
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1991


Abstract—Class cohesion is a key object-oriented software

quality attribute that is used to evaluate the degree of relatedness of
class attributes and methods. Researchers have proposed several class
cohesion measures. However, the effect of considering the special
methods (i.e., constructors, destructors, and access and delegation
methods) in cohesion calculation is not thoroughly theoretically
studied for most of them. In this paper, we address this issue for three
popular connectivity-based class cohesion measures. For each of the
considered measures we theoretically study the impact of including
or excluding special methods on the values that are obtained by
applying the measure. This study is based on analyzing the
definitions and formulas that are proposed for the measures. The
results show that including/excluding special methods has a
considerable effect on the obtained cohesion values and that this
effect varies from one measure to another. For each of the three
connectivity-based measures, the proposed theoretical study
recommended excluding the special methods in cohesion
measurement.

Keywords—Object-oriented class, software quality, class
cohesion measure, class cohesion, special methods.

I. INTRODUCTION

EVELOPING the techniques and the tools needed to
develop high-quality applications that are more stable

and maintainable is a key goal of software engineering.
Developers and managers use several measures to quantify
and improve the quality of an application during the
development process. These measures estimate the quality of
different software attributes, such as cohesion, coupling, and
complexity.

The cohesion of a module refers to the relatedness of the
module components. A module that has high cohesion
performs one basic function and cannot be split into separate
modules easily. Highly cohesive modules are more
understandable, modifiable, and maintainable [1], [2].

Since the last decade, object-oriented programming
languages, such as C++ and Java, have become widely used in
both the software industry and research fields. In an object-
oriented paradigm, classes are the basic modules. The
members of a class are its attributes and methods. Therefore,
class cohesion refers to the relatedness of the class members.

Researchers have introduced several measures to indicate

Jehad Al Dallal is with the Department of Information Sciences, Kuwait

University, P.O. Box 5969, Safat 13060, Kuwait (e-mail:
j.aldallal@ku.edu.kw).

class cohesion during high or low level design phases. These
measures follow different approached to estimate the cohesion
of a class. For example, some of the measures are based on
counting the number of pairs of methods that share common
attributes [3], [4]. Some others are more precise and they are
based on measuring the similarity between each pair of
methods in terms of the ratio of the shared common attributes
[2], [5], [6]. Other measures consider the connectivity pattern
of a graph that represents the cohesive relations between
methods and attributes in a class. In this case, the cohesion is
measured as the connectivity degree of the graph. In this
paper, we consider three class cohesion measures: CBMC [7],
PCCC [8], and OLn [9]. These measures as well as some other
measures have been empirically studied [10]-[20].

Classes include special types of methods, such as
constructors, destructors, and access and delegation methods.
Constructors are used to initialize most or all of the attributes
in the class and destructors are used to deinitialize most or all
of the attributes. Access methods are classified as either
setters or getters. A setter method initializes a single attribute
and a getter method returns the reference/value of a single
attribute. Finally, a delegation method is used to inquire about
the status of a single attribute. Each of these special methods
has its own characteristics, which can artificially affect the
class cohesion value. Incorrectly determining whether to
include or exclude the special methods in cohesion
measurement can lead to improper re-designing decisions and
actions based on the misleading class cohesion values that are
obtained. However, the original definitions for the considered
measures do not differentiate between the different types of
methods, which makes these measures ill-defined. The impact
of including/excluding special methods in cohesion measures
on the obtained values and refactoring and fault prediction
activities is empirically studied by Al Dallal [16]. However,
this impact is not thoroughly theoretically studied yet.

In this paper, we analyze the definitions and formulas of the
considered cohesion measures to study the impact of
including/excluding each type of special methods on the
values that can be obtained by the measures. Based on the
analysis, a recommendation is provided for each measure for
whether to include or exclude special methods in cohesion
measurement.

This paper is organized as follows. Section II provides an
overview of the class cohesion measures proposed in
literature. Section II reports the theoretical analysis and

Theoretical Exploration for the Impact of Accounting
for Special Methods in Connectivity-Based Cohesion

Measurement
Jehad Al Dallal

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1992

results. Finally, Section IV concludes the paper and discusses
future work.

II. RELATED WORK

Several class cohesion measures have been proposed in the
literature. These measures can be applicable based on high-
level design (HLD) [11], [13], [21]-[23] or low-level design
(LLD) information [1], [3]-[6]. HLD class cohesion measures
rely on information related to class and method interfaces. The
more numerous LLD class cohesion measures require an
analysis of the algorithms used in the class methods (or the
code itself if available) or access to highly precise method
postconditions. Class cohesion measures are based on the use
or sharing of class attributes. For example, Bieman and Kang
[3] describe two class cohesion measures, Tight Class
Cohesion (TCC) and Loose Class Cohesion (LCC), to
measure the relative number of directly connected pairs of
methods and the relative number of directly or indirectly
connected pairs of methods, respectively. TCC considers two
methods to be connected if they share the use of at least one
attribute. A method uses an attribute if the attribute appears in
the method’s body or the method invokes another method,
directly or indirectly, that has the attribute in its body. LCC
considers two methods to be connected if they share the use of
at least one attribute directly or transitively. Badri [4]
introduces two class cohesion measures, Degree of Cohesion-
Direct (DCD) and Degree of Cohesion-Indirect (DCI), that are
similar to TCC and LCC, respectively, but differ by
considering two methods connected also when both of them
directly or transitively invoke the same method. Fernández
and Peña [5] and Al Dallal and Briand [1] proposed class
cohesion measures that account for the similarity between
each pair of methods in terms of the number of attributes
shared between the methods.

Several class cohesion measures considered the
connectivity patterns for the graph that represent the
relationship between the methods and attributes in a class. In
this paper, we consider the three measures defined in Table I.
Related work in the area of software cohesion can be found in
[5], [21], [24], [25].

III. THEORETICAL ANALYSIS
Here, we theoretically study the effect of including or

excluding special methods on the values that are obtained by
applying each of the three considered measures. This study is
based on analyzing the definitions and formulas that are
proposed for the measures. In addition, this study is based on
the following typical observations:
1. Potentially, constructors and destructors can reference

most if not all of the attributes of the class. As a result,
there is a higher chance that each one of the constructors
and destructors references more distinct attributes than
any other method in the class.

2. Each one of the access or delegation methods references a
single attribute. Peer access and delegation methods are
the setter, getter, and delegation methods that reference

the same attribute. Non-peer access and delegation
methods reference different attributes.

TABLE I

DEFINITIONS OF THE THREE CONNECTIVITY-BASED CLASS COHESION

MEASURES

Measure Definition

Cohesion
Based on
Member

Connectivity
(CBMC) [7]

CBMC(G)=Fc(G)×Fs(G), where Fc(G)=|M(G)|/|N(G)|,
M(G)=the number of glue methods in graph G, N(G)=the

number of non-special methods in graph G,

,/)]([)(
1




n

i

i
s nGCBMCGF n=the number of child nodes

of G, and glue methods is the minimum set of methods for
which their removal causes the class-representative graph to

become disjointed.

Path
Connectivity

Class
Cohesion

(PCCC) [8]













otherwise.

)(

)(
0, and 0 if 1

1, and 0 if 0

)(

c

c

FGNSP

GNSP
kl

kl

CPCCC

,

where NSP is the number of simple paths in graph Gc, FGc is
the corresponding fully connected graph, and a simple path is

a path in which each node occurs once at most.

OLn [9]

OLn= The average strength of the attributes, wherein the
strength of an attribute is the average strength of the methods

that reference that attribute. The strength of a method is
initially set to 1 and is computed, in each iteration, as the

average strength of the attributes that it references, where n is
the number of iterations that are used to compute OL.

3. A non-special method can reference any number of

distinct attributes; however, typically, it references a
lower number of distinct attributes in comparison to
constructors and destructors. A non-special method may
not reference any attributes, although, theoretically, this is
an unusual case.

4. Constructors and destructors as well as access and
delegation methods have almost the same characteristics
in terms of the number of referenced attributes. That is,
each constructor or destructor potentially references most
or all attributes, whereas each access or delegation
method references a single attribute. Therefore, for the
rest of this section, the discussion regarding the impact of
including the constructors is applicable to destructors as
well. Similarly, the discussion regarding the access
methods also applies to delegation methods.

For each of the considered measures, the cases in which the
inclusion of constructors and access methods causes the
measure value to increase or decrease are identified and
analyzed. Based on this analysis, a recommendation to include
or exclude the special methods is given. Analytically, special
methods have no influence on the cohesion of the class.
Therefore, if the inclusion of the special methods usually
causes the measure value to increase or decrease, the
recommendation will be to exclude them from the cohesion
measurement. On the other hand, the recommendation will be
to include the special methods if this inclusion slightly
changes or does not usually change the obtained measure
value and if the inclusion does not increase the cohesion
computational complexity.

A. CBMC

The CBMC value is proportional to the minimum number

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1993

of glue methods (i.e., the minimum number of methods for
which removal causes the class-representative graph to
become disjointed) and is inversely proportional to the
number of considered methods. When the constructor is
considered, it will be the best candidate method to be included
in the minimum set of glue methods because, typically, the
constructor references all attributes. In this case, if the graph,
without including the constructor, is connected and then the
constructor is included, the minimum set of glue methods will
include the constructor and the glue methods of the original
graph. Unless the original graph is fully connected, the
minimum number of glue methods of the original graph will
be fewer than the number of methods that are represented in
the graph. Therefore, the CBMC value increases when a
method is added, and that method increases the number of
glue methods by one, which is the case when a constructor
that references all attributes is added. It is important to note
that when one or more of the methods do not reference
attributes, and, thus, the class-representative graph is
disjointed and the CBMC value of the class is zero, the
inclusion of the constructor does not change the CBMC value
even if the constructor references all of the attributes.

The inclusion of nodes that represent access methods to a
connected class-representative graph does not change the
minimum set of glue methods. This is because, in this case,
the attribute that is referenced by the access method is also
referenced by some other methods. Therefore, the removal of
the access method does not make the connected graph
disjointed. However, the inclusion of access methods
increases the number of considered methods and, thus,
decreases the CBMC value. As a result, the recommendation
is to exclude both constructors and access methods from the
CBMC cohesion measurement.

B. PCCC

PCCC is based on counting the number of simple paths
from each node to each other node in the class-representative
graph. The number of simple paths that are initiated from a
node that represents a method greatly depends on the number
of attributes that are referenced by that method. Therefore, the
inclusion of the constructor increases the average number of
simple paths and consequently increases the PCCC value
because the constructor references most or all of the attributes
in the class. Oppositely, the inclusion of access methods
decreases the average number of simple paths and,
consequently, decreases the PCCC value because each access
method references a single attribute. As a result, the
recommendation is to exclude both constructors and access
methods from the PCCC measurement.

C. OLn

The OLn value depends on the average strength of the class
attributes. The strength of an attribute depends on the total
strengths of the methods that reference this attribute.
Recursively, the strength of each method depends on the total
strengths of the attributes that are referenced by the method.

Consequently, the constructor potentially has the highest
strength because it references all or most of the attributes, and,
therefore, when the constructor is considered, the attributes
that are connected to the constructor have an average strength
that is higher than that when the constructor is excluded. In
other words, including the constructor potentially increases
the OLn value.

An access method is connected to one attribute, and,
therefore, it has a relatively low strength, which consequently
lowers the strength of the accessed attribute. On average,
when the access methods are considered, the attributes that are
referenced by access methods are expected to have lower
strengths than those when the access methods are excluded.
Therefore, the inclusion of access methods potentially
decreases the OLn value. Similar to CBMC, the OLn value for
a class with a disjointed representative graph is zero.
Therefore, OLn has effects that are similar to those that are
specified for CBMC when the nodes that represent the
constructors or access methods are added to an already
disjointed graph. As a result, the recommendation is to
exclude both constructors and access methods from the OLn
measurement.

IV. CONCLUSIONS AND FUTURE WORK
This paper provides a theoretical analysis for the impact of

including several types of special methods in cohesion
measurement performed using three different widely applied
connectivity-based cohesion measures. The definitions and
formulas of the measures are analyzed to figure out the impact
of including special methods on the values obtained using the
considered measures. The analysis showed that the effect of
including special methods varies among the types of the
special methods considered and among the measures
themselves. Finally, the analysis showed that the values
obtained using the considered measures are expected to be
artificially affected by the inclusion of the special methods.
This indicates the importance of considering this issue
whenever a measure is introduced.

In the future, we plan to extend the analysis to include more
existing measures and to study the impact of accounting for
special methods in cohesion measurement on practical issues
of interest for software practitioners such as reusability,
maintainability, and testability.

ACKNOWLEDGMENT

The author would like to acknowledge the support of this
work by Kuwait University Research Grant WI01/12.

REFERENCES
[1] Al Dallal, J. and Briand, L., A Precise method-method interaction-based

cohesion metric for object-oriented classes, ACM Transactions on
Software Engineering and Methodology (TOSEM), 2012, Vol. 21, No.
2, pp. 8:1-8:34.

[2] Al Dallal, J. Object-oriented class maintainability prediction using
internal quality attributes, Information and Software Technology, 2013,
Vol. 55, No. 11, pp. 2028-2048.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1994

[3] Bieman, J. and Kang, B., Cohesion and reuse in an object-oriented
system, Proceedings of the 1995 Symposium on Software reusability,
Seattle, Washington, United States, 1995, pp. 259-262.

[4] Badri, L. and Badri, M., A Proposal of a new class cohesion criterion: an
empirical study, Journal of Object Technology, 3(4), 2004, pp. 145-159.

[5] Fernández, L., and Peña, R., A sensitive metric of class cohesion,
International Journal of Information Theories and Applications, 13(1),
2006, pp. 82-91.

[6] Bonja, C. and Kidanmariam, E., Metrics for class cohesion and
similarity between methods, Proceedings of the 44th Annual ACM
Southeast Regional Conference, Melbourne, Florida, 2006, pp. 91-95.

[7] HChae, H.S., Kwon, Y. R., and Bae, D. A cohesion measure for object-
oriented classes, Software—Practice & Experience, 30(12), 2000,
pp.1405-1431.

[8] Al Dallal, J., Fault prediction and the discriminative powers of
connectivity-based object-oriented class cohesion metrics, Information
and Software Technology, 2012, Vol. 54, No. 4, pp. 396-416.

[9] Yang, X., Research on Class Cohesion Measures, M.S. Thesis,
Department of Computer Science and Engineering, Southeast
University, 2002.

[10] Al Dallal, J., A design-based cohesion metric for object-oriented classes,
International Journal of Computer Science and Engineering, 2007, Vol.
1, No. 3, pp. 195-200.

[11] Al Dallal, J. and Briand, L., An object-oriented high-level design-based
class cohesion metric, Information and Software Technology, 2010, Vol.
52, No. 12, pp. 1346-1361.

[12] Al Dallal, J., Improving object-oriented lack-of-cohesion metric by
excluding special methods, proceedings of the 10th WSEAS
International Conference on Software Engineering, Parallel and
Distributed Systems (SEPADS 2011), Cambridge, UK, February 2011.

[13] Counsell, S., Swift, S., and Crampton, J., The interpretation and utility of
three cohesion metrics for object-oriented design, ACM Transactions on
Software Engineering and Methodology (TOSEM), Vol. 15, No. 2,
2006, pp.123-149.

[14] Briand, L. C., Wüst, J., and Lounis, H., Replicated Case Studies for
Investigating Quality Factors in Object-Oriented Designs, Empirical
Software Engineering, 6(1), 2001, pp. 11-58.

[15] Marcus, M., Poshyvanyk, D., and Ferenc, R., Using the conceptual
cohesion of classes for fault prediction in object-oriented systems, IEEE
Transactions on Software Engineering, 34(2), 2008, pp. 287-300.

[16] Al Dallal, J., The impact of inheritance on the internal quality attributes
of java classes, Kuwait Journal of Science, 2012, Vol. 39, No. 2A, pp.
131-154.

[17] Al Dallal, J., Incorporating transitive relations in low-level design-based
class cohesion measurement, Software: Practice and Experience, 2013,
Vol. 43. No. 6, pp. 685-704.

[18] Al Dallal, J., Constructing models for predicting extract subclass
refactoring opportunities using object-oriented quality metrics,
Information and Software Technology, 2012, Vol. 54, No. 10, pp. 1125-
1141.

[19] Al Dallal, J. and Morasca, S., Predicting object-oriented class reusability
using internal quality attributes, Empirical Software Engineering, Vol.
19, No. 4, 2014, pp. 775-821.

[20] Al Dallal, J., The impact of accounting for special methods in the
measurement of object-oriented class cohesion on refactoring and fault
prediction activities, Journal of Systems and Software, 2012, Vol. 85,
No. 5, pp. 1042-1057.

[21] Al Dallal, J., Measuring the discriminative power of object-oriented
class cohesion metrics, IEEE Transactions on Software Engineering,
2011, Vol. 37, No. 6, pp. 788-804.

[22] Al Dallal, J., Improving the applicability of object-oriented class
cohesion metrics, Information and Software Technology, 2011, Vol. 53,
No. 9, pp. 914-928.

[23] Al Dallal, J., Transitive-based object-oriented lack-of-cohesion metric,
Procedia Computer Science (Elsevier), Volume 3, 2011, pp. 1581-1587.

[24] Al Dallal, J., Software similarity-based functional cohesion metric, IET
Software, 2009, Vol. 3, No. 1, pp. 46-57.

[25] Al Dallal, J., The effects of incorporating special methods into cohesion
measurement on class instantiation reuse-proneness prediction, IET
Software, in press, 2014.

