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Abstract— In 1990 [1] the subband-DFT (SB-DFT) technique 

was proposed. This technique used the Hadamard filters in the 

decomposition step to split the input sequence into low- and high-

pass sequences. In the next step, either two DFTs are needed on both 

bands to compute the full-band DFT or one DFT on one of the two 

bands to compute an approximate DFT. A combination network with 

correction factors was to be applied after the DFTs. Another 

approach was proposed in 1997 [2] for using a special discrete 

wavelet transform (DWT) to compute the discrete Fourier transform 

(DFT). In the first step of the algorithm, the input sequence is 

decomposed in a similar manner to the SB-DFT into two sequences 

using wavelet decomposition with Haar filters. The second step is to 

perform DFTs on both bands to obtain the full-band DFT or to obtain 

a fast approximate DFT by implementing pruning at both input and 

output sides.  

In this paper, the wavelet-based DFT (W-DFT) with Haar filters is 

interpreted as SB-DFT with Hadamard filters. The only difference is 

in a constant factor in the combination network. This result is very 

important to complete the analysis of the W-DFT, since all the results 

concerning the accuracy and approximation errors in the SB-DFT are 

applicable. An application example in spectral analysis is given for 

both SB-DFT and W-DFT (with different filters). The adaptive 

capability of the SB-DFT is included in the W-DFT algorithm to 

select the band of most energy as the band to be computed. Finally, 

the W-DFT is extended to the two-dimensional case. An application 

in image transformation is given using two different types of wavelet 

filters. 

Keywords: Image Transform, Spectral Analysis, Sub-Band DFT, 

Wavelet DFT.  

I. INTRODUCTION 

In many applications, the computational speed of the 

transformation of a finite-length sequence is very important. 

In such cases one may be able to pay some accuracy in order 

to save execution time. In [1], a method called SB-DFT is 

introduced, which can be used to obtain a fast approximation 
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of the transform coefficients of a finite-length sequence 

(partial-band transform) with a relatively small error. Beyond, 

in all cases the computation can be completed to yield the 

exact transform (full-band transform), if required.  

The fundamental principle that the FFT is based upon is 

that of decomposing the computation of the discrete Fourier 

transform of a sequence of length N into successively smaller 

discrete Fourier transforms of the even and odd parts [3]. The 

underlying idea of the SB-FFT is decomposition, too. But, the 

decomposition in this case has a physical meaning, since it is 

done by splitting the input signal into (low and high) 

frequency subbands and then processing them separately after 

the down-sampling.  

The W-DFT is proposed in [2]. This transform uses the 

DWT (with Haar filters) to compute the FFT. The principle of 

the DWT is a pair of filters (low-pass and high-pass) and 

down-sampling. An exact computation of the DFT can be 

obtained by finding the DFTs of both bands. An approximate 

DFT can be obtained for certain signals by implementing 

pruning at both input and output sides. Input pruning can be 

done by dropping the insignificant data. Since the twiddle 

factors (for certain wavelets) have decreasing magnitudes, 

output pruning is possible for the computations related to the 

insignificant factors. If, however, the DFT is applied only to 

one of the two bands, a faster computation can be achieved, 

but the results are less accurate. So, basically, both SB-DFT 

and W-DFT are similar by having a physical meaning of the 

decomposition. Both input pruning and output pruning 

proposed in [2] can still be applied with the SB-DFT. The SB-

DFT has been extended and investigated in detail [4]-[5]. The 

W-DFT was considered as a fast approximate FFT, but with 

no deep investigation of its speed and its accuracy. In this 

paper it is shown that both FFTs are the same under certain 

condition (when the wavelet filters are of Haar type), and so 

all the analysis of the SB-FFT can be applied to the W-DFT. 

Besides that this paper opens the possibility of using the same 

analysis of the SB-FFT with other wavelet filters to improve 

the SB-FFT by making it a better approximation but of course 

by losing some of its speed advantage.  

The paper is organized as follows: In section 2, a review of 

the SB-DFT is given. Section 3 introduces the W-DFT with a 

new interpretation. A brief investigation on the complexity 

and accuracy of the W-DFT is included in this section with an 
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application example in spectral analysis. The adaptive W-DFT 

is introduced in section 4. Extending the idea of the W-DFT to 

the two-dimensional transformation with an application in 

image transformation is included in section 5. Concluding 

remarks are given in section 6.  

Figure 1: DFT calculation using a two-band decomposition 

II. SUBBAND-DFT

The signal x(n) is decomposed in Fig.1 into two subsequences 

corresponding to the low-pass signal a(n) and the high-pass 

signal b(n) in the upper and lower-branch of the figure, 

respectively. The filters used in this step are Hadamard filters. 

After down-sampling by a factor of 2, )(ngl
and )(ngh

 are 

obtained:  
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The filter's responses can be described by the matrix:  
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The exact full-band size-N DFT X(k) can be obtained by [4], 

[5]:  
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If only the low-pass band sequence is to be followed 

(depending on a-priori information about the energy 

distribution of the signal), X(k) can be approximated as  
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k

N
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In case of following only the high-pass band sequence, X(k)

can be approximated as  

)12,...,4/(),()1()( NNkkGWkX h

k

N
 (5) 

The decomposition process in Fig.1 can be applied m times 

to obtain M = 2m subbands, out of which only one band is to 

be computed depending on the information (known a priori or 

derived from the signal) about the input-signal power 

distribution [6].  

Figure 2: Wavelet decomposition. 

III. THE W-DFT

A. Basic Idea  

The block-diagram of the wavelet decomposition is shown in 

Fig.2. The input data is first filtered by low-pass (LPF) and 

high-pass (HPF) filters and then down-sampled to produce 

both the ''approximation'' cA1 and the ''details'' cD1. If Haar 

filters are used, their impulse responses can be described by 

the matrix. 
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The full-band W-DFT can be computed as described in [2] 

by computing the DFT of both approximation and details 

bands. The approximate W-DFT is to be computed by 

applying pruning at both input and output sides. The wavelet 

decomposition stage of Fig.2 can be repeated on the 

approximation band again and again as proposed in [2]. Then 

also either the exact DFT (applying no pruning) or an 

approximate DFT (applying pruning on both sides) is 

obtainable.  

B. A New Interpretation  

Comparing the block-diagram of Fig.1 and Fig.2 and Eqs.(2) 

and (6) shows that both SB-DFT and W-DFT are equivalent 

with one difference that the division in Eq.(2) is by 2 and in 

Eq.(6) is by 2  This means that: 
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The missing part in the W-DFT, however, is the correction 

factor or the combination network corresponding to the terms 

multiplied by both transforms in Eq.(3).  

C. Accuracy  

If for example an approximate SB-DFT is computed as in 

Eq.(4) or an approximate W-DFT is computed by 

transforming the approximation band cA1 , two main types of 

approximation errors are involved in this process [5]:  
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1. Linear distortions corresponding to non-constant 

frequency responses in the band of interest (the low-

frequency band, i.e. the approximation band). This 

type of error can be easily compensated.  

2. Aliasing due to non-ideal attenuation in the zeros of 

the original DFT filters. This error affects the 

accuracy of computation and depends on the non-

zero frequency components in the high-frequency 

band or in the details band.  

Assuming small components with equal amplitudes e

outside the band of interest, the normalized aliasing error 

E(k)/e, for N = 128 and for different values of m is plotted in 

Fig.3. In all cases only the low-pass band (approximation 

band) is to be followed.  

Figure 3: Normalized aliasing error of W-DFT. 

D.  Computational Complexity  

In order to define the complexity of the approximate W-DFT 

algorithm well, let us assume that we deal with a real signal. 

The frequency transform of such a signal has a complex-

conjugate symmetry. So if we have an input data of length N,

the half-band DFT (low-pass DFT or high-pass DFT) will be 

of length N/2, but only N /4 points are to be computed. 

Repeating the wavelet decomposition more and more up to m

stages, a length N/2m sequence results and is to be computed. 

In Fig.4, the execution time versus m (number of 

decomposition stages) is shown for four different values of N.

At m = 0, a ''Cooley-Tukey''-type FFT of length N is 

considered for comparison. Execution-time saving at m = 1 

(half-band case) is 40%, and it increases to 65% at m = 2 

(quarter-band case). 

E. Application Example  

The W-DFT is applied in spectral analysis in detecting two 

adjacent sinusoids in wide-band noise, as shown in Fig.5. The 

two sinusoids are f1 = 35 Hz and f2 = 40 Hz, with unity 

amplitude. The sampling frequency is 1024 Hz and the SNR is 

3db. It is to be noted that using SB-DFT or W-DFT (db2, db4 

or db8), the two sinusoids are easily detected. The aliasing 

errors contained in the spectral are less using db8 filters 

compared to Hadamard filters or db2 or even db4 filters.  

Figure 4: Running-time comparison of W-DFT. 

Figure 5: Application example of sinusoid detection 

IV. ADAPTIVE W-DFT

If there is no information about the energy distribution of the 

input sequence, a band-selection algorithm identical to that 

used with the SB-DFT [6] can be used. This method depends 

on the energy comparison between the approximation and 

details subsequences after the down sampling in Fig.2:  
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According to the sign of B, the decision is taken: If B is 

positive, the low-frequency band is considered, and if B is 
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negative, the high-frequency band is considered. Since only 

the sign of B is important, Eq.8 can be simplified to:  
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V. TWO-DIMENSIONAL W-DFT

The same idea of computing one-out-of-two bands in a one-

dimensional W-DFT can be implemented to compute the two-

dimensional W-DFT by computing one-out-of-four bands at 

each stage. Fig.6 shows a single stage of a wavelet 

decomposition in two dimensions. Firstly the LPF and HPF 

and down sampling are applied in row direction. Then the 

LPF and HPF and down sampling are applied in column 

direction on the resulting two sequences to obtain four 

subbands. Those subbands are called the approximation cAj+1

and the horizontal details (cDj+1)
(h) and vertical details 

(cDj+1)
(v) and diagonal details (cDj+1)

(d). So if we know that the 

signal is concentrated in only the first approximation band, the 

other 3 details bands can be ignored and an approximate 2-D 

W-DFT results. This idea is applied in image transformation 

as, e.g., in Fig.7. The reconstructed image ''Woman'' is 

obtained with the IFFT of the approximation band of Fig.6. 

This case is considered as half-band case in which one out of 

four bands is transformed. Also the FFT of this band is shown. 

In the same figure, the idea is repeated for another 

decomposition stage and the quarter-band (1-out-of-16 bands) 

reconstructed image is shown with its transform also. Fig.8 

shows a similar example of that of Fig.7 by using ''db2'' 

wavelet-filters instead of the ''Haar'' filters. The reconstructed 

image with db2 filters is better than that with Haar filters. 

Figure 6: First stage 2-D wavelet decomposition 

VI. CONCLUSIONS

The W-DFT with Haar-filters is interpreted as a SB-DFT 

(with Hadamard-filters) by introducing a constant factor in the 

combination network. The more general choice of the ''band 

of interest'', as commonly applied in the SB-DFT, can also be 

transferred to the W-DFT: Not necessarily only the low-pass 

section has to be followed as proposed in [2]. The accuracy 

and complexity analysis of the SB-DFT can thus be also 

applied here. An application example of the W-DFT in 

spectral analysis is introduced. The idea of the adaptive SB-

DFT is also applicable with the W-DFT, so that the W-DFT 

has an adaptive capability to decide at each stage of 

decomposition which band is to be followed and which band 

is to be ignored. Lastly, the 2-D W-DFT is implemented with 

an example in image transformation. Two different types of 

filters are used with this example. Implementing wavelet 

decomposition with other than Haar filters can result in better 

approximations but of course on the cost of more complexity, 

since the filters now are no more additions and subtractions 

only.  

Figure 7: 2-D W-DFT (with Haar filters) and reconstructed image ''Woman''. 

Figure 8: 2-D W-DFT (with db2 filters) and reconstructed image ''Woman''. 
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