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Thermal and Starvation Effects on Lubricated
Elliptical Contacts at High Rolling/Sliding Speeds
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Abstract—The objective of this theoretical study is to develop
simple design formulas for the prediction of minimum film thickness
and maximum mean film temperature rise in lightly loaded high-
speed rolling/sliding lubricated elliptical contacts incorporating
starvation effect. Herein, the reported numerical analysis focuses on
thermoelastohydrodynamically lubricated rolling/sliding elliptical
contacts, considering the Newtonian rheology of lubricant for wide
range of operating parameters, namely load characterized by Hertzian
pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip
parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5).
Starvation is simulated by systematically reducing the inlet supply.
This analysis reveals that influences of load, rolling speed, and level
of starvation are significant on the minimum film thickness.
However, the maximum mean film temperature rise is strongly
influenced by slip in addition to load, rolling speed, and level of
starvation. In the presence of starvation, reduction in minimum film
thickness and increase in maximum mean film temperature are
observed. Based on the results of this study, empirical relations are
developed for the prediction of dimensionless minimum film
thickness and dimensionless maximum mean film temperature rise at
the contacts in terms of various operating parameters.

Keywords—Starvation, lubrication, elliptical contact, traction,
minimum film thickness.

[. INTRODUCTION

INCE last 40 years, research has been devoted to a better

understanding of a lubrication regime which occurs in
non-conformal contacts of the machine elements such as
gears, rolling bearings, cams etc. In such types of concentrated
contacts, pressures become very high and the contacting
surfaces deform elastically. In this condition, the viscosity of
the lubricant may rise significantly which assists the formation
of an effective fluid film in the contact. Such lubricated
contacts are called elastohydrodynamically lubricated (EHL)
contacts. In EHL contacts, the estimation of minimum film
thickness, maximum mean film temperature and traction are
important requirements from the design point of view of
mechanical components. The birth of elastohydrodynamic
(EHD) lubrication took place in the 1940s. A very important
step in the investigation of point contacts lubrication was
recorded in 1961 through the experimental work of Archard
and Kirk [1]. Before the publication of this paper, it had been
considered that only boundary lubrication could occur under
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such extreme conditions. Archard and Kirk’s experiments with
crossed cylinders showed that the values of film thickness at a
point contact with a circular Hertzian region differed less than
might have been expected from those at a line contact. A
comparison of the values of film thickness for a line contact
[2] with those for a point contact [1] under similar conditions
shows that the two values differ by roughly a factor of 2. Due
to lack of computing power and mathematical complexity, the
solution of two-dimensional EHD (i.e. point contact) problem
was delayed till the 1970s. Now, that the line contact problem
was considered to be solved, but there were needs to develop
solutions for specific components such as ball bearings which
exhibit elliptical contacts. The solution attempts of lubricated
elliptical contacts started with Newtonian fluids for isothermal
conditions. The earliest theory of the lubrication of spheres
came through Kapitza [3]. In the mid-1960s, Cameron and
Gohar [4] and Archard and Cowking [5] presented interesting
approximate solutions to the problem of lubricated elliptical
contacts. Cheng [6] also undertook a similar study of the inlet
region alone on the basis of the solution of the Reynolds
equations by finite difference methods (FDM). Full direct
numerical solutions in which the Reynolds equation and
elasticity equations are simultancously satisfied for point
contacts, emerged in the mid-1970s. Ranger et al. [7] used a
straight forward iterative method and developed results for
circular contacts for various values of the load, speed and
pressure viscosity coefficient. Dowson and Hamrock [8] and
Biswas and Snidle [9] have presented numerical evaluation of
surface deformations in point contact. Hamrock and Dowson
[10]-[12] have carried out a comprehensive range of numerical
solutions for fully flooded and starved point contacts in which
the influence of ellipticity ratio is considered. References [7],
[12], [13] have given empirical relations for prediction of film
thickness under isothermal conditions at low loads and low
speeds. The use of such film thickness relations involves a
significant degree of extrapolation at heavy loads, which
results in overestimation of film thickness. Numerical stability
and computational cost were the concern of early
computations in the EHL field. In 1992, Venner and Napel
[14], [15] presented a fast numerical solver for the EHL
circular contact problems. Full numerical analyses of the EHD
lubrication problem of a circular point contact have been
reported by [16], [17].

Thermal effects have an important impact on the
performance of highly loaded lubricated contacts such as those
found in high-speed rolling bearings, cams and tappets, gears,
and traction drives. Under severe operating conditions
shearing of the lubricant brings heat dissipation which
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influences both the film thickness and the traction
characteristics at the contact. Bruggemann and Kollmann [18]
were the first to include thermal effects in the study of
elliptical contacts. Kim and Sadeghi [19], [20] presented a full
thermal EHL point contact analysis in which they obtained
solutions for pure rolling and low slip conditions. Their
calculations revealed a significant inlet shear heating even
under pure rolling conditions. To avoid the costly
discretization across the film required by the energy equation,
a parabolic temperature profile across the film thickness has
been often adopted by an investigator which allows the three-
dimensional problem to be transformed to a two-dimensional
analysis. Such an assumption was applied by [21], [22] and
recently [23] in line contact problems. Jiang et al. [24], Lee et
al. [25] and Ehret et al. [26] adopted the same type of
simplification to solve elliptical and point contact problems.

Engineering surfaces although appear smooth to the naked
eye are quite rough on microscopic level. The height of
surface  roughness  significantly = modifies  pressure,
temperature, and internal stresses within the rolling/sliding
contacts. Thus, increasingly effort has been devoted to the
study of EHL contacts with surface roughness. Gang and
Sadeghi [27], Zhu and Hu [28], and Yang et al. [29] have tried
to study thermal effects in point/elliptic contacts by
incorporating roughness effects under certain assumptions and
limitations.

Literature survey reveals that for the combinations of the
light loads (maximum Hertzian pressure in the range 0.01 GPa
- 0.1 GPa), high rolling speeds (10 to 30 m/s), high slips (25 to
50%), ellipticity ratio (1 to 5), and roughness (0 to 0.2 um)
values existing in the ball bearings of aircrafts, no thermal
EHL analysis have been carried out for fully flooded
conditions for the characteristic study of film thickness, mean
film temperature and traction. Therefore, an attempt has been
made to carry out an efficient thermal EHL analysis of elliptic
contacts for the above range of operating parameters and to
develop empirical relations for the prediction of minimum
film thickness, maximum non dimensional mean film
temperature rise, and traction coefficient.

I1. GOVERNING EQUATIONS

z
Undistorted solid

Elastically distorted
solid

= Uy

) > __.-;ire.u:

Fig. 1 Coordinate system

EHD lubrication of concentrated contacts involves the
elastic deformation of non-conformal mating surfaces due to
very high pressure generated at the contact within the thin
lubricating film. The performance parameters of EHL

concentrated contacts can be computed by coupled solution of
governing equations (viz. Reynolds equation, energy equation,
film shape (including surface deformations), and rheological
relations of lubricant) by incorporating appropriate boundary
conditions. The coordination system adopted is shown in Fig.
1.

A.Film Thickness Equation

In EHD, the mating surfaces deform elastically. An
expression for lubricant film thickness in a 3-D EHD contact
is written as:

2 2
h(x,y,z)=h0+2XR +2); +d(x,y,z)-d(0,0,0) (1

X y

The elastic deformation d (X, Y, z) in (1) is evaluated:

T PO Y) dx dy’ @
YA

d(x,y z)=i
B (- x) (-

There are two main problems associated with the numerical
evaluation of this integral. The first problem arises due to
singularity i.e., when (X, y) = (X’, ¥’). The second problem
comes due to involved computations. If the elastic
deformations at all the grids N xN of domain are being
computed, then the time in numerical integration of (2) is
proportional to N*. To cut short the computational time, it is
essential to use relatively coarse finite difference grids in
domain. The usual method of dealing with the singularity in
(2) is to replace the integration with an analytic expression in
the region of singularity. It is assumed that the pressure in the
region of the singularity is constant all over the nine grid
points (the point of interest and the eight grid points around
it). Fig. 1 explains the nine grid point concepts. In the light of
Fig. 1, (2) is analytically integrated and written as:

d(x,y.z)=p(x,y)xD (3)

where D is the elastic influence coefficient and given as:
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Fig. 2 Pressure element shape and local coordinates

The variablesM, ,M,, N, and N, in (4) are shown in Fig.

2. Thus, the elastic deformation caused by the pressures acting
over the lubrication region can be written as:

d(i,j):zk:ZD(i,j,k,l)xp(k,l) 5)

where, D (i, J, k, ) refers to the elastic influence coefficient at
grid point (i, j) caused by unit pressure acting over the
rectangular element at grid (k, I).

B.Reynolds Equation

The Reynolds equation for steadily flow in 3-D form is as

i), 0PN _1p, 0 ) (©)
ox\n ox) oyl n oy OX

C.Energy Equation

The prediction of the temperature rise in the EHL contact
can be done accurately by the energy conservation law at a
point in the lubricant film. Energy equation in its steady-state
form, with no external sources of film heating can be
expressed in the Cartesian coordinates as:

pcp[uﬁwﬂ]zﬁ[k' ﬂjﬂ{(auj [aﬂ %)
OX oy oz oz oz oz

where

_hozdp ez 2 (®)
2n ox h h
__h-zop )
2n oy
oT

The convective term in the energy equation is
oz

neglected since the velocity, W, in z-direction is zero.

Across the lubricating film thickness, a parabolic
temperature profile is adopted for simplification of the
computation of energy equation. This assumption reduces 3-D
energy equation into a 2-D equation.

The equation for parabolic temperature profile across the
film is as:

T(x,y,z)=(3T1+3T2—6Tm)(%j2+(6Tm—4Tl—2T2)[ﬁ)+T, (10)

where Ti(x, y) and Tz(X, y) are the temperatures of the
bounding surfaces and Tm(X, y) represents the mean
temperature across the film. Substituting (8)-(10) into the
energy equation (7) and integrating the equation across the Z
direction from ‘0’ to ‘h’, the following simplified form of the
energy equation is obtained:

6T +6T, - 12T, — I

ox  OX OX

120k, 77

pC,h* c’)p(@'l’l o, ot ]

(an

Zut A Nk
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The boundary conditions for the energy equation, for two
moving surfaces, are given as:

b x
1 j J.kf aT(X,y) dy/ : (12)

Uk )2 oz 220 (X—(//) 2

Tl(xyy){

1 jA X c aT(X,y) dl// : (13)
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D.Rheological Relations for Lubricant
The density model used in the present EHD lubrication is:

p:po[l"'

The Roelands’ viscosity model is used in the present
analysis

0.6x107° p 3 B (14)
1+1.7x10°|0][1 AT-T)]

n=n, exp{(ln(%)+9.67)[—1+(1+5.1x10’9 p)z}—y(T _To)} (15)

Lubricant and disks properties have been listed in Table I.

E. Traction Model

Traction allows the transmission of mechanical energy
rather than its dissipation. In hydrodynamic lubrication the
Newtonian traction model can be represented as:
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F=t [z, dxdy (16)

Q

where, F = Traction force; ) = Domain of lubrication

Ton =N au+ P and  AU=u;—up
h 20X

F. Surface Roughness Model

All engineering surfaces are rough. The profile of a rough
surface is always random unless some regular features have
been deliberately introduced. The influence of the surface
roughness has been studied by many researchers. Random
distribution of roughness asperities makes it less realistic to
assume any deterministic models of surface roughness to
model real engineering surfaces. Thus the present study
incorporates the application of the stochastic model to
quantify the distribution of roughness.

The stochastic theory assumes the film thickness h,
comprises of two parts- (i) nominal or smooth part of the

geometry h"(x’ y,z)
h,(x.y.£) as measured from the nominal level. The nominal
film thickness component is a function of only space
coordinates whereas the surface roughness part is also a

, and (ii) the part due to surface roughness

function of a random variablef, in addition to the space

coordinates. Assigning a particular value to ¢ is to be
interoperated as selecting a particular roughness arrangement.

By taking the expected value of the Reynolds equation (6)
on both the sides, the Reynolds equation becomes:

o _(phiop). o _(phiaop) a (17)
G—XE[ , 6—XJ+$E(TEJ76(ul+uz)a—x(pE(h))

where the expectancy function, E (X), is defined as
E(x)= Ixf(x)dx (18)

In (18) f (x) is the probability density distribution for the
stochastic variable ‘x’. As only h is assumed to be a stochastic
variable, all other variables are not affected by the expectancy
function.

Now, the problem therefore reduces to determining the
expected values of E (h3) and E (h). As explained by
Christensen [30], the probability density function, f(x), can be
written in simple polynomial form as:

(c*- xz)3

35
F0)=530

f(x)=0

—C<X<C (19)

elsewhere

This polynomial function is the simplified approximated
form of the Gaussian distribution. This simplification is
important because the simplified expression of f(x) results in
simpler formulation when expectancy operator is applied over

the functions of film thickness, ‘h’. This function terminates at

£ Cwhere, €= 30 and O is the standard deviation of the
surface asperity height from the nominal value. The expected
values of h and h® for the uniformly distributed asperities can
be evaluated as:

E(h):Thf(x)dh:h (20)

E(h3):+j§h3f(h)dh:h3+3hoz @n

III. COMPUTATIONAL PROCEDURE

In the present study, FDM with non-uniform mesh
discretization is adopted because of expected variation in the
pressure gradients along the rolling direction. Fig. 3 shows
computational domain discretization. As pressure gradients
along the rolling direction in the contact region are very high,
it requires a denser grid near the contact zone. Non-uniform
meshing scheme along the direction of rolling is therefore
considered more logical and appropriate for the solution of the
present problem. The discretization in the outlet region and
perpendicular to the rolling direction is performed with
uniform meshing, because variation in the pressure gradient is
relatively less in these directions. Non-uniform meshing is
generated using the well-known geometrical progression. In
the so called contact zone, Hertzian pressure is applied and
outside the contact zone zero initial pressure is applied.

Y

Fig. 3 Dizcritization of domain

.. 3FR 2 2
= 1-(x— —(y-I
p(i. j) 2eabi (x=m) —(y-1)

if (x—m)’ +(y-1)"<1.0

and outside the contact zone,

P, )=0.0 if (x-m) +(y-1)">1.0
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Also, the pressure rises from zero reference value and then
reduces to zero value smoothly without any discontinuity. To
incorporate this feature in the solution, it must be ensured that
o _op —o when p = 0. This is achieved simply by
ox oy
substituting P= 0 whenever P < 0. These boundary
conditions are known as Reynolds boundary conditions. This
approach is adopted since it is not known where P _ P _ 0

ox oy
as it will be on the so called ‘moving’ boundary.
Mathematically it is incorrect to say that if P = 0 then

@:@:0 but such a method works well here. The
ox  OX

Reynolds equation is solved using the prescribed boundary
conditions of input parameters. The pressure distribution
obtained can then be integrated over the entire domain to
provide the load carrying capacity. The traction coefficient can
be estimated by the solution of traction model. The flow chart
of the computation is shown in Fig. 4. The convergence
criteria used for p (pressure) and T (temperature) are:

1. Forp

‘[Zj Zipij}N-l_[zjzipii}N l/‘[zj Zipij}N Is10°¢
2. ForT
I[ZjZiTij}N_l-[ijiTij}N \/\[zjziTﬂN <102

Calculate the film thickness,
viscosity and density
A 4
Solve Reynolds equation for new
pressure

v

Check convergence
for P and balancing of
load?

Calculate the film thickness,
viscosity and density

2

Solve energy equation for
lcmpcralurc

v

Calculate the solid surface
temperature

A
>

Check
convergence
for T?

Check consistency of
P and T between two
iterations

Print P, T, Traction etc.

Fig. 4 Flow chart for computational procedure

IV. RESULTS AND DISCUSSION

In non-conformal contacts such as in rolling element
bearings and gears etc., the estimation of minimum film
thickness is an important requirement at the design stage.
Moreover, in many applications, the ball bearings having EHL
contacts are subjected to light loads, high rolling/sliding
speeds, and starvation. Thus, awareness for the calculation of
minimum film thickness as functions of load, rolling speed,
material parameter, ellipticity ratio, roughness, slip, and
starvation parameter, has vital importance for designers and
maintenance engineers. In the elliptic EHL contacts, the
increase of viscosity with pressure is one of the causes of the
mating surfaces getting lubricated. However, high rolling/
sliding speed generates huge heat in the lubricating film
causing drastic reduction in lubricant viscosity. Therefore, for
reliable operation of EHL contacts at high rolling/sliding
speeds, it becomes important to determine the thermal effects
on minimum film thickness prevailing between the mating
surfaces. Due to the thinning of the lubricating oil at the
concentrated EHL contacts having high rolling/sliding speeds
and light loads, the escaping tendency of the lubricating oil
increases. Thus, such contacts generally operate in starved
conditions. Therefore, the thermal analyses of smooth and
rough EHL elliptic contacts operating under lightly loaded and
high rolling speeds, with fully flooded and starved conditions,
have been carried out to achieve a correct estimate of the
thermal effect on the minimum film thickness.

50x10°

X,=0.10(fully flooded)
X,,=0.08(starved)
N X,,=0.06(starved)
X,,=0.04(starved)

40x10°

30x10° -

20x108

Maximum pressure (Pa)

10x10° 4

Rolling Velocity (m/s)

Fig. 5 Variation of maximum pressure with velocity at different
starvation levels for load 8 N, ellipticity ratio 1, slip 0.5

Fig. 5 shows the variation of maximum pressure with
velocity for different starvation levels. For a given speed the
magnitude of maximum pressure rises sharply with the
increase in level of starvation and the maximum pressure
decreases with the increase in rolling velocity. This is due to
the fact that at low rolling velocity the pumping action of the
lubricant in the contact is less as compared to the high rolling
velocity. Thus the effective domain under contact is less at
lower rolling velocity and this causes relatively more pressure
rise in the lubricant film at the low rolling velocity. However,
the integration of pressure over the domain for any velocity
results the same load carrying capacity.
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100x10°

X,=0.10(fully flooded)
=0.08(starved)
,=0.06(starved)
— o — . —. X,=0.04(starved)

80x10° o

60x10° o

40x10° o

Maximum pressure (Pa)

20x10° o

10 15 20 25 30 35

Rolling Velocity (m/s)

Fig. 6 Variation of maximum pressure with velocity at different
starvation levels for load 10 N, ellipticity ratio 1, slip 0.5

Fig. 6 shows the variation of maximum pressure with
rolling velocity at different starvation levels with the only
difference of the load being 10 N as compared to 8 N in Fig. 5.
For a given rolling speed, the magnitude of maximum pressure
rises sharply at 10 N in comparison to the values at 8 N. This
is due to the low film thickness at 10 N as compared to 8§ N.
with the increase in ellipticity ratio the maximum value of the
pressure decreases marginally due to enhancement in the EHL
contact area for the given load. With increase in slip the
magnitude of maximum pressure reduces marginally with
other operating parameters remaining the same. This happens
due to the reduction in lubricant viscosity at higher slips. With
the increase in roughness there is marginal reduction in the
maximum pressure value which can be attributed to the
thinning of lubricant due to rise in velocity gradient. The
velocity gradient rises due to reduction of film thickness in the
presence of surface roughness.

0.0005

W= 8N, X = 0.10(fully flooded)
W=8N,X;, = 0.08(starved)
,,,,,, W=8N,X;, = 0.06(starved)
0.0004 4 . . _ .. w=10 N.X;, = 0.10(fully fiooded)
— — — W=10N, X, = 0.08(starved)
e —— W =10N, X, = 0.06(starved) -
-
- —~
0.0003 4 T
£ P -
£ P -
£ ~ P >
T PRt
- gt
0.0002 Tl
~ = -~
LT =T
AT
- =
=
0.0001 =7 ="
=
0.0000 T T T T
10 15 20 25 30 35

Rolling Velocity (m/s)

Fig. 7 Variation of minimum thermal film thickness with velocity at
different starvation levels at various loads, ellipticity ratio 1, slip 0.5

Fig. 7 illustrates the influence of operating parameters on
the variation of minimum thermal film thickness along with
the change in rolling velocity and starvation levels. Minimum
thermal film thickness reduces considerably with the existence
of starvation in the EHL elliptic contacts. The trends of the
curve suggest that the effect of load on the minimum thermal

film thickness is significant at high rolling speeds. However,
the variation of minimum thermal film thickness with slip,
roughness and ellipticity ratio in EHL contacts are
comparatively small.

Using the computed results, regression analysis has been
performed to obtain the following dimensionless film
thickness formula

_ -1.2979 1.2632 —0.0249 0.3897 ¢ —0.08491,0.0271
ch,mm =0.879W U R, X., S k
where
8.66E-08 <W < 1.08E-07, 0.04 < X;, <0.10,
8.9E-11< U <2.67E-10, 0.5< S <1,
1< k<s5,ando< R, <02
322
w = 8N,u=10m/s
w = 8N,u=20m/s
,,,,,, w = 8N,u=30m/s ~
[ w =10N,u=10m/s / \
: — — —  w=10N,u=20m/s / _ \
5 —— —.—  w=10N,u=30m/s =~
2 / AN o
g 4 \ ———
g 318 // /. \ \
£ W N
8 /
g /////// \ N N
c 316 /// \
K //// /) \
= Py Y
o \
314 4 //// d N e
A
0.10 -0.‘08 -0,‘06 -0,‘04 -0702 0.‘00 0}02 0. 1)4 0.06
X

Fig. 8 Mean film temperature variation along the rolling direction

326

with ellipticity ratio 5, slip 0.5

324 -
777777 —
g | -—- N
= — — —  w=10N,u=20m/s / e
o ]
£ 8229 . w=10Nu=30mis / N T T T
3 y R ——
5 v
E. 320 o ’ / )’/
] / 7N\ \
= /
5 318 / v \
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o sy \ S
s 316 4 —=
> V4
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314 s
b
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Fig. 9 Mean film temperature variation along the rolling direction
with ellipticity ratio 5, slip 1.0
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323 with the increase in starvation level, the maximum mean film
< o fooded) temperature rise is substantial.
PRl [— ¥,=0.06(starved) Using the computed results, regression analysis has been
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Fig. 10 Variation of maximum mean film temperature with Velocities X,=0.10(fully flooded)
. . e . . . ] X,=0.08(starved)
at different starvation levels and load 8 N, ellipticity ratio 1, slip 0.5 554 X =0 06(earved)
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Rolling Velocity (m/s)

Fig. 11 Variation of maximum mean film temperature with Velocities

X,=0.10(fully flooded)

at different starvation levels and load 10 N, ellipticity ratio 1, slip 0.5 so{ T ig ol
——— X,=004(starved)
In the failure of EHL non-conformal contacts, the thermal 457 e
effect plays a detrimental role. It is well known by now that ol ////

the thermal effects on the minimum film thickness and traction
are significant in EHD lubricated contacts. An accurate
estimation of maximum mean film temperature rise in the T
contact at various operating parameters is necessary for design e

and maintenance of contacts. Figs. 8 and 9 show the maximum 25 1
mean film temperature distribution for slip 0.5 and 1.0
respectively, for loads of 8 N and 10 N and rolling velocity of 10 1 20 2 % 3
10 m/s, 20 m/s, 30m/s. The maximum mean film temperature Rolling Velocity (m/s)

at high load is more in comparison to low load at the same slip
and rolling velocity. Trends of the temperature distribution
demonstrate that for a given load, ellipticity ratio and slip
maximum mean film temperature first rises with the increase
in rolling velocity and at higher rolling velocity there is

fth x 107
\
\

Fig. 13 Variation of traction with velocity for different starvation
levels, load 10 N, ellipticity ratio 1, slip 1.0

An accurate estimate of traction coefficient due to

rolling/sliding is essential from view point of power loss
decline in maximum mean film temperature. This is due to the  calculation and to study the failure of lubrication in starved

effect of convection cooling, which is predominant at high  contacts. The traction coefficient for lubricating film under

rolling velocities. It is seen that due to increase in ellipticity ~ EHL elliptic contacts has been computed herein for the
ratio and roughness there is negligible change in maximum  provided in Table 1.

mean film temperature. Variation of maximum mean film
temperature with rolling velocity at different starvation levels
is shown in Figs. 10 and 11. These figures demonstrate that
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TABLEI
MATERIAL PROPERTIES
Elastic modulus (E;, E,), GPa 2.06
Thermal conductivity (ks), W/m-K 46
Density ( p, ), kg/m’ 7850
Specific heat (C s ), J/kg-K 470
Equivalent radius (R), m 0.02
Poisson’s ratio (V1 WV, ) 0.3
Inlet viscosity ( o ), Pa-s 0.0411
Pressure viscosity coefficient ( & ), m*/N 1.591x 10°®
Inlet density ( 0, ), kg/m’ 846
Specific heat (Cp ), J/kg-K 2000
Inlet temperature of the lubricant (T,), K 313
Thermal expansivity coefficient ( ﬁ ) 6.4x10*
Temperature viscosity coefficient (), K! 0.042
Thermal conductivity (k;), W/m-K 0.14

Major mechanism of heat generation in the contact is
viscous shear heating while the mechanism of heat removal is
conduction across the film and convection along the film.
Figs. 12 and 13 show the variation of traction coefficient for
fully flooded and starved EHL contacts operating under
various conditions. It is seen that thermal effects on traction
coefficients are significant at high rolling velocities. With the
increase in the level of starvation the traction reduces
considerably due to shearing of less quantity of lubricating oil
present in the contact due to starvation effects. Roughness and
ellipticity ratio are found to have very little effect on traction
coefficient. Load, Slip and rolling velocity have a significant
effect on the traction coefficient as can be seen from the
figures. Using the computed results, regression analysis has
been performed to obtain the following dimensionless film
thickness formula

fm — 04753W —0,5047U 0.4477 Rf 0.016 X in0.21 ]28 0.6386k—0.0069

where
8.66E-08 <W < 1.08E-07,0.04 < Xin <0.10,

8.9E-11 < U <2.67E-10, 0.5< S <1,
1< k<s5,ando< R, <02

V.CONCLUSION

An efficient and accurate analysis of EHL elliptic contact
has been achieved. The importance of this work lies in the fact
that it presents for the first time empirical relations of
minimum film thickness and maximum mean film temperature
rise for EHL elliptic contacts operating under fully flooded
and starved conditions at light loads, high rolling speeds, and
high slips. These relations are expected to be very useful in
design of EHL contacts of rolling element bearings and gears.
The analysis used is general and can also be extended to EHL
elliptic contact analysis for non-Newtonian lubricant rheology.

NOMENCLATURE
a length of semi minor axis (m) = {(3wR,)/(2 E’)}' 3
b: length of semi major axis (m) = ka
c: asperity height (m)

c1,C2:  specific heat of solids 1 and 2, respectively (J/kg-K)

Cp: specific heat of lubricant (J/kg-K)

d(0,0): deformation in z-direction at origin (m)

d(i,j): elastic deformation in z-direction at a general node (m)
E(x):  expectancy function = f_:o x f(x)dx

E1, E2: modulus of elasticity of solids 1 and 2, respectively (N/m?)

E':  equivalent modulus of elasticity = 20 /[l—vf . 1-v2 j N/m?
‘ 1 2

f(x):  probability density function

fin: traction coefficient

F: tractive force (N)

h(x):  film thickness (m)

h(x,y,z): lubricant film thickness characterized in 3-D domain (m)
he: central film thickness (m)

ho: minimum film thickness with rigid ball (m)

hn(X,y,z): normal or smooth film thickness (m)

hs(x,y, f ): film thickness component due to roughness (m)

Hmin.th:  dimensionless thermal minimum film thickness (m)

k: ellipticity ratio

k: thermal conductivity of lubricant (W/m-K)

ki, ka: thermal conductivities of solids 1 and 2, (W/m-K)

I: length of half computational domain in y direction (m)
m: length of inlet zone (m)

mi, m2:  lengths related to pressure element (m)

n: length of outlet zone (m)

Ny, N2: lengths related to pressure element (m)

7 viscosity of lubricant (Pa-s)

" viscosity of lubricant at To (Pa-s)

p: pressure (N/m?)

Ph: Hertzian pressure (N/m?)

Rx Ry: equivalent radii of solids in x-z and y-z planes, (m)

Ry: roughness factor (expressed as percentage of Hmin. iso
S: slide to roll ratio, (u, - u,)/u,

At. dimensionless maximum mean film temperature rise,
(Tm ’Tn)/ To

T: temperature (K)

T(x,y,z) : temperature in the film domain at a general location (K)
Ty, Ta: temperatures of the bounding surfaces 1 and 2, (K)

Tt mean film temperature (K)

To: inlet temperature (K)

u: velocity in x direction (m/s)

Us, U2: rolling velocities of solids 1 and 2, respectively (m/s)
Ur: rolling velocity, (U, +u,)/2 (m/s)

U: dimensionless rolling velocity, (u, x7,)/(E'xR,)
W: load (N)

W: dimensionless load, , /(E'xR?)

X,Y,Z: coordinates in three directions (m)

7' Reoland’s viscosity exponent

X: dimensionless coordinate in x-direction

Y: dimensionless coordinate in y-direction

Xin: dimensionless length for inlet zone

x',y': local coordinates (m)

B thermal expansivity coefficient (K')
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temperature viscosity coefficient (K™!)
density of lubricant at To (kg/m?)

standard deviation of the surface asperity height
dummy variable

shear stresses at surfaces 1 and 2, respectively (N/m?)

random variable
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