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 
Abstract—In this paper, a theoretical investigation on the dynamic 

characteristics of one degree of freedom vibration system equipped 
with inerter of variable inertance, is presented. Differential equation of 
movement was solved under proper initial conditions in the case of 
free undamped/damped vibration, considered in the absence/presence 
of the inerter in the mechanical system. Influence of inertance on the 
amplitude of vibration, phase angle, natural frequency, damping ratio, 
and logarithmic decrement was clarified. It was mainly found that the 
inerter decreases the natural frequency of the undamped system and 
also of the damped system if the damping ratio is below 0.707. On the 
other hand, the inerter increases the natural frequency of the damped 
system if the damping ratio exceeds 0.707. Results obtained in this 
work are useful for the adequate design of inerters. 

 
Keywords—One degree of freedom vibration system, inerter, 

parallel connection, variable inertance, frequency control, damping. 

I. INTRODUCTION 

ONCEPT of inertance and its corresponding machine 
element, called inerter, was introduced by Smith in 2002, 

during his quest to complete the analogy between the 
mechanical and electrical networks [1]. Thus, in one possible 
analogy, one associates to the force, velocity, spring, dashpot, 
kinetic energy, and potential energy of the mechanical network, 
the current, voltage, inductor, resistor, electrical energy, and the 
magnetic energy of the electrical network. In such conditions, 
the inerter appears as corresponding to the capacitor [1]. 

Initially, inerter was introduced by McLaren in Formula 1 
racing car suspension system, since it has the ability to generate 
an apparent mass (inertance) which can be considerably larger 
than its real mass [2]. Such feature can be materialized through 
various mechanisms such as: racks associated to spur gears [1], 
[3], ball-screw rods associated to flying-wheel ball-nuts [4], 
inertial hydraulic devices associated to helical tubes [2], etc. 

Classical inerter is a passive element of constant inertance, 
which is used to provide inertial coupling, and hence, to modify 
the dynamic performances of the mechanical system [5]. Thus, 
the inerter is able to change natural frequencies of the vibration 
systems [5], [6], to provide nonlinear and/or apparent negative 
stiffness effects [7], etc. Designs with the inerter incorporated 
inside hydro-pneumatic dampers, or assisted by actuators in 
order to provide the control of the dynamic characteristics of 
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the mechanical system [8], can also be found in the literature. 
Inerter covers quite a large domain of applications, starting 

from car suspension systems [3], [9], and extending to railway 
suspension systems [10], [11], building suspension systems 
[12]-[15], cable vibration suppression devices [16], etc. 

Although extensive literature was dedicated to clarifying the 
change of dynamical behavior due to introduction of inertance 
inside the mechanical systems, still the fundamental effects of 
the inerter addition on response to shock and vibration await 
further clarification. In this work, the dynamic features of one 
degree of freedom (1DOF) vibration system, equipped with 
inerter of adjustable inertance, are theoretically investigated. 
Adjustment range of the natural frequency is clarified, and the 
influence of inertance on the control sensitivity is discussed. 

II. MODEL OF 1DOF VIBRATION SYSTEM EQUIPPED WITH 

INERTER OF VARIABLE INERTANCE 

A. Case of Free Undamped Vibration 

Fig. 1 shows the schematic view of the investigated 1DOF 
system, in the case of free undamped vibration. Concretely, the 
mass element m is suspended by an elastic element (spring of 
constant k), linked in parallel with an inerter of apparent mass, 
or so-called inertance b. Coordinate x is measured from the 
static equilibrium position of the mass element. 
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Fig. 1 Schematic view of the undamped 1DOF vibration system, in 
which the mass element is suspended by an elastic element connected 

in parallel with an inerter 
 

A certain amount of potential energy and/or kinetic energy is 
supposed to be initially introduced into the system, which is 
then, set to free. In such circumstances, the so-called free 
undamped vibration is initiated. 

For the system from Fig. 1, in the absence of the inerter, the 
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differential equation of movement can be written as [17]-[19]: 
 

00 2
0,  xxkxxm n  (1) 

 
where the natural circular frequency without inerter is given by: 

 

mkn /0,   (2) 

 
In the presence of the inerter, the differential equation of 

movement can be rewritten as: 
 

00)( 2  xxkxxbm n  (3) 
 

where the natural circular frequency with inerter is given by: 
 

0/;1/)/( 0,  mbbmk nn   (4) 

 
Dimensionless inertance   defined by (4) is regarded in this 

work as a variable parameter, which can be adjusted, as desired. 
From this standpoint, a dimensionless natural circular 
frequency can be defined as: 

 

0,
0,

1
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nn
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From (5), one concludes that indeed the inerter is able to 

change ([5], [6]), and more precisely, to reduce the natural 
frequency of the undamped vibration system. 

Next, by integrating the differential equation (1) under the 
following initial conditions: 

 

00 )0(;)0( vtxxtx    (6) 
 

the variation of elongation x versus time t, in the absence of the 
inerter, can be written as: 

 
)cos()( 00,0  tXtx n  (7) 

 

where 0X  is the amplitude: 
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and 0  is the phase angle: 
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In derivation of (8)-(9), an initial equivalent circular 

frequency 0  was used, which can be defined as: 
 

);0[/ 000  xv  (10) 
 

Thus, 0  becomes zero for nil initial velocity (v0 = 0), and 

tends to infinity for nil initial elongation (x0 = 0). Further, in 
derivation of (8)-(9), it appeared as convenient to define a 
dimensionless initial equivalent circular frequency, as: 
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Similarly, by integrating the differential equation (3) under 

the same initial conditions (6), one obtains, in the presence of 
the inerter, the variation of elongation x versus time t as: 

 
)cos()(  tXtx n  (12) 

 
where X  is the amplitude: 
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and   is the phase angle: 
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In order to clarify the influence of inertance on the amplitude 

of vibration and the phase angle, it appears as convenient to 
define the dimensionless amplitude as: 
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and the difference of phase angles as: 
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From (15)-(16), one concludes that inertance augments the 

amplitude and phase angle of free undamped vibration. 
However, it is important to observe that although the same 
amount of potential energy 2

00, 5.0 kxE p   is initially introduced 

into the system with and without inerter, the kinetic energy 
initially supplied depends on the inertance, as follows: 

 

)1(5.0)(5.0 2
0

2
00,  mvvbmEk  (17) 

 
Consequently, the apparent augmentation of the amplitude 

can be explained by the higher kinetic energy that is initially 
introduced into the 1DOF vibration system. 

In order to quantify the effect of inertance, it is also useful to 
note the limits against 0  of the dimensionless amplitude: 
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and of the difference of phase angles: 
 

0)(lim;0)(lim 00
0 00


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 (19) 

 
Since the partial derivatives of the dimensionless amplitude 

versus 0  and   are both positive: 
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XX  (20) 

 

One concludes that X  monotonically increases against both 
the dimensionless inertance and dimensionless initial 
equivalent circular frequency. 

Since the partial derivative of the difference of phase angles 
versus   is positive: 

 

0
)( 0 





 (21) 

 

One concludes that 0  monotonically augments against 

the dimensionless inertance. On the other hand, since the partial 
derivative of 0  versus 0  becomes nil for: 

 

4,0
1

1


 opt  (22) 

 
a maximal value of the difference of phase angles is attained, 
as: 

 

4

1
max0

12

11
tan)(
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B. Case of Free Damped Vibration 

Fig. 2 shows the schematic view of the investigated 1DOF 
system, in the case of free damped vibration. Compared to Fig. 
1, a dissipative element (dashpot of damping coefficient c), 
connected in parallel to the spring and inerter is added into the 
mechanical system. 
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Fig. 2 Schematic view of the damped 1DOF vibration system, in which 
the mass element is suspended by an elastic element connected in 

parallel with a dissipative element and an inerter 
 

For the system from Fig. 2, in the absence of the inerter, the 

differential equation of motion can be written as [17]-[19]: 
 

020 2
0,0,0  xxkxxcxm nn   (24) 

 
where the damping ratio without inerter is given by: 

 

kmc /5.00   (25) 
 
In the presence of the inerter, the differential equation of 

movement can be rewritten as: 
 

020)( 2  xxkxxcxbm nn   (26) 
 

where the damping ratio with inerter is given by: 
 

00 1/)(/5.0   bmkc  (27) 

 
It is useful to define a dimensionless damping ratio as: 
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Comparing (28) and (5), one finds that dimensionless 

damping ratio equals the dimensionless natural circular 
frequency of the undamped free vibration. Accordingly, the 
inerter is also able to decrease the damping ratio of the damped 
vibration system. Reduction rate is the same as for the natural 
circular frequency of the undamped vibration system (see Fig. 
3). 

Additionally, from (28) one observes that, if the condition to 
achieve vibration is satisfied by the mechanical system without 
inerter ( 10  ), automatically it is also satisfied by the system 

with inerter ( 1 ). 

In order to fully estimate the dissipative performances of the 
mechanical system, the logarithmic decrement can be defined 
as [17]-[19]: 
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in the absence of the inerter, and as: 
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in the presence of the inerter. Again, it is useful to define a 
dimensionless logarithmic decrement, as follows: 
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From (31), one concludes that the dimensionless logarithmic 

decrement decreases at the augmentation of the inertance. 
Next, by integrating (24) under the initial conditions (6), the 
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variation of elongation x versus time t, in the absence of the 
inerter, can be written as: 

 
)cos()( 00,0  tXtx d  (32) 

 

where 0,d  is the damped circular frequency: 
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2
00,0, 1 nnd    (33) 

 

and 0  is the phase angle: 
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Similarly, by integrating (26) under the initial conditions (6), 

the variation of elongation x versus time t, in the presence of the 
inerter, can be written as: 

 
)cos()(  tXtx d  (35) 

 

where d  is the damped circular frequency: 
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and   is the phase angle: 
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Based on (33) and (36), a dimensionless damped circular 

frequency can be defined as: 
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In the absence of the dashpot ( 00  ), as expected, (38) 

reduces to nd   (see (5) and Fig. 10). Analysis of (38) 

leads to the observation that 0/  d  for 2/10 0   , 

i.e., dimensionless damped circular frequency monotonically 
decreases against   for this interval of the damping ratio (see 
Fig. 10). On the other hand, dimensionless damped circular 
frequency displays a mountain shape graph versus the 

dimensionless inertance for 12/1 0    (Fig. 10). Since the 

partial derivative of d  versus   becomes nil for: 
 

012 2
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one finds that the maximal value of the dimensionless damped 
circular frequency can be calculated as follows: 
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Returning to the phase angle, from (34), one observes that: 
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Similarly, from (37), one obtains that: 
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In order to clarify the influence of inertance on the phase 

angle, it appears as convenient to define the difference of phase 
angles as: 
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where the functions f and g can be explicitly given as: 
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Note that in the absence of the dashpot ( 00  ), as expected, 

(43)-(44) reduce to (16). In order to quantify the effect of 
inertance, it is also useful to note the limits against 0  of the 

difference of phase angle, as: 
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and 
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Note that the results (45)-(46) are consistent with (41)-(42). 
Concerning the amplitudes of vibration 0X  and X  from 

(32) and (35), in the absence of the inerter the amplitude can be 
written as: 
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which reduces to (8), derived in the absence of the dashpot 
( 00  ). On the other hand, in the presence of the inerter the 

amplitude of vibration can be written as: 
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which reduces to (13), derived in the absence of the dashpot 
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( 00  ). 

From (47)-(48), one finds, as expected, that both amplitudes 

0X  and X  are decreasing against the time t, but the rate of 

attenuation is higher in the absence of the inerter. This result 
can also be inferred by defining the dimensionless amplitude, 
as: 
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where the functions F and G can be explicitly given as: 
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Thus, X  appears to be larger than 0X due to the positive 

exponent 0)1/(0,0   n  that multiplies the time t under 

the exponential function of (49). 

III. RESULTS AND DISCUSSIONS 

A. Case of Free Undamped Vibration 

Fig. 3 illustrates the variation of the dimensionless natural 
circular frequency versus the dimensionless inertance. As 
already discussed in relation with (5), the inerter decreases the 
natural frequency of the free undamped vibration system. This 
result agrees with the previously reported findings by [5], [6]. 
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Fig. 3 Variation of the dimensionless natural circular frequency versus 
the dimensionless inertance 

 
Fig. 4 presents the variation of the dimensionless amplitude 

versus the dimensionless inertance, for various values of the 
dimensionless initial equivalent circular frequency 0 0, 1, 2, 

3, 10, and infinity. As found in relation with (15), (18) and (20), 
the dimensionless amplitude increases versus the 
dimensionless inertance and also versus the dimensionless 
initial equivalent circular frequency. Rate of increase is higher 
for lower values of 0  (see the rate of increase from 0 to 1), 

and lower for larger values of 0  (see the rate of increase from 

10 to infinity). 
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Fig. 4 Variation of the dimensionless amplitude versus the 
dimensionless inertance, for various values of the dimensionless initial 

equivalent circular frequency 
 

Fig. 5 shows the variation of the difference of phase angle 
versus the dimensionless inertance, for various values of the 
dimensionless initial equivalent circular frequency 0 0, 1, 2, 

3, 10, and infinity. As mentioned in relation with (16), (19), and 
(21), regardless the value of 0 , the phase difference 0  

monotonically increases against the dimensionless inertance. 
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Fig. 5 Variation of the difference of phase angle versus the 
dimensionless inertance, for various values of the dimensionless initial 

equivalent circular frequency 
 

Fig. 6 illustrates the variation of the difference of phase angle 
versus the dimensionless initial equivalent circular frequency, 
for various values of the dimensionless inertance  0.5, 1, 2, 
3, and 10. Difference of phase angle displays a mountain shape 
graph versus the dimensionless initial equivalent circular 
frequency. Height of the mountain peak increases versus the 
dimensionless inertance (see (23) and Figs. 6, 8). Position of the 
mountain peak is given by the optimal value of the initial 
equivalent circular frequency (see (22) and Figs. 6, 7). Location 
of the mountain peak tends to shift toward lower equivalent 
circular frequencies at augmentation of the dimensionless 
inertance (Figs. 6, 7). 
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Fig. 6 Variation of the difference of phase angle versus the 
dimensionless initial equivalent circular frequency, for various values 

of the dimensionless inertance 
 

Fig. 7 shows the monotonical reduction of the optimal value 
of the dimensionless initial equivalent circular frequency 
against the dimensionless inertance. Fig. 8 shows the variation 
(monotonical augmentation) of the maximal value of the 
difference of phase angle versus the dimensionless inertance. 
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Fig. 7 Variation of the optimal value of the dimensionless initial 
equivalent circular frequency versus the dimensionless inertance 
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Fig. 8 Variation of the maximal value of the difference of phase angle 
versus the dimensionless inertance 

B. Case of Free Damped Vibration 

Fig. 9 shows the variation of the dimensionless logarithmic 
decrement versus the dimensionless inertance, for various 
values of the damping ratio 0 0, 0.35, 0.5, 0.707, 0.8, 0.9, 

and 0.99. As noticed in connection with (31), the dimensionless 

logarithmic decrement decreases at the augmentation of the 
dimensionless inertance. Rate of reduction is higher for larger 
values of the damping ratio. 
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Fig. 9 Variation of the dimensionless logarithmic decrement versus the 
dimensionless inertance, for various values of the damping ratio 

 
Fig. 10 presents the variation of the dimensionless damped 

circular frequency versus the dimensionless inertance, for 
various values of the damping ratio 0 0, 0.55, 0.707, 0.8, 0.9, 

0.95, 0.98, and 0.99. As discussed in connection with (38), for 

2/10 0   , the dimensionless damped circular frequency 

monotonically decreases against the dimensionless inertance. 

On the other hand, for 12/1 0   , a mountain shape graph 

is obtained versus the dimensionless inertance. Height of the 
peak increases versus 0  (see (40) and Figs. 10, 12). Position 

of the peak is given by the optimal value of the inertance (see 
(39) and Figs. 10, 11). Location of the mountain peak tends to 
shift toward higher values of the dimensionless inertance at 
augmentation of the damping ratio 0  (see Figs. 10-12). 

Fig. 11 shows the variation (monotonical augmentation) of 
the optimal dimensionless inertance versus the damping ratio. 

Fig. 12 presents the variation (monotonical augmentation) of 
the maximal value of the dimensionless damped circular 
frequency versus the damping ratio. 

Next, Fig. 13 is added in order to discuss the significance of 
the results shown by Fig. 10. 
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Fig. 10 Change of the dimensionless damped circular frequency versus 
the dimensionless inertance, for various values of the damping ratio 

 
Compared to Fig. 10, the right side of Fig. 13 presents the 

change of vibration frequency by adjusting the dimensionless 
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inertance, only for 0 0.99. For instance, by changing the 

inertance from  1 (reference vibration) to opt 0.96 

(fastest vibration), a 3.6 times augmentation of the frequency 
can be achieved. Further, by increasing the inertance from opt  

to  10 (faster vibration), the frequency can now be reduced 
to a value of twice the frequency of the reference vibration. 
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Fig. 11 Variation of the optimal dimensionless inertance versus the 
damping ratio 
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Fig. 12 Variation of the maximal value of the dimensionless damped 
circular frequency versus the damping ratio 
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Fig. 13 Control of the damped circular frequency of the mechanical 
system by employing an inerter of adjustable inertance 

 
In conclusion, Fig. 13 proves the possibility to control the 

damped circular frequency of the mechanical system by 
employing an inerter of adjustable inertance. Since the range of 
adjustment and the control sensitivity are larger for ];0[ opt  , 

this interval of variation for inertance seems to be preferable. 
Variation of the difference of the phase angle versus the 

dimensionless initial equivalent circular frequency, for various 
values of the dimensionless inertance (  0.5, 1, 2, 3, and 10), 
is shown in Fig. 14 for 0 0.25, in Fig. 15 for 0 0.5, in Fig. 

16 for 0 0.75, and in Fig. 17 for 0 1. Figs. 14-17 should 

be regarded in correlation with Fig. 6, constructed for the 
undamped vibration system, i.e., for 0 0. One observes that, 

for 0 0, the difference of phase angle is positive, regardless 

the values of the inertance (Fig. 6). On the contrary, for 0 1 

the difference of phase angle becomes negative, regardless the 
values of the inertance (Fig. 14). As expected, for intermediate 
values of the damping ratio ( 0 0.25, 0.5, and 0.75), the 

shape of the graphs gradually changes from the mountain like 
shape observed for 0 0 to monotonically increasing shape 

noticed for 0 1. From Figs. 14-17, one concludes that the 

variation pattern of 0  is relatively complex, due to the 

superposed influence of three parameters ( 00 ,,  ). However, 

it was generally observed that the inertance increases the 
absolute value of the difference of phase angle. 
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Fig. 14 Variation of the difference of phase angle versus the 
dimensionless initial equivalent circular frequency, for various values 

of the dimensionless inertance and 0 0.25 
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Fig. 15 Variation of the difference of phase angle versus the 
dimensionless initial equivalent circular frequency, for various values 

of the dimensionless inertance and 0 0.5 
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Fig. 16 Variation of the difference of phase angle versus the 
dimensionless initial equivalent circular frequency, for various values 

of the dimensionless inertance and 0 0.75 
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Fig. 17 Variation of the difference of phase angle versus the 
dimensionless initial equivalent circular frequency, for various values 

of the dimensionless inertance and 0 1 

IV. CONCLUSIONS 

From the theoretical investigation of the proposed 1DOF 
vibration system supplied with inerter of changeable inertance, 
the following conclusions can be drawn: 

A. Case of Free Undamped Vibration 

1) Inerter decreases the natural frequency of the undamped 
vibration system. 

2) Inerter increases the amplitude and phase angle of the 
system. Augmentation of amplitude is produced by the 
higher kinetic energy, which is initially supplied into the 
system. 

3) Amplitude increases versus both the dimensionless 
inertance and the dimensionless initial equivalent circular 
frequency. 

4) Phase angle increases against the dimensionless inertance. 
On the other hand, the difference of phase angle displays a 
mountain shape graph versus the dimensionless initial 
equivalent circular frequency. Height of the mountain peak 
increases versus the dimensionless inertance. Position of 
the mountain peak appears shifted toward lower equivalent 

circular frequencies at augmentation of the dimensionless 
inertance. 

B. Case of Free Damped Vibration 

5) Inerter reduces the damping ratio of the vibration system. 
Reduction rate is the same as for the natural circular 
frequency of the undamped vibration system. 

6) If the condition of achieving vibration is satisfied by the 
system without inerter, automatically it is also satisfied by 
the system with inerter. 

7) Inerter reduces the logarithmic decrement of the system. 
This reduction effect is more prominent for larger damping 
ratios of the mechanical system. 

8) One proved the possibility to control the natural damped 
frequency of the mechanical system by using an inerter of 
adjustable inertance. For damping ratios smaller than 0.707, 
inertance reduces the frequency. For damping ratios larger 
than 0.707, inertance increases the frequency in a relatively 
steep manner, up to a maximal value, which corresponds to 
the optimal inertance. Further augmentation of the 
inertance leads to the frequency reduction, in a relatively 
slow manner. Range of adjustment and the control 
sensitivity are larger for values of the inertance below the 
optimal inertance. 

9) Inerter increases the amplitude of damped vibration system, 
too. Again, this effect is generated by the larger kinetic 
energy initially furnished to the mechanical system. 

10) Inertance increases the absolute value of the difference of 
phase angle. 
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