IN THERMAL
ENVIRONMENT.

p0 n Boundary condition’s
SSSS CCCC SCSC CFCF HHHH CHCH

0 0.7546 0.2001 0.3567 2.2477 0.7836 0.3687
0.5 0.8776 0.2325 0.4149 2.6200 0.9106 0.4287

10 1 0.9311 0.2479 0.4418 2.7902 0.9665 0.4565
10 1.0678 0.2853 0.5069 3.1872 1.1115 0.5248
∞ 1.1536 0.3061 0.5453 3.4368 1.1982 0.5639
0 1.5091 0.4002 0.7133 4.4954 1.5672 0.7374

0.5 1.7552 0.4651 0.8299 5.2400 1.8212 0.8573
20 1 1.8622 0.4959 0.8836 5.5804 1.9330 0.9131

10 2.1356 0.5707 1.0138 6.3745 2.2229 1.0496
∞ 2.3073 0.6121 1.0907 6.8735 2.3964 1.1277
0 3.0182 0.8004 1.4266 8.9908 3.1343 1.4748

0.5 3.5103 0.9302 1.6597 10.4799 3.6424 1.7147
40 1 3.7245 0.9917 1.7673 11.1608 3.8661 1.8262

10 4.2711 1.1413 2.0275 12.7489 4.4458 2.0992
∞ 4.6145 1.2243 2.1814 13.7470 4.7928 2.2554
0 7.5456 2.0010 3.5665 22.4771 7.8358 3.6871

0.5 8.7758 2.3255 4.1493 26.1998 9.1059 4.2867
100 1 9.3111 2.4794 4.4181 27.9021 9.6652 4.5654

10 10.6778 2.8533 5.0688 31.8723 11.1146 5.2479
∞ 11.5363 3.0607 5.4534 34.3675 11.9821 5.6386

boundary condition, whereas, for rectangular plate (b/a=2)
maximum is found for clamped-free (CFCF) and minimum
for clamped (CCCC) boundary condition. The nondimensional
central deflection increases as the volume fraction index n
increases in all type of boundary conditions considered here,
as expected.

Table 8 represents the variation of nondimensional central
deflection of ZrO2/Ti-6Al-4V square (b/a=1) and rectangular
(b/a=2) FGM plates, respectively, subjected to a uniform lat-
eral pressure combined with a temperature rise ΔT = 100K.
The volume fraction index n, and side to thickness ratio a/h,
is taken as 1 and 10, respectively. The load parameter p0



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:9, 2011

1811

TABLE VII
EFFECT OF VOLUME FRACTION INDEX n ON NONDIMENSIONAL CENTRAL
DEFLECTION OF ZRO2 /TI-6AL-4V SQUARE (b = a) AND RECTANGULAR

(b = 2a) FGM PLATE (A/H=5) SUBJECTED TO SINUSOIDAL LOAD IN
THERMAL ENVIRONMENT.

b/a n Boundary condition’s
SSSS CCCC SCSC CFCF HHHH CHCH

0 -2.7973 -0.1153 -0.1699 -0.7415 -0.2865 -0.1758
0.5 -3.2403 -0.1330 -0.1963 -0.8604 -0.3316 -0.2030

1 1 -3.4480 -0.1423 -0.2097 -0.9183 -0.3530 -0.2169
10 -4.0017 -0.1675 -0.2453 -1.0629 -0.4110 -0.2543
∞ -4.2859 -0.1770 -0.2606 -1.1361 -0.4389 -0.2697
0 -0.6383 -0.2122 0.3410 -1.9181 -0.6670 -0.3546
2 -0.7404 -0.2449 -0.3946 -2.2302 -0.7731 -0.4101

2 1 -0.7868 -0.2619 -0.4212 -2.3778 -0.8221 -0.4379
10 -0.9089 -0.3072 -0.4903 -2.7350 -0.9525 -0.5107
∞ -0.9769 -0.3254 -0.5224 -2.9353 -1.0209 -0.5433

varies from 25 to 250. As the present formulation is based
on the linear variation of strain fields, hence load Verses
deflection pattern is linear. It is also seen that the plates with
intermediate material properties have intermediate value of
deflection. The minimum deflection is observed for clamped
(CCCC) and maximum value is observed for clamped-free
(CFCF) boundary conditions for both square and rectangular
plates.

Fig. 3. Effect of temperature rise on bending behavior of square Si3N4/
SUS304 plates subjected to uniform pressure and temperature change
(a/h=10, n=1).

Fig. 3 shows the effect of the temperature rise on the nondi-
mensional center deflection for plate made of Si3N4/SUS304
plates with different combination of boundary conditions. The
temperature varies from 100 to 1000 K. The side to thickness
ratio, a/h=10 and the volume fraction index, n is taken as
unity. The top surface of the plate is ceramic rich, whereas the
bottom surface is metal rich. A uniformly distributed load is
applied on the top of the plate with loading parameter p0=10.
It can be seen that the nondimensional deflection increases as
the temperature goes up. This is because the Young’s modulus
getting weaker when the temperature goes up. Hence, the
weaker Young’s modulus results in the higher deflection. The
lowest and highest deflection is found for clamped (CCCC)
and clamped-free (CFCF) boundary conditions, respectively.

Fig. 4. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=5) with clamped
(CCCC) boundary condition in thermal environment.

Fig. 5. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=5) with clamped-
free (CFCF) boundary condition in thermal environment.

Fig. 6. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=5) with hinged
(CHCH) boundary condition in thermal environment.
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Fig. 7. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=5) with hinged
(HHHH) boundary condition in thermal environment.

Fig. 8. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=5) with simply
supported-clamped (SCSC) boundary condition in thermal environment.

Fig. 9. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=5) with simply
supported (SSSS) boundary condition in thermal environment.

Fig. 10. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=10) with clamped
(CCCC) boundary condition in thermal environment.

Fig. 11. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=10) with clamped-
free (CFCF) boundary condition in thermal environment.

Fig. 12. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=10) with hinged
(CHCH) boundary condition in thermal environment.
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TABLE VIII
NONDIMENSIONAL CENTRAL DEFLECTION OF ZRO2 /TI-6AL-4V SQUARE
(b = a) AND RECTANGULAR (b = 2a) FGM PLATE (a/h = 10, n = 1)

SUBJECTED TO UNIFORM PRESSURE IN THERMAL ENVIRONMENT.

b/a p0 Boundary condition’s
SSSS CCCC SCSC CFCF HHHH CHCH

25 0.9599 0.3190 0.5134 2.5213 0.9970 0.5326
50 1.9197 0.6380 1.0268 5.0427 1.9939 1.0651
75 2.8796 0.9570 1.5402 7.5640 2.9909 1.5977

1 100 3.8394 1.2760 2.0536 10.0853 3.9878 2.1303
150 5.7591 1.9140 3.0804 15.1280 5.9818 3.1954
200 7.6788 2.5521 4.1072 20.1706 7.9757 4.2606
250 9.5985 3.1901 5.1340 25.2133 9.9696 5.3257
25 2.3278 0.6198 1.1045 6.9755 2.4163 1.1414
50 4.6556 1.2397 2.2091 13.9511 4.8326 2.2827
75 6.9834 1.8595 3.3136 20.9266 7.2489 3.4241

2 100 9.3111 2.4794 4.4181 27.9021 9.6652 4.5654
150 13.9667 3.7191 6.6272 41.8532 14.4978 6.8481
200 18.6223 4.9587 8.8363 55.8042 19.3304 9.1309
250 23.2779 6.1984 11.0453 69.7553 24.1630 11.4136

Fig. 13. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=10) with hinged
(HHHH) boundary condition in thermal environment.

Fig. 14. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=10) with simply
supported-clamped (SCSC) boundary condition in thermal environment.

Fig. 15. Non-dimensional deflection due to uniformly applied load VS non-
dimensional length for Si3N4/SUS304 square plate (a/h=10) with simply
supported (SSSS) boundary condition in thermal environment.

Fig. 16. Non-dimensional bending behavior of ZrO2/Ti-6Al-4V square plate
due to sinusoidal applied load with various boundary conditions in thermal
environment (a/h=5, b/a=1).

Fig. 17. Non-dimensional bending behavior of ZrO2/Ti-6Al-4V rectangular
plate due to sinusoidal applied load with various boundary conditions in
thermal environment (a/h=5, b/a=2).
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Fig. 18. Effect of volume fraction index n on non-dimensional bending
behavior of Si3N4/SUS304 square plate due to uniformly applied load with
various boundary conditions in thermal environment (a/h=5, b/a=1).

Fig. 19. Effect of temperature rise on bending behavior of square ZrO2/Ti-
6Al-4V plates subjected to uniform pressure and temperature change (a/h=10,
n=2, b/a=1).

Fig. 20. Effect of temperature rise on bending behavior of rectangular
ZrO2/Ti-6Al-4V plates subjected to uniform pressure and temperature change
(a/h=10, n=2, b/a=2).

Figs. 4-9 represent the nondimensional deflection VS non-
dimensional length with the volume fraction index due to
uniformly distributed load (p0=10) along with a uniform tem-
perature rise ΔT = 100K for square Si3N4/ SUS304 plates

(a/h=5) with different combination of boundary conditions.
It is perceived that the nondimensional deflection increases as
the volume fraction index n increases, with the trend becoming
gentler as n increases. Figs. 10-15 show the nondimensional
deflection VS non-dimensional length with the volume frac-
tion index due to uniformly distributed load (p0=10) along
with a uniform temperature rise ΔT = 100K for square
Si3N4/ SUS304 plates (a/h=10) with different combination of
boundary conditions. The nondimensional deflection behavior
shown in theses figures are similar to those in figs. 5-10.
It is noteworthy that when the thermal effect is induced,
the mechanical response of graded plate is not necessarily
intermediate to that of isotopic metal and the ceramic plate. As
shown in fig. 11, the deflection of the graded plate with n=4
is not intermediate with other values of volume fraction index
n. Figs. 16-17 represent nondimensional bending behavior of
square and rectangular ZrO2/Ti-6Al-4V FGM plates (a/h=5),
respectively with varying volume fraction index n and under
two types of loading conditions. The plates are subjected to si-
nusoidal load combined with a temperature rise ΔT = 100K.
It is found that the maximum deflection is observed for simply
supported boundary condition (SSSS) for square plate, and
consequently in the case of rectangular plate (b=2a) same is
found for clamped-free (CFCF) boundary condition.

Fig. 18 shows the comparison of the nondimensional de-
flection, by varying the volume fraction indices, n due to uni-
formly distributed load (p0=10) along with a temperature rise
ΔT = 100K for square Si3N4/SUS304 plates (a/h = 5) with
different combination of boundary conditions. It can be seen
that all of the curves that represent the various combinations
show the similar behavior with the deflection increases as the
volume fraction index n increases, nearly around n = 20.
The deflection is approximately insensitive after n ≥ 20.
Figs. 19-20 represent the effect of the temperature on the
nondimensional center deflection for square and rectangular
plates, respectively, made up of ZrO2/Ti-6Al-4V with different
combination of boundary conditions. The temperature varies
from 100 to 1000 K. The plates are subjected to uniform
distributed load with load parameter p0=100. The side to
thickness ratio a/h=10, and volume fraction index n = 2. It
is found that least deflection is reported for clamped (CCCC)
condition and maximum is found in clamped-free (CFCF) type
of boundary condition for both square and rectangular plates.

VI. CONCLUDING REMARKS

Thermo-mechanical deformations of functionally graded
ceramic-metal plates under various loading and boundary
conditions is investigated. The analysis is carried out using
the higher order shear deformation theory with an admissible
alteration in the transverse displacements in conjunction with
finite element models. The systems of algebraic equations
are derived using variational approach, and a C0 continuous
isoparametric Lagrangian element with 13 DOFs per node is
developed and implemented in the said problem. Convergence
tests and validation studies have been carried out to inculcate
the credibility of the present formulation. The obtained result
shows a good agreement with those available in the literature.
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It is observed that, when thermal effect is induced, the bending
response of the functionally graded plate is not necessarily
intermediate to those of the metal and the ceramic plate. This
behavior is found to be true irrespective of boundary condi-
tions. The temperature dependent material properties should be
taken into account for accurate analysis in high temperature
applications. Numerical results for different volume fraction
indices, the aspect ratios, the thickness ratios, the temperature
rise along with different combinations of the loading and
boundary conditions have been presented.
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