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Abstract—In this paper, the feasibility of using machine vision to 

assess task completion in a surgical intervention is investigated, with 

the aim of incorporating vision based inspection in robotic surgery 

systems. The visually rich operative field presents a good 

environment for the development of automated visual inspection 

techniques in these systems, for a more comprehensive approach 

when performing a surgical task. As a proof of concept, machine 

vision techniques were used to distinguish the two possible outcomes 

i.e. satisfactory or unsatisfactory, of three primary surgical tasks 

involved in creating a burr hole in the skull, namely incision, 

retraction, and drilling. Encouraging results were obtained for the 

three tasks under consideration, which has been demonstrated by 

experiments on cadaveric pig heads. These findings are suggestive 

for the potential use of machine vision to validate successful task 

completion in robotic surgery systems. Finally, the potential of using 

machine vision in the operating theatre, and the challenges that must 

be addressed, are identified and discussed. 

 

Keywords—Machine vision, robotic surgery, visual inspection.  

I. INTRODUCTION 

surgical task is a single action that is performed during a 

surgical procedure, which is usually made up of several 

surgical actions performed sequentially. The ability to assess 

the outcome of a surgical action is an important one, as 

subsequent surgical actions cannot usually be performed prior 

to the successful completion of the previous surgical action. 

This capability is therefore essential from both a safety and 

operational point of view in robotic surgery systems. An 

important distinction to be made in the use of different sensory 

capabilities in these systems is in terms of their purpose. 

While force, torque and positional sensors are typically used 

to perform surgical tasks, a visual sensor would be used to 

assess its completion. In principle, sensors used to validate the 

completion of a task should be independent from those used to 

perform the task being assessed, to avoid a situation where 

errors, if any, become compounded. Incorporating visual 

sensory capability therefore improves the reliability and 

robustness of robotic surgery systems, which traditionally only 

employ force, torque and positional measurements [1]. A 

visual sensor can often provide information where other 
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sensors cannot. These different sensory capabilities 

complement each other, allowing for a more comprehensive 

approach to the automation of a surgical task. 

II.  PREVIOUS WORK 

Closely related to this work is the use of computer vision 

for the diagnosis of malignant melanoma, where the subject of 

the inspection is biological specimens. Encouragingly, 

diagnostic accuracy rivaling those achieved by experts has 

been reported [2], [3], an impressive feat considering 1) the 

clinical signs of malignancy are often ambiguous [4] and 2) 

the use of low-level features only such as asymmetry, color, 

texture and size in the inspection. Other uses of vision based 

inspection related to biological specimens include the 

automatic monitoring and analysis of human embryonic stem 

cell growth, by classifying their morphologic changes based 

on features extracted from their optical images [5]. 

Automating the inspection proved a reliable means of 

obtaining more data compared to conventional methods, as 

well as allowing the continuous monitoring of these cells 

without disturbing them.  

While machine vision is routinely employed in industrial 

settings for automated inspection tasks, its use in other less 

conventional settings such as in the operating theatre has been 

less widespread. Lo et al. [6] developed a framework for the 

classification of surgical episodes using multiple visual cues 

related to shape, deformation, changes in light reflection and 

other low level image features. Specifically, their work was on 

the detection of surgical actions, such as the interaction of 

surgical instruments with soft tissue, retraction, cauterization, 

and suturing, in video sequences of minimally invasive 

laparoscopic surgeries. Padoy et al. [7] developed an approach 

to recognize a subset of surgical actions performed by the 

surgeon during laparoscopic surgery, using visual cues and 

signals recorded from surgical instruments, to monitor the 

progress of an operation. The objective was to use the 

information gathered to design a support system for an 

operating theatre e.g. activation of the operating theatre lights, 

automatic reporting, etc. The examples on the use of computer 

vision in the operating theatre are primarily concerned with 

the detection of surgical tasks. A natural progression would be 

the inspection of the outcome of these tasks. To the authors’ 

knowledge, the use of machine vision in this context has not 

been reported. 

III. METHODOLOGY 

To illustrate the concept, practical examples of the visual 

inspection of the outcome of surgical tasks to create a burr 
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hole in the skull were used. While a burr hole is a relatively 

simple procedure (when performed by a neurosurgeon), it is 

very complex to perform robotically. A subset of this 

procedure is to determine the successful completion of a given 

surgical task, to validate its completion. Towards this end, the 

use visual cues were investigated. Burr holes were created on 

cadaveric pig heads to simulate the two possible outcomes i.e. 

complete/satisfactory and incomplete/unsatisfactory, of the 

three primary surgical tasks involved in making the hole, and 

to acquire the corresponding images. Practical and ethical 

considerations preclude experimentation on humans or live 

animals. As such, animal cadavers were used as a substitute. 

In terms of the selection of an animal cadaver, 

used because of their anatomical similarity to humans. With 

the exception of primates, the anatomy of the temporoparietal 

region (site of a burr hole) of pigs most closely resembles that 

of a human [8]. As access to the pig’s brain is easier

the frontoparietal region (due to its proximity to the brain and 

structure of the pig’s skull), this region was chosen as the site 

of the burr hole, instead of the temporoparietal region. 

The surgical procedure for creating a burr hole in a pig, 

described by Kaiser and Fruhauf [9], is similar in many 

respects to that for creating a burr hole in a human and was 

adopted with some modifications. A mi

approximately 3cm long, centered over the site of the burr 

hole, was made with a #10 scalpel blade, at different depths up 

to the pericranium to simulate incomplete incisions, and a 

single incision through the layers of the scalp to simulate 

complete incisions. Incisions are said to be incomplete if all 

the layers of the scalp including the pericranium have not been 

incised, and are classified as complete if all the layers of the 

scalp including the pericranium have been incised. The 

complete incisions were subsequently retracted at varying 

degrees using a self-retaining retractor to expo

until the incision was wide enough to accommodate a burr 

hole. A burr hole 10mm in diameter was then drilled in the 

cranium using a cordless drill at high speed. Over fifty 

experiments were performed to obtain a representative sample, 

owing to the variability associated with biological subjects. 

Images of these outcomes were analyzed

appropriate visual cues and characteristic features to 

distinguish the two possible outcomes of each surgical task.

A. Experimental Setup 

A charge-coupled device (CCD) video camera, with a white 

light emitting diode (LED) ring light mounted around its 

optical lens, was used to obtain video images of the surgical 

tasks. The ring light used had an adjustable intensity and a 

four-section quadrant control, enabling each quadrant to be 

individually controlled. Both the camera focus and exposure 

settings were set to automatic. To facilitate the placement of 

retractors, the incision is usually pulled apart by applying 

tension parallel to the plane of the skin. To simulate this 

parting of the skin, two square tabs (29x29

to the skin with cyanoacrylate adhesive [10] and pulled apart 

by two 600gram weights using a pulley and weight system 

(see Fig. 1). The distance between the tabs 
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individually controlled. Both the camera focus and exposure 

settings were set to automatic. To facilitate the placement of 
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skin, two square tabs (29x29mm) were attached 

to the skin with cyanoacrylate adhesive [10] and pulled apart 

by two 600gram weights using a pulley and weight system 

(see Fig. 1). The distance between the tabs was 29mm. 

Fig. 1 Schematic of the parting of the skin

B. Characterization of an Incision

The first illustrative example is the inspection of skin 

incisions. When surgeons incise the scalp, the scalpel blade is 

pushed into the skin, through the layers of the scalp, until it 

has touched the cranium. A complete incision should be both 

sufficiently long and deep i.e. an incision up to the 

pericranium along the length of the incision. In this work, 

machine vision was used to inspect an in

depth i.e. an incision that was incised up to the cranium. The 

incisions were created such that they were of the required 

length, the only variable being the depth of incision. It is 

assumed that the position, length and orientation o

incision are satisfactory, although these properties could be 

determined as well using machine vision techniques. For 

example, assuming that the incision can be segmented from 

the image and that the scale of the image is known, the 

properties of an image region corresponding to the incision 

such as position, length and orientation can be measured. The 

position of the incision is given by the centroid or the centre of 

mass of the image region. The length of the incision is the 

Euclidean distance between the two left and right extreme 

points of the image region. Its orientation (relative to the 

camera axis) is the angle between the horizontal axis and the 

major axis of the ellipse that has the same second

the image region. Two types of incisio

incomplete, were created (see Fig. 2).

 

Fig. 2 Incomplete incision (top) and complete incision (bottom)

 

Complete incisions are incisions incised through all the 

layers of the skin up to the cranium. Incisions up to the 

pericranium were considered incomplete. These images were 

subsequently analyzed to determine if a distinction could be 

made between complete and incomplete incisions based on 

their image properties. It was observed that complete incisions 

exhibit a characteristic dark line, made as the scalpel blade 

incises the skin up to the cranium, which is not present in 

incomplete incisions. As such, the p

along the length of an incision might be used to identify a 

complete incision. To detect the presence of the dark line

corresponding to a complete incision, the line intensity 

profiles of six equally spaced, 13

across the incision were determined (see Fig. 3).
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Incomplete incision (top) and complete incision (bottom) 

Complete incisions are incisions incised through all the 

layers of the skin up to the cranium. Incisions up to the 

pericranium were considered incomplete. These images were 

to determine if a distinction could be 

and incomplete incisions based on 

their image properties. It was observed that complete incisions 

exhibit a characteristic dark line, made as the scalpel blade 

incises the skin up to the cranium, which is not present in 

incomplete incisions. As such, the presence of a dark line 

along the length of an incision might be used to identify a 

complete incision. To detect the presence of the dark line 

corresponding to a complete incision, the line intensity 

profiles of six equally spaced, 13-pixel wide line segments 

across the incision were determined (see Fig. 3).  
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Fig. 3 Line segments across an incision (drawn to scale) 

 

 This method does not require that the incision be segmented 

from the image. However, the start and end position of the 

incision is required. As the incision would be made 

robotically, it is assumed that these positions would be known. 

A pixel on the incision line (characteristic dark line indicative 

of a complete incision) corresponds to a pixel along the line 

segment where the second derivative of the line intensity 

profile is maximum and exceeds an empirically determined 

threshold of 0.015 (see Fig. 4). 

 

 

Fig. 4 Intensity profile of a line segment across an incision and its 

second derivative. The position of the pixel on the incision line along 

the line segment is denoted by an arrow 

 

Because techniques based on line intensity profiles and 

derivatives are susceptible to noise, several noise reduction 

techniques were used. First, the image was filtered with a low 

pass 3-by-3 Gaussian filter with a standard deviation of 0.5. 

The mean value of the 13-pixel wide line intensity profile of 

each line segment was used, and fitted to a cubic spline, to 

reduce the effects of any outliers by way of smoothing. The 

use of a relatively wide line segment also reduces the potential 

of erroneously detecting the edges of the incision, as the line 

intensity profile of the incision line would be closer to the 

profile of a complete incision line than that of the profile at the 

curved edges of an incision. To reduce the effects of specular 

reflection, which distorts second derivative values of the line 

intensity profile, the greyscale intensity values of pixels along 

a line segment greater than the mean of the line intensity 

profile was replaced with its mean value, based on the 

following equation: 

 

���� � �� �           ���� 	 � �
����    ���� 
 � � �         (1) 

 

where ���� is the greyscale intensity value of a pixel along the 

line segment at position � and � �  is the mean greyscale 

intensity value of all pixels along the line segment. 

Additionally, techniques such as temporal filtering could be 

used where video images are available. However, in this work, 

only still images of the incision were used. 

C. Characterization of a Retracted Incision 

An incision is considered completely retracted if it is able to 

accommodate a burr hole of a given size. While the retraction 

of an incision may be determined indirectly from the 

separation distance of the prongs of the retractors (see Fig. 5), 

a potential problem with this approach is that the retractors 

may have extended without the incision being retracted. This 

would be the case if the prongs of the retractor have not 

engaged the edges of the incision, leading to the erroneous 

assumption that the incision is sufficiently retracted. 

 

 

(a)         (b) 

Fig. 5 (a) Incomplete retraction and (b) complete retraction 

 

To assess if an incision has been sufficiently retracted, the 

maximum circular free space within the retracted incision was 

determined by fitting the largest possible circle inside a region 

bounded by the edges of the incision and the prongs of the 

retractor (see Fig. 6). If the diameter of this circle is larger 

than the diameter of the prospective burr hole (within a 

specified tolerance), the incision is considered sufficiently 

retracted. The actual diameter of the fitted circle can be found 

if the scale of the image is known. A possible solution to 

determine image scale is by using the pixel separation distance 

of the prongs on each side of the retractor as a guide. 

Assuming that the actual distance is known a-priori, the scale 

of the image and hence the actual diameter of the fitted circle 

can be found.  
 

 

Fig. 6 The largest circular free space area within the retracted incision 

 

To define a region bounded by the edges of the incision and 

retractors, these edges would first have to be detected in the 

image. As the retractors are made from surgical stainless steel 

and have a dull grey color that is distinct in the operative site, 

color-based segmentation using k-means clustering was used. 

The number of clusters to be partitioned was specified 

automatically based on the number of local maxima of a three-

dimensional color histogram, which corresponds to the 

number of regions with the most dominant color in the image. 

The edges of the retracted incision were segmented using a 

Canny edge detector. However, these edges cannot always be 

adequately detected because of the sometimes low contrast at 

Second derivative 

threshold 
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the boundaries of the incision. To improve edge detection, 

sections of the ring light were turned off to cast shadows at the 

boundaries of the incision to increase their contrast. Fig. 7 

illustrates the technique. 
 

 

Fig. 7 (From left to right) Detected edges of a retracted incision by 

alternating each quadrant of the ring light. The last figure shows the 

composite image 

 

 Once the edges of the incision and retractors were detected, 

a distance map based on the distance transform of all the 

pixels in the image to an edge map of the retractors and the 

retracted incision was determined. The pixel with the 

maximum distance within a circular region of interest is the 

centre of a circle that corresponds to the maximum free 

circular space. The radius of the fitted circle is the distance of 

this pixel to either the nearest edge pixel of the prongs of the 

retractors or the edge pixel of the retracted incision. Fig. 8 

illustrates the technique. It is important that pixels within the 

region bounded by the edges of the incision and retractors be 

removed, as the position and diameter of the fitted circle will 

be affected. These pixels were removed by selecting the first 

and last pixel when traversing the edge map horizontally and 

vertically. 

 

 

Fig. 8 (Left to right) An edge map, a distance map overlaid with the 

edge map and a circular region of interest, and the fitted circle 

D. Characterization of a Burr Hole 

The inspection of a burr hole is the most straightforward of 

the three surgical tasks under consideration. Fig. 9 shows an 

incomplete and complete burr hole. An incomplete or partial 

burr hole is where the skull has not been penetrated. A 

complete burr hole is one where the underlying dura mater i.e. 

the outermost part of the brain, is visible. The dura mater is 

primarily grayish in color and has a membrane like appearance 

and texture. Depending on whether the partial burr hole has 

been drilled to the cortical or cancellous layer of the skull, it 

would have either a smooth or a ‘spongy’ appearance, 

although both will be predominantly white. Possible features 

to distinguish the two types of burr holes would therefore 

include color and texture. 
 

  

Fig. 9 Incomplete/partial burr hole (left) and complete burr hole 

(right) 

 

For the visual inspection of a burr hole, it is first necessary 

to detect its presence in an image. Because of its circular 

shape, a Hough transform to detect circles was used for the 

detection of a burr hole. A circle is disregarded if the ratio of 

its accumulator cell count i.e. the number of detected edge 

pixels, to the circle perimeter is less than 10%. This ratio 

eliminates false positives i.e. a burr hole is sometimes 

‘detected’ when there is none. The 10% ratio was found to 

represent an acceptable compromise between false detection 

and under detection. The circle with the highest ratio of 

detected edge pixels i.e. accumulator cell count, to the number 

of pixels along the perimeter of the circle (calculated based on 

the radius of the circle), was selected. This is so that the 

algorithm was not biased towards larger circles, which may 

have a higher accumulator count over smaller circles. Fig. 10 

shows examples of the detected burr holes using this 

technique. 

 

 

Fig. 10 Detected burr holes 

 

The CIE delta-E color difference, ΔE��� between a burr 

hole and a surrounding circular area, with a radius of 1.5 times 

the radius of the hole (see Fig. 11) was subsequently computed 

to determine if color difference could be used as a basis to 

differentiate incomplete and complete burr holes:  

 

ΔE��� � ��L�� � L�� �� � �a�� � a�� �� � �b�� � b���� (2) 

 

where L�, a� and b� are the three coordinates of the CIELAB 

color space and ΔE��� is the Euclidean distance between two 

colors in CIELAB space. A ΔE��� � 2.3 corresponds to a just 

noticeable difference [11], below which the two colors are 

indistinguishable (unless placed adjacent to one another). 

Textural information to differentiate incomplete and complete 

burr holes was also considered, as incomplete and complete 

burr hole are predominantly smooth and rough (in terms of 

their grey levels representation) respectively.  
 

 

Fig. 11 Circular areas used for the determination of ΔE��� 

IV. RESULTS AND DISCUSSION 

A. Incision 

Fig. 12 shows illustrative examples of the output of the 

incision detection method, based on the detection of its line 

intensity profile, for complete and incomplete incisions. The 

crosses represent the pixels that correspond to the perceived 

incision (complete). 
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Fig. 12 Illustrative examples of the output of the complete incision 

detection method for complete and incomplete incisions 

 

Sixty-four images consisting of 27 incomplete and 37 

complete incisions were analyzed. Fig. 13 shows the number 

of lines segments where an incision line is detected, for 

complete and incomplete incisions. Incomplete and complete 

incisions can be partially differentiated based on the number 

of line segments with an incision line detected. An incision is 

classified as incomplete if three or less line segments where an 

incision line was detected were found. 

 

 

Fig. 13 The number of line segments with a complete incision line 

detected, for incomplete and complete incisions 

 

The mean residual of a best-fit line (in the least squares 

sense) fitted to the pixels corresponding to the perceived 

incision line (see Fig. 14) was determined and used to 

differentiate incomplete and complete incisions further. To 

account for the difference in scales in the images, the ratio of 

the residual to the distance between the line segments was 

used. 
 

 

Fig. 14 Line fitted to the pixels corresponding to the perceived 

incision line 

 

The mean residual of this fitted line for incomplete 

incisions (with an incision line detected in four or more line 

segments) and complete incisions are shown in Figs. 15 and 

16. 

 

 

Fig. 15 Mean residuals for incomplete incisions (with an incision line 

detected in four or more line segments). The red dotted line is the 

mean residual threshold above which an incision is considered 

incomplete 

 

 

Fig. 16 Mean residuals for complete incisions. The red dotted line is 

the mean residual threshold in Fig. 15 

 

By using a mean residual threshold of 0.04 for an incision 

to be considered as a complete incision, all incomplete 

incisions (in this work) can be precluded, although the overall 

misclassification error rate would increase. Nine out of the 64 

sample incisions were misclassified, a misclassification error 

rate of 14.1%. Crucially however, is that all the 

misclassifications are false negatives i.e. complete incisions 

classified as incomplete. In the visual inspection of an 

incision, false negatives i.e. complete incisions classified as 

incomplete are preferable to false positives i.e. incomplete 

incisions classified as complete. Erroneously classifying an 

incomplete incision as complete will result in an attempt by 

the robotic system to retract the incision. On the other hand, a 

false negative would only require further inspection before the 

surgical procedure could be continued, a minor inconvenience 

compared to the possible complications that may arise by 

attempting to retract an incision that has not been properly 

incised. Misclassifications of complete incisions were due to 

the mean residual of the fitted line of these incisions 

exceeding the threshold of 0.04 (selected to avoid 

misclassification of incomplete incisions). The high mean 

residual of misclassified complete incisions were due to pixels 

being incorrectly identified as belonging to an incision line. 

This is usually due to the incision line having a lower contrast 

compared to the edges/boundaries of the incision (see Fig. 17), 

as This is one of the problems with this approach of 

classifying incisions, The maximum second derivative of the 

Threshold 

Threshold 
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line intensity profile does not always correspond to the 

incision line (see Fig. 18). A possible solution would be to 

assign greater weightage to the line intensity profile closer to 

the middle of the line segment, to improve the detection of an 

incision line over the edges of an incision. However, this 

technique may not work if the incision line deviates from the 

middle of the line segment. 
 

 

Fig. 17 Examples of misclassified complete incisions 

 

 

Fig. 18 Intensity profile of a misclassified complete incision. ‘x’ 

indicates the perceived position of the incision line and ‘+’ indicates 

its actual position 

B. Retraction 

Fig. 19 illustrates examples where the largest circle within 

the retracted incision was successfully fitted and examples 

where it failed. In all examples where the technique failed, this 

was because the edges of the retracted incision or the prongs 

of the retractor were not segmented well. The segmentation of 

the retractors failed in some images because the number of 

clusters (determined automatically) used for color-based 

segmentation was inadequate. As a result, due to the proximity 

of the color of the retractor with part of the background skin 

and/or shadows, the retractors are sometimes segmented along 

with these regions. Segmenting the retractors robustly is 

difficult because of the different skin/background colors, the 

presence of shadows and specular reflections. Specular 

reflections, due to the reflectivity of the retractor surface, can 

be reduced by using retractors with a matt surface (instead of 

retractors with a mirror like surface) as well as by using a 

diffuser to provide softer illumination of the scene. This also 

reduces shadows in the scene. A possible solution is to 

contrive the color segmentation and recognition of the 

retractors to be simple by using a retractor with a distinct color 

that will not be mistaken with its background and is not 

present in the operative field, such as the color cyan. However, 

this would involve either the use of non-standard retractors, or 

painting the retractors (which may not be feasible in terms of 

sterility requirements). Although the edges of the incision 

were not always detected in the majority of the images (a 

directional lightning was not used to facilitate detection of the 

edges), this technique has successfully fitted relatively large 

circles within the retracted incision. The technique is therefore 

relatively robust to missing edges and does not always require 

that all the edges of the incision be found. Nevertheless, as 

shown in Fig. 19, where edges of the incision are not 

adequately detected, the position and size of the fitted circle 

can be erroneous. Where the edges of the retracted incision 

were not properly detected, the use of directional lightning 

would facilitate its detection (see Fig. 7). 

 

 

 

Fig. 19 Illustrative examples of a correctly (top) and incorrectly 

(bottom) fitted circle within the retracted incision 

C. Burr Hole 

A leave-one-out cross validation using three classifiers, 

naïve Bayes, LDA and QDA, was performed to classify a 

random subset of 54 images of partial burr holes and 54 

images of complete burr holes from a total of 162 images (54 

images of complete burr holes and 108 images of partial burr 

holes that were labeled for ground-truth). These sRGB images 

of burr holes were first converted into the CIELAB color 

space (based on ITU-R Recommendation BT.709 using the 

CIE illuminant D50 white point reference). Each image from 

the dataset was used as validation data, and the remaining 

images used as training data. This process is repeated such that 

each image is used once as the validation data. The mean and 

maximum classification error were obtained by repeating the 

training and testing of the images ten times. The leave one out 

naïve Bayes, LDA and QDA misclassification error rate based 

on the Δ���� of incomplete and complete burr holes are shown 

in Table I.  
 

TABLE I 
MEAN AND MAXIMUM MISCLASSIFICATION ERROR RATE (%) BASED ON THE 

∆���� FOR INCOMPLETE AND COMPLETE BURR HOLES 

Classifier 

Naïve Bayes LDA QDA 

19.5 / 24.1 19.5 / 24.1 18.7 / 22.2 

 

Each burr hole was subsequently represented by the mean, 

median and mode pixel CIELAB color components of all its 

pixels. Table II shows the leave one out LDA misclassification 

error rates based on the color component values of incomplete 

and complete burr holes (classification results for naïve Bayes 

and QDA not shown).  
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TABLE II 

LDA LEAVE ONE OUT MISCLASSIFICATION E

LDA leave one out misclassification error rate (%)

Statistical 

Measure 

Colour space

L* a* b* L*a* 

Mean 
(average/maximum) 

13.8 
14.8 

35.2 
38.9 

10.8 
13.0 

8.9 
10.2 

Median 

(average/maximum) 

13.3 

15.7 

36.6 

39.8 

13.2 

15.7 

7.0 

10.2 
Mode 

(average/maximum) 

14.4 

18.5 

34.8 

37.0 

19.3 

21.3 

9.8 

13.0 

 

The best misclassification error rate is 2.3% with a 

maximum error rate of 3.7% (for 10 iterations) based on mean 

L*a*b* values using LDA. This good classification 

performance can be attributed to the good separability of the 

two types of burr hole in CIELAB color space. Fig. 20 shows 

the separation of the mean pixel values of all incomplete and 

complete burr holes in CIELAB 

misclassification error rate i.e. the percentage of samples that 

are misclassified weighted by the prior probabilities for the 

group, was 1.9%. The mean Δ���� between the two classes is 

34.4, which is considerably greater than the 

difference Δ���� � 2.3. 

 

Fig. 20 Scatterplot of pixels values (mean) of incomplete and 

complete burr holes in CIELAB color space and the LDA decision 

boundary separating the two classes

 

In general, all the classifiers performed equally. Although 

these classifiers provided good classification performance, in 

this work, a false positive i.e. partial burr holes incorrectly 

classified as a complete burr hole would result in the 

subsequent surgical task being performed. Classification 

performance e.g. sensitivity and specificity can be changed 

using a different decision criterion threshold value. 

Geometrically, this threshold value corresponds to the location 

of the decision boundary i.e. the plane surface in Fig. 20. A 

Receiver Operating Characteristic curve could be used to 

identify threshold values such that there are no false positives. 

Although this will inevitably reduce the sensitivity (number of 

true positives correctly identified) of th

increase the amount of false negatives (complete burr holes 

misclassifies as partial burr hole), a higher overall 

misclassification rate without any false positives is preferable 

to a lower misclassification error rate with false positives

 

ERROR RATE (%) 

LDA leave one out misclassification error rate (%) 

Colour space 

 L*b* a*b* L*a*b* 

 
3.7 
6.5 

10.7 
13.9 

2.3 
3.7 

 

4.1 

5.6 

13.1 

15.7 

4.1 

4.6 

 

6.1 

9.3 

19.4 

21.3 

6.0 

9.3 

The best misclassification error rate is 2.3% with a 

erations) based on mean 

values using LDA. This good classification 

performance can be attributed to the good separability of the 

space. Fig. 20 shows 

the separation of the mean pixel values of all incomplete and 

 color space. The 

misclassification error rate i.e. the percentage of samples that 

are misclassified weighted by the prior probabilities for the 

between the two classes is 

34.4, which is considerably greater than the just noticeable 

 

Fig. 20 Scatterplot of pixels values (mean) of incomplete and 

space and the LDA decision 

boundary separating the two classes 

In general, all the classifiers performed equally. Although 

these classifiers provided good classification performance, in 

this work, a false positive i.e. partial burr holes incorrectly 

classified as a complete burr hole would result in the 

gical task being performed. Classification 

performance e.g. sensitivity and specificity can be changed 

using a different decision criterion threshold value. 

Geometrically, this threshold value corresponds to the location 

lane surface in Fig. 20. A 

Receiver Operating Characteristic curve could be used to 

identify threshold values such that there are no false positives. 

Although this will inevitably reduce the sensitivity (number of 

true positives correctly identified) of the inspection and 

increase the amount of false negatives (complete burr holes 

misclassifies as partial burr hole), a higher overall 

misclassification rate without any false positives is preferable 

to a lower misclassification error rate with false positives.  

In terms of textural information, four of Haralick’s 

coefficients [12] for a grey

(GLCM), contrast, correlation, energy and homogeneity, were 

computed and used as features for classification. A 

GLCM was used (k = 8,16,32,64,128 and 256), with a distance 

of one pixel in each direction for a pixel of interest and its 

corresponding pair/neighbor

using all permutations of the different texture measures. The 

maximum misclassification error rat

13.9% with the average misclassification error rate ranging 

from 9.7 – 12.0%. The lowest leave one out misclassification 

error rate was obtained using LDA based on all four texture 

measures i.e. contrast, correlation, energy and homog

with a mean misclassification error rate of 9.7% and a 

maximum error rate of 13.0%. This misclassification error 

rates is considerably higher than the mean misclassification 

error rate of 2.3% and a maximum error rate of 3.7% achieved 

using color information alone. Although texture is a weaker 

feature in discriminating the two classes of burr holes 

compared to color, the combined use of texture and 

considered. Table III shows the LDA leave one out 

misclassification error rates based on mea

CIELAB color space and texture properties of incomplete and 

complete burr holes  

TABLE

MISCLASSIFICATION ERROR RATE 

PROPERTIES OF INCOMPLETE 

LDA leave one out misclassification 

Feature 
Space 

Iteration

Colour 3.7 3.7 1.9 1.9 3.7

Colour + 

Texture 
3.7 2.8 2.8 3.7 3.7

 

The average misclassification error rate based on combined 

color and texture information is 3.0% with a maximum 

misclassification error rate of 3.7%. On the other hand, the 

lowest average and maximum misclassification error rate are 

2.3% and 3.7% respectively, using 

Combining textural informatio

change classification performance in terms of the maximum 

misclassification error rate. Fig. 21 shows the images that the 

classifier could not discriminate based on 

alone. All misclassified burr holes were

partial burr holes incorrectly classified as a complete burr 

hole. Further testing with a greater number of sample images 

is needed to determine if the use of texture measures will aid 

in classification performance.

 

Fig. 21 Misclassified burr hole

In terms of textural information, four of Haralick’s 

coefficients [12] for a grey-level co-occurrence matrix 

(GLCM), contrast, correlation, energy and homogeneity, were 

features for classification. A k x k x 8 

6,32,64,128 and 256), with a distance 

of one pixel in each direction for a pixel of interest and its 

neighbor. Classification was performed 

using all permutations of the different texture measures. The 

maximum misclassification error rate ranges from 13.0 – 

13.9% with the average misclassification error rate ranging 

The lowest leave one out misclassification 

error rate was obtained using LDA based on all four texture 

measures i.e. contrast, correlation, energy and homogeneity, 

with a mean misclassification error rate of 9.7% and a 

maximum error rate of 13.0%. This misclassification error 

rates is considerably higher than the mean misclassification 

error rate of 2.3% and a maximum error rate of 3.7% achieved 

nformation alone. Although texture is a weaker 

feature in discriminating the two classes of burr holes 

, the combined use of texture and color was 

shows the LDA leave one out 

misclassification error rates based on mean color values in 

space and texture properties of incomplete and 

 
TABLE III 

ATE (%) BASED ON COLOR AND TEXTURE 

NCOMPLETE AND COMPLETE BURR HOLES 

LDA leave one out misclassification error rate (%) 

Iteration 
Average/ 

Maximum 

3.7 2.8 3.7 3.7 1.9 2.8 
2.3 

3.7 

3.7 0.9 2.8 2.8 2.8 3.7 
3.0 

3.7 

The average misclassification error rate based on combined 

and texture information is 3.0% with a maximum 

misclassification error rate of 3.7%. On the other hand, the 

lowest average and maximum misclassification error rate are 

2.3% and 3.7% respectively, using color information only. 

Combining textural information with color information did not 

change classification performance in terms of the maximum 

misclassification error rate. Fig. 21 shows the images that the 

classifier could not discriminate based on color and texture 

alone. All misclassified burr holes were false positives i.e. 

partial burr holes incorrectly classified as a complete burr 

hole. Further testing with a greater number of sample images 

is needed to determine if the use of texture measures will aid 

in classification performance. 

 

Misclassified burr hole 
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Although the images from the CCD video camera are in 

sRGB color space, a device independent color model, it is not 

known if the images acquired are color-accurate sRGB 

because the CCD was not calibrated for color. Nevertheless, 

although the color values are not absolute colorimetric values, 

assuming similar color calibration for all images, this work 

has shown that the two types of burr holes can be separated in 

terms of their color. In terms of the best feature to represent a 

burr hole, its mean pixel color value (in CIELAB color space) 

gave the best misclassification error rate, with a better 

classification performance compared to using color difference. 

In terms of classifier performance, the misclassification error 

rates were comparable for naïve Bayes classifier, LDA and 

QDA, with LDA performing slightly better, suggesting that 

the feature space is linearly separable. Although different 

classifiers such as neural networks might give better 

classification results, because of the relatively small dataset, 

the emphasis was on finding appropriate features to perform 

the classification rather than strength of the classifiers. 

V. CONCLUSION 

A vision-based approach to inspect three primary surgical 

tasks for the creation of a burr-hole was presented. To validate 

the approach, experiments were performed on cadaveric pig 

heads, to simulate different fault scenarios, and to assess 

completion by using visual cues from the scene. The use of 

machine vision to inspect the outcome of surgical tasks has 

never been considered before. The classification rate for 

incisions was 85.9% while classification rate for burr holes 

was 97.7%. The good burr hole classification rate can be 

attributed to incomplete and complete burr holes having 

characteristic colors, and these being consistent through a 

wide range of subjects. Classification simply becomes a matter 

of discriminating the two classes based on their characteristic 

colors.  

As the use of images from actual surgeries was beyond 

present resources, cadaveric dissection of pig heads were used 

to generate images of the outcome of a surgical action. The 

use of cadavers however meant that any bleeding resulting 

from the skin being incised could not be simulated, as 

cadaveric skin has no blood supply. Nevertheless, as any 

bleeding will normally be cauterized and irrigated, the visual 

appearance should not be too dissimilar and the technique 

developed may potentially be applicable during actual surgery. 

Similar techniques may not necessarily extend to humans in a 

clinical environment. As such, clinical testing under more 

realistic conditions are necessary before this system can be 

deployed in an operation theatre.  

While this work has shown promising results on the use of 

machine vision for inspecting the outcome of the three 

surgical tasks under consideration, there are several challenges 

regarding its use for this purpose. The first is the inherent 

natural variation in appearance of biological matter. A case in 

point is the inspection of incisions based on the presence of an 

incision line. Because of the large variations in appearance of 

the incision line, the reliance on a single feature was unable to 

capture all the differences between a complete and incomplete 

incision. The second is misclassification. False positives in the 

detection are more of an issue than false negatives. 

Erroneously classifying an incomplete surgical task as 

complete will result in the subsequent task being performed. 

When performing classification, the emphasis should therefore 

be on reducing the number of false positives, rather that 

achieving the best overall misclassification rate. The use of 

machine vision should therefore not be viewed in isolation. 

Indeed, the aim is to use machine vision to 

augment/complement other sensory information, although it is 

not inconceivable that the state of the art in machine vision 

can advance to a stage where it is able to emulate the visual 

recognition ability and interpretation process of a human 

expert. 
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